Research on the Spatiotemporal Characteristics and Influencing Mechanisms of Sustainable Plateau Urban Building Carbon Emissions: A Case Study of Qinghai Province
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Carbon Emission Accounting
3.2. Indicator Selection
3.3. XGBoost Model
4. Results
4.1. Analysis of the Applicability and Effectiveness of the XGBoost Model
4.2. Spatiotemporal Characteristics of Building Carbon Emissions
4.3. Impact Mechanism of Building Carbon Emissions
5. Discussion
5.1. Temporal and Spatial Variation Characteristics of Building Carbon Emissions in Plateau Cities
5.2. The Impact Mechanism of Carbon Emissions of Differentiated Types of Plateau Urban Buildings
5.3. Differentiated Carbon Emission Reduction Strategies for Plateau Urban Buildings
5.4. Mechanism of Regional Cross-Boundary Carbon Flow Balance and Stakeholder Collaboration Effects
5.5. Partial Results Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.; Zhu, J.; Wang, S.; Yue, C.; Shen, H. Global warming, human-induced carbon emissions, and their uncertainties. Sci. China Earth Sci. 2011, 54, 1458–1468. [Google Scholar] [CrossRef]
- Alexander, L.; Allen, S.; Bindoff, N.; Breon, F.-M.; Church, J.; Cubasch, U.; Emori, S.; Forster, P.; Friedlingstein, P.; Gillett, N.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Liu, Z.; Deng, Z.; Davis, S.; Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 2023, 4, 205–206. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhou, H.; Miao, Z.; Tang, H.; Lin, B.; Zhuang, W. Life-cycle carbon emissions (LCCE) of buildings: Implications, calculations, and reductions. Engineering 2024, 35, 115–139. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Xu, Y.; Lin, Q.; Tan, E.; Zhang, Y.; Wu, X.; Zhang, J.; Liu, X. The fusion of multiple scale data indicates that the carbon sink function of the Qinghai-Tibet Plateau is substantial. Carbon Balance Manag. 2023, 18, 19. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Hu, H. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z.; Zhang, R.; Li, G. Spatial service scope of carbon neutrality and its simulation prediction in the Loess Plateau of China. Appl. Ecol. Environ. Res. 2024, 22, 2225–2240. [Google Scholar] [CrossRef]
- Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Mostafaei, H.; Rostampour, M.A.; Chamasemani, N.F.; Wu, C. An In-depth Exploration of Carbon Footprint Analysis in the Construction Sector with Emphasis on the Dam Industry. In Carbon Footprint Assessments, Environmental Footprints and Eco-design of Products and Processes, 2nd ed.; Muthu, S.S., Ed.; Springer: Cham, Switzerland, 2024; pp. 45–80. [Google Scholar] [CrossRef]
- Han, H.; Chen, W.; Zhang, J.; Wang, W.; Xiao, Z.; Wang, Z.; Wan, Y. Study on the characteristics of spatial evolution and influencing factors of green buildings in China. Buildings 2024, 14, 714. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, S. Exploring the pathways of achieving carbon peaking and carbon neutrality targets in the provinces of the Yellow River Basin of China. Sustainability 2024, 16, 6553. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhou, H.; Fu, Z.; Cheng, X.; Zhang, W. Research on the carbon emission baselines for different types of public buildings in a northern cold areas city of China. Buildings 2023, 13, 1108. [Google Scholar] [CrossRef]
- Wo, R.; Fang, D.; Song, D.; Chen, B. Analysis of embodied carbon emissions and carbon sequestration in Tibetan Plateau-Case study of Tibet and Qinghai. Appl. Energy 2023, 347, 121449. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, F.; Gao, Y.; Liu, Y.; Liu, Y.; Zhang, T. Study on the performance of an ultra-low energy building in the Qinghai-Tibet Plateau of China. J. Build. Eng. 2023, 70, 106345. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Z. Impact of urban vitality on carbon emission: An analysis of 222 Chinese cities based on the spatial Durbin model. Humanit. Soc. Sci. Commun. 2024, 11, 1312. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Deng, Z.; Javanroodi, K.; Nik, V.M.; Chen, Y. Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. Build. Simul. 2023, 16, 1629–1643. [Google Scholar] [CrossRef]
