Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration
Abstract
:1. Introduction
1.1. Research Background and Context
1.2. Motivation and Objectives
1.3. Research Scope and Methodology
2. Literature Review
2.1. Integration of BIM and Digital Twin Concepts
2.2. Limitations of Traditional Maintenance Approaches
2.3. Review of Prior Research
3. Design of a Noise Barrier Tunnel Maintenance Monitoring System
3.1. System Overview and Objectives
3.2. Digital Environment and BIM Model Development
3.3. Physical Environment Setup and IoT Sensor Network
3.4. Real-Time Monitoring System Design
4. Demonstration and Performance Assessment
4.1. Demonstration Targets and Site Conditions
4.2. Prototype Integration and Functional Validation
4.3. Results and Performance Analysis
4.4. Discussion and Future Enhancements
5. Conclusions
5.1. Research Summary and Key Contributions
5.2. Study Limitations
5.3. Direction for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, Y. Criteria for Smart Cities, Smart City Indexes. Sci. Technol. Innov. Policy 2016, 26, 38–43. Available online: https://www.stepi.re.kr/site/stepiko/PeriodicReportList.do?cateCont=A0504&pageIndex=2&reIdx=0&searchYear=&searchCondition=1&searchKeyword=&searchSort=PUBLIC_DT#modal1 (accessed on 30 December 2024).
- El-Agamy, R.F.; Sayed, H.A.; ALAkhatatneh, A.M.; Aljohani, M.; Elhosseini, M. Comprehensive Analysis of Digital Twins in Smart Cities: A 4200-Paper Bibliometric Study. Artif. Intell. Rev. 2024, 57, 154. [Google Scholar] [CrossRef]
- Grieves, M.W. Product Lifecycle Management: The New Paradigm for Enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Encyclopedia of Geography; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2010. [CrossRef]
- Dave, B.; Kubler, S.; Främling, K.; Koskela, L. Opportunities for Enhanced Lean Construction Management Using Internet of Things Standards. Autom. Constr. 2016, 61, 86–97. [Google Scholar] [CrossRef]
- Dave, B.; Buda, A.; Nurminen, A.; Främling, K. A Framework for Integrating BIM and IoT through Open Standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-Driven Predictive Maintenance Planning Framework for MEP Components Based on BIM and IoT Using Machine Learning Algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M. Internet of Things (IoT) for Integrating Environmental and Localization Data in Building Information Modeling (BIM). In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; Volume 34. [Google Scholar] [CrossRef]
- UK BIM Alliance. BIM and Digital Twins [Positioning Statement]; UK BIM Alliance: London, UK, 2021. [Google Scholar]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. A Framework Using BIM and Digital Twins in Facilitating LCSA for Buildings. J. Build. Eng. 2023, 76, 107232. [Google Scholar] [CrossRef]
- Opoku, D.G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital Twin Application in the Construction Industry: A Literature Review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-A. Lifespan Prediction Technique for Digital Twin-Based Noise Barrier Tunnels. Sustainability 2020, 12, 2940. [Google Scholar] [CrossRef]
- Son, J. Case Study on the Planning Procedure of Traffic Soundproof Facilities and Alternative Decision Making. Master’s Thesis, Bukyeong University, Busan, Republic of Korea, 25 February 2009. Available online: https://repository.pknu.ac.kr:8443/handle/2021.oak/10689 (accessed on 31 December 2024).
- Kim, J.-M.; Son, S.-B.; Kim, H.-B.; Cho, J.-W. Apocalyptic Highway Fire Exposes Dangers of Plastic Tunnels. Available online: https://koreajoongangdaily.joins.com/2022/12/30/national/socialAffairs/korea-fire-gyeongin-expressway/20221230154034712.html (accessed on 28 December 2024).
- Biagini, C.; Bongini, A. BIM and Data Integration: A Workflow for the Implementation of Digital Twins. In Beyond Digital Representation. Digital Innovations in Architecture, Engineering and Construction; Giordano, A., Russo, M., Spallone, R., Eds.; Springer: Cham, Switzerland, 2024; Volume 1, p. 822. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart City Based on Digital Twins. Comput. Urban Sci. 2021, 1, 4. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems. New Findings and Approaches; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Xu, Z.; Ji, F.; Ding, S.; Zhao, Y.; Zhou, Y.; Zhang, Q.; Du, F. Digital Twin-Driven Optimization of Gas Exchange System of 2-Stroke Heavy Fuel Aircraft Engine. J. Manuf. Syst. 2021, 58, 132–145. [Google Scholar] [CrossRef]
- Sychev, S.; Batako, A.; Nguyen, T.; Xavior, A.; Antosz, K.; Machado, J. An Investigation into Connection between BIM and Digital Twins Technologies. IFAC-Pap. 2024, 58, 234–239. [Google Scholar] [CrossRef]
- Honghong, S.; Gang, Y.; Haijiang, L.; Tian, Z.; Annan, J. Digital twin enhanced BIM to shape full life cycle digital transformation for bridge engineering. Autom. Constr. 2023, 147, 104736. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a Semantic Construction Digital Twin: Directions for Future Research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-Data Mining Integrated Digital Twin Framework for Advanced Project Management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, C.; Liu, Z. A Framework for Prefabricated Component Hoisting Management Systems Based on Digital Twin Technology. Buildings 2022, 12, 276. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C.; Zheng, J.; Jia, Y.; Liu, Z.; Yang, K. Digital-Twin-Based Operation and Maintenance Management Method for Large Underground Spaces. Buildings 2024, 14, 2577. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-Pap. 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Alshammari, K.; Beach, T.; Rezgui, Y. Cybersecurity for Digital Twins in the Built Environment: Current Research and Future Directions. J. Inf. Technol. Constr. 2021, 26, 159–173. [Google Scholar] [CrossRef]