- Du, Z.; Liu, Y.; Zhang, Z. Spatiotemporal analysis of influencing factors of carbon emission in public buildings in China. Buildings 2022, 12, 424. [Google Scholar] [CrossRef]
- Zhao, X.; Shao, B.; Su, J.; Tian, N. Exploring synergistic evolution of carbon emissions and air pollutants and spatiotemporal heterogeneity of influencing factors in Chinese cities. Sci. Rep. 2025, 15, 2657. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y. Modeling and predicting city-level CO2 emissions using open access data and machine learning. Environ. Sci. Pollut. Res. 2021, 28, 19260–19271. [Google Scholar] [CrossRef]
- Liu, J.; Xin, Z.; Huang, Y.; Yu, J. Climate suitability assessment on the Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 816, 151653. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Wang, M.; Mao, J.; Huang, B. A review of building carbon emission accounting methods under low-carbon building background. Buildings 2024, 14, 777. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Schipper, E.L.F. Catching maladaptation before it happens. Nat. Clim. Change 2022, 12, 617–618. [Google Scholar] [CrossRef]
- Liu, M.; Dong, X.; Wang, X.C.; Zhao, B.; Fan, W.; Wei, H.; Zhang, P.; Liu, R. Evaluating the future terrestrial ecosystem contributions to carbon neutrality in Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 374, 133914. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, P.; Zhu, Y.; Zhang, H. Study on comprehensive evaluation of human settlements quality in Qinghai Province, China. Ecol. Indic. 2023, 154, 110520. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Zhou, Q. Potential of ecosystem carbon sinks to “neutralize” carbon emissions: A case study of Qinghai in west China and a tale of two stages. Glob. Transit. 2022, 4, 1–10. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, S. Exploring the realization pathway of peak and neutralization in the provinces around the Yangtze River of China. J. Clean. Prod. 2024, 466, 142904. [Google Scholar] [CrossRef]
- Feng, Y.; Li, G. Interaction between urbanization and eco-environment in the Tibetan Plateau. J. Geogr. Sci. 2021, 31, 298–324. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 1996. [Google Scholar]
- Li, B.; Han, S.; Wang, Y.; Li, J.; Wang, Y. Feasibility assessment of the carbon emissions peak in China’s construction industry: Factor decomposition and peak forecast. Sci. Total Environ. 2020, 706, 135716. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Guidelines for Greenhouse Gas Emission Accounting and Reporting in Industrial Enterprises; NDRC: Beijing, China, 2015.
- Wang, Z.; Geng, L. Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. J. Clean. Prod. 2015, 104, 177–184. [Google Scholar] [CrossRef]
- Du, J.; Xiang, X.; Zhao, B.; Zhou, H. Impact of urban expansion on land surface temperature in Fuzhou, China using Landsat imagery. Sustain. Cities Soc. 2020, 61, 102346. [Google Scholar] [CrossRef]
- Tan, J.Y. Spatiotemporal distribution and peak prediction of energy consumption and carbon emissions in China’s residential buildings. Appl. Energy 2024, 354, 122167. [Google Scholar] [CrossRef]
- Liu, P.; Lin, B.; Zhou, H.; Wu, X.; Little, J.C. CO2 emissions from urban buildings at the city scale: System dynamic projections and potential mitigation policies. Appl. Energy 2020, 277, 115546. [Google Scholar] [CrossRef]
- Abrar, R.; Sarkar, S.K.; Nishtha, K.T.; Talukdar, S.; Shahfahad; Rahman, A.; Islam, A.R.M.T.; Mosavi, A. Assessing the spatial mapping of heat vulnerability under urban heat island (UHI) effect in the Dhaka metropolitan area. Sustainability 2022, 14, 4945. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, Z.; Liu, Y.; Feng, W.; Zhou, N.; Yang, L. Towards low-carbon cities through building-stock-level carbon emission analysis: A calculating and mapping method. Sustain. Cities Soc. 2022, 78, 103633. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Mijani, N.; Kazemi, Y.; Amiraslani, F. Seasonal and daily effects of the sea on the surface urban heat island intensity: A case study of cities in the Caspian Sea Plain. Urban Clim. 2023, 51, 101603. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Chen, L. Synergistic utilization of wind-solar energy in plateau regions: An optimization model considering negative correlation characteristics. Renew. Energy 2023, 202, 1328–1341. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Dong, H. Considerable role of urban functional form in low-carbon city development. J. Clean. Prod. 2023, 392, 136256. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, S. Predictive Modeling and Validation of Carbon Emissions from China’s Coastal Construction Industry: A BO-XGBoost Ensemble Approach. Sustainability 2024, 16, 4215. [Google Scholar] [CrossRef]
- Nalluri, M.; Pentela, M.; Eluri, N.R. A Scalable Tree Boosting System: XG Boost. Int. J. Res. Stud. Sci. Eng. Technol. 2020, 7, 36–51. [Google Scholar] [CrossRef]
- National Development and Reform Commission; Ministry of Housing and Urban-Rural Development. Notice on the Issuance of the Lanzhou-Xining City Cluster Development Plan; NDRC: Beijing, China, 2018.
- Xining Municipal People’s Government. Notice on the Implementation Plan for the “Coal-to-Gas” Retrofitting of Coal-Fired Boilers in 2018; Xining Government: Xining, China, 2018.
- Degirmenci, T.; Aydin, M.; Cakmak, B.Y.; Yigit, B. A path to cleaner energy: The nexus of technological regulations, green technological innovation, economic globalization, and human capital. Energy 2024, 303, 131652. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Q.; Shao, S.; Zhang, Y.; Bao, Y.; Zhao, L. Carbon emission scenarios of China’s construction industry using a system dynamics methodology–Based on life cycle thinking. J. Clean. Prod. 2024, 435, 140457. [Google Scholar] [CrossRef]
- Luo, H.Z.; Liu, Z.G.; Li, Y.Y.; Meng, X.Z.; Yang, X.H. Characterizing and predicting carbon emissions from an emerging land use perspective: A comprehensive review. Urban Clim. 2024, 58, 102141. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Zang, H. Renewable energy technology innovation, climate risk, and carbon emission reduction: A cross-country analysis. Renew. Energy 2025, 240, 122136. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zheng, W.K.; Wang, F.; Wang, H.Y.; Jiang, Y.Q.; Bai, Z.Q.; Jiao, J.M.; Guo, C.B. Analysis of operation regulation on delay time in long-distance heating pipe systems for practical engineering. Sustain. Energy Grids Netw. 2024, 40, 101526. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, X. The spatiotemporal distribution characteristics and driving factors of carbon emissions in the Chinese construction industry. Buildings 2023, 13, 2808. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Shang, X.; Fu, R.; Xie, L.; Ge, Q. Scaling laws of CO2 emissions during global urban expansion. npj Urban Sustain. 2025, 5, 3. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Xu, N.; Ji, M.; Zeng, J. Promoting or inhibiting? New-type urbanization and urban carbon emissions efficiency in China. Cities 2023, 140, 104429. [Google Scholar] [CrossRef]
- Cheng, B.; Li, J.; Zhang, Y. Spatial efficiency optimization in service-oriented cities: A case study of plateau urban agglomerations. Sustain. Cities Soc. 2022, 78, 103621. [Google Scholar] [CrossRef]
- Khavarian-Garmsir, A.R.; Sharifi, A.; Sadeghi, A. The 15-minute city: Urban planning and design efforts toward creating sustainable neighborhoods. Cities 2023, 132, 104101. [Google Scholar] [CrossRef]
- Ashraf, S.R.B.; Daus, D.; Kuester-Campioni, T. Crafting a Transport-Oriented City for Sustainable Living. Amplify 2024, 37. Available online: https://cutter.com/article/crafting-transport-oriented-city-sustainable-living (accessed on 6 April 2025).