- Lopez, V.; Akundi, A. A Conceptual Model-based Systems Engineering (MBSE) Approach to Develop Digital Twins. In Proceedings of the 2022 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 25–28 April 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Soman, R.K.; Farghaly, K.; Mills, G.; Whyte, J. Digital Twin Construction with a Focus on Human Twin Interfaces. Autom. Constr. 2025, 170, 105924. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Larrucea, X.; Colomo-Palacios, R. Digital Twins in Critical Infrastructure. Information 2024, 15, 454. [Google Scholar] [CrossRef]
- Noroozinejad Farsangi, E.; Shehata, A.O.; Rashidi, M.; Ghassempour, N.; Mirjalili, S. Transitioning from BIM to Digital Twin to Metaverse. Front. Built Environ. 2024, 10, 1486423. [Google Scholar] [CrossRef]
- Liu, S.; Ren, S.; Jiang, H. Predictive Maintenance of Wind Turbines Based on Digital Twin Technology. Energy Rep. 2023, 9, 1344–1352. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rashidi, M.; Yu, Y.; Samali, B. Integration of TLS-derived bridge information modeling (BrIM) with a decision support system (DSS) for digital twinning and asset management of bridge infrastructures. Comput. Ind. 2023, 147, 103881. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital twin aided sustainability and vulnerability audit for subway stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Zhong, D.; Xia, Z.; Zhu, Y.; Duan, J. Overview of predictive maintenance based on digital twin technology. Heliyon 2023, 9, e14534. [Google Scholar] [CrossRef]
- Wang, M.; Ashour, M.; Mahdiyar, A.; Sabri, S. Opportunities and threats of adopting digital twin in construction projects: A review. Buildings 2024, 14, 2349. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Y.; Mao, Z.; Hu, M.; Sugumaran, V.; Wang, Y.K. A Digital Twin-Based Decision Analysis Framework for Operation and Maintenance of Tunnels. Tunn. Undergr. Space Technol. 2021, 116, 104125. [Google Scholar] [CrossRef]
Author | Research Focus | Application Areas and Strengths | Shortcomings | Implications for This Study |
---|---|---|---|---|
Kim and Kim (2020) [13] | Fatigue-based life prediction | NBT components; structural assessment | Limited to fatigue analysis | Basis for real-time NBT monitoring |
Yu et al. (2021) [40] | Decision support framework | Tunnel O&M; data integration | Scalability unverified | Validates system integration |
Wang, H. et al. (2024) [26] | DT for underground spaces | O&M management; real-life validation | Specific to underground spaces | Empirical O&M applicability |
Mohammadi et al. (2023) [36] | BIM-DT for bridge management | Bridge O&M; reduced inspection frequency | Focused on bridges, not tunnels | Real-time monitoring validation |
Kaewunruen et al. (2020) [37] | DT for subway sustainability | Subway stations; cost efficiency | Specific to subway infrastructure | Supports cost-effective maintenance |
Zhong et al. (2023) [38] | Predictive maintenance with DT | Multi-industry; algorithmic advancements | General overview, not NBT-specific | Framework for predictive analytics |
Wang, M. et al. (2024) [39] | DT in construction projects | Construction O&M; workflow optimization | Broad review, lacks specific cases | Supports practical DT adoption |
Kritzinger et al. (2018) [28] | DT classification | Manufacturing; maturity assessment | Manufacturing-focused | Foundation for construction O&M |
Tao et al. (2019) [19] | DT application review | Cyber-physical integration; analytics | Construction specificity lacking | Identifies core DT technologies |
Xu et al. (2021) [20] | DT optimization | Aviation; real-time feedback | Limited to aviation | Real-time optimization potential |
Sensor Type | Measured Variable | Unit | Sampled Input Format | Maintenance Purpose in NBT | Twin Application |
---|---|---|---|---|---|
Vibration | Acceleration/intensity | mm/s2, m/s2 | Float (e.g., 0.62) | Detects abnormal stress/crack | Structural health model |
Tilt | Pitch angle (θ) | Degrees (°) | Float (e.g., 1.24°) | Detects foundation or frameshift | Deformation visualization |
Light (Illuminance) | Illuminance | Lux | Integer (e.g., 1540 lux) | Checks visibility and solar panel output | Solar efficiency mapping |
Air Quality | PM1, PM2.5, PM10 | μg/m3 | Float (e.g., 42.1) | Assesses tunnel air safety | Environmental safety index |
Water Detection | Flood presence (binary) | Boolean | True/false | Detects road flooding and blockage | Accessibility alert |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-W.; Lee, Y.; Kim, S.-A. Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration. Buildings 2025, 15, 1312. https://doi.org/10.3390/buildings15081312
Yang S-W, Lee Y, Kim S-A. Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration. Buildings. 2025; 15(8):1312. https://doi.org/10.3390/buildings15081312
Chicago/Turabian StyleYang, Seung-Won, Yuki Lee, and Sung-Ah Kim. 2025. "Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration" Buildings 15, no. 8: 1312. https://doi.org/10.3390/buildings15081312
APA StyleYang, S.-W., Lee, Y., & Kim, S.-A. (2025). Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration. Buildings, 15(8), 1312. https://doi.org/10.3390/buildings15081312