- Chen, L.; Hu, Y.; Wang, R.; Li, X.; Chen, Z.; Hua, J.; Osman, A.I.; Farghali, M.; Huang, L.; Li, J.; et al. Green building practices to integrate renewable energy in the construction sector: A review. Environ. Chem. Lett. 2024, 22, 751–784. [Google Scholar] [CrossRef]
- Sokka, L.; Pakarinen, S.; Melanen, M. Industrial symbiosis contributing to more sustainable energy use—An example from the forest industry in Kymenlaakso, Finland. J. Clean. Prod. 2011, 19, 285–293. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Lu, Y.; Chang, M.; Xiao, Y.; Yang, H.; Kong, D.; Zhang, L. Research on the impact of the digital economy on carbon emissions based on the dual perspectives of carbon emission reduction and carbon efficiency. Sci. Rep. 2024, 15, 3416. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Cai, W.; You, K.; Li, Z.; Ran, L. Historical peak situation of building carbon emissions in different climate regions in China: Causes of differences and peak challenges. Sci. Total Environ. 2023, 903, 166621. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Insight into carbon emissions related to residential consumption in Tibetan Plateau–Case study of Qinghai. Sustain. Cities Soc. 2020, 61, 102310. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.-N.; Xiao, Y.; Tang, P.-Y.; Liu, S.-Y.; Chang, M.; Huang, H. Exploring spatial pattern optimization path of urban building carbon emission based on low-carbon cities analytical framework: A case study of Xi’an, China. Sustain. Cities Soc. 2024, 111, 105551. [Google Scholar] [CrossRef]
- Wang, M.; Kong, D.; Mao, J.; Ma, W.; Ayyamperumal, R. The Impacts of Land Use Spatial Form Changes on Carbon Emissions in Qinghai–Tibet Plateau from 2000 to 2020: A Case Study of the Lhasa Metropolitan Area. Land 2023, 12, 122. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, S.; Mo, H.; Wang, W.; Yu, P.; Wang, X.; Chuduo, N.; Ba, B. Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau. Clim. Change 2022, 175, 6. [Google Scholar] [CrossRef]
- Sreenivasulu, V.B.; Neelam, A.K.; Panigrahy, A.K.; Vakkalakula, L.; Singh, J.; Singh, S.G. Benchmarking of Multi-Bridge-Channel FETs Toward Analog and Mixed-Mode Circuit Applications. IEEE Access 2024, 12, 7531–7539. [Google Scholar] [CrossRef]
- Gowthami, U.; Panigrahy, A.K.; Rani, D.S.; Bhukya, M.N.; Sreenivasulu, V.B.; Prakash, M.D. Performance Improvement of Spacer-Engineered N-Type Tree Shaped NSFET Toward Advanced Technology Nodes. IEEE Access 2024, 12, 59716–59725. [Google Scholar] [CrossRef]
Indicator Dimension | Indicator Type | Abbreviation | Indicator Explanation | Data Source |
---|---|---|---|---|
Social and economic structure | Gross domestic product | SE1 | Gross economic product (CNY 100 million) | Qinghai Statistical Yearbook (2011–2023) |
Proportion of tertiary industry | SE2 | Proportion of the tertiary industry in the total gross product | China Statistical Yearbook for Regional Economy (2011–2014), Qinghai Statistical Yearbook (201–2023) | |
GDP per capita | SE3 | Regional per capita GDP (CNY) | China Statistical Yearbook for Regional Economy (2011–2014), Qinghai Statistical Yearbook (2011–2023) | |
Urban expansion characteristics | Urban population density | UE1 | Urban population density (persons/square kilometer) | China City Statistical Yearbook (2010–2022) |
Urban population | UE2 | Statistically recorded urban population in the region (10,000 persons) | Qinghai Statistical Yearbook (2011–2023) | |
The area under construction of the house | UE3 | The area of houses under construction in the current year (10,000 square meters) | Qinghai Statistical Yearbook (2011–2023), China Statistical Yearbook for Regional Economy (2011–2023) | |
The area of the house completed | UE4 | The area of houses completed in the current year (10,000 square meters) | China Statistical Yearbook for Regional Economy (2011–2023), Qinghai Statistical Yearbook (2011–2023) | |
Area of built-up area | UE5 | Area of urban built-up area (square kilometer) | China City Statistical Yearbook (2011–2023) | |
Population urban environment | Density of water supply pipes in built-up areas | PU1 | Density of water supply pipes in urban built-up areas (kilometer/square kilometer) | China City Statistical Yearbook (2010–2022) |
The area of urban central heating | PU2 | Area of urban central heating (10,000 square meters) | China City Statistical Yearbook (2010–2022) | |
The average floor area ratio of buildings in the city | PU3 | Ratio of building area to built-up area | China City Statistical Yearbook (2011–2023), Qinghai Statistical Yearbook (2011–2023) | |
Proportion of residential central heating | PU4 | Proportion of residential central heating area | China City Statistical Yearbook (2011–2023) | |
Proportion of building heating | PU5 | Heating proportion of residential and public buildings | China City Statistical Yearbook (2011–2023) | |
Proportion of residential construction land | PU6 | Proportion of residential construction land in total construction land | China City Statistical Yearbook (2011–2023) | |
Climate terrain attributes | Regional average temperature | CT1 | Annual average temperature in the region (°C) | Qinghai Statistical Yearbook (2011–2023) |
Regional average wind speed | CT2 | Annual average wind speed in the region (m/s) | Qinghai Statistical Yearbook (2011–2023) | |
Average sunshine hours in the region | CT3 | Annual average sunshine hours in the region (h) | Qinghai Statistical Yearbook (2011–2023) | |
City Shape Index | CT4 | Ratio of the urban area to the area of a circle with the same perimeter as the urban area | Google Historical Image Map |
Research Areas | Xining City | Haidong City | Haiyan County | Tongren City | Gonghe County | Maqin County | Yushu City | Delingha City |
---|---|---|---|---|---|---|---|---|
R2 | 0.96 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
MSE | 0.0501 | 0.0364 | 0.0008 | 0.0148 | 0.0004 | 0.0001 | 0.0077 | 0.0027 |
RMSE | 0.2210 | 0.1910 | 0.0282 | 0.1218 | 0.0202 | 0.0105 | 0.0881 | 0.0526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Su, B.; Zhang, J.; Liang, P.; Li, W.; Wu, S.; Wang, S. Research on the Spatiotemporal Characteristics and Influencing Mechanisms of Sustainable Plateau Urban Building Carbon Emissions: A Case Study of Qinghai Province. Buildings 2025, 15, 1307. https://doi.org/10.3390/buildings15081307
Jia H, Su B, Zhang J, Liang P, Li W, Wu S, Wang S. Research on the Spatiotemporal Characteristics and Influencing Mechanisms of Sustainable Plateau Urban Building Carbon Emissions: A Case Study of Qinghai Province. Buildings. 2025; 15(8):1307. https://doi.org/10.3390/buildings15081307
Chicago/Turabian StyleJia, Haifa, Bo Su, Jianxun Zhang, Pengyu Liang, Wanrong Li, Shuai Wu, and Shan Wang. 2025. "Research on the Spatiotemporal Characteristics and Influencing Mechanisms of Sustainable Plateau Urban Building Carbon Emissions: A Case Study of Qinghai Province" Buildings 15, no. 8: 1307. https://doi.org/10.3390/buildings15081307
APA StyleJia, H., Su, B., Zhang, J., Liang, P., Li, W., Wu, S., & Wang, S. (2025). Research on the Spatiotemporal Characteristics and Influencing Mechanisms of Sustainable Plateau Urban Building Carbon Emissions: A Case Study of Qinghai Province. Buildings, 15(8), 1307. https://doi.org/10.3390/buildings15081307