Bioclimatic Analysis in Pre‐Design Stage of Passive House in Indonesia
Abstract
:1. Introduction
2. Literature Review
2.1. Passive Houses in Warm Climates
“A Passive House is a building, in which thermal comfort (ISO 7730) can be provided solely by post heating or post cooling the fresh air flow which is required for good indoor air quality (DIN 1946)—without using recirculated air in addition”
2.2. Adaptive Thermal Comfort
2.3. Thermal Comfort Research in Indonesia
3. Research Methodology
3.1. Olgyay Bioclimatic Chart
3.2. Givoni–Milne Bioclimatic Chart
3.3. Mahoney Table
3.4. Energy Simulation
4. Case Study Data
5. Result of Bioclimatic Analysis
5.1. Olgyay Bioclimatic Chart for Jakarta
5.2. Givoni–Milne Bioclimatic Chart for Jakarta
- Td: mean monthly outdoor temperature
- PCTu: predictive comfort temperature upgrade
5.3. Mahoney Tables for Jakarta
6. Summary of Bioclimatic Analysis
6.1. Natural Ventilation for Wind Penetration
6.2. Shading Devices
6.3. Building Orientation
6.4. Wall and Roof
7. Energy Simulation
7.1. Typical Residential House in Indonesia
7.2. Thermal Comfort in a Typical Residential House in Indonesia
7.3. Application of the Passive Strategy to a Current Typical House in Indonesia
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Green Building Studio. Available online: https://gbs.autodesk.com/GBS/ (accessed on 10 June 2016).
- Badan Pusat Statistik Indonesia. Statistik Indonesia 2015; Badan Pusat Statistik-Statistic Indonesia: Jakarta, Indonesia, 2015.
- Indonesia Map with Cities−Blank Outline Map of Indonesia. Available online: http://indonesiamap.facts.co/indonesiamapof/indonesiamap.php (accessed on 30 November 2016).
- Sayigh, A.; Marafia, A.H. Chapter 1—Thermal comfort and the development of Bioclimatic concept in building design. Renew. Sustain. Energy Rev. 1998, 2, 3–24. [Google Scholar] [CrossRef]
- Milne, M.; Givoni, B. Architectural Design Based on Climate in Energy Conservation Through Building Design; Watson, D., Ed.; McGraw-Hill, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Lam, J.C.; Yang, L.; Liu, J. Development of passive design zones in China using Bioclimatic approach. Energy Convers. Manag. 2006, 47, 746–762. [Google Scholar] [CrossRef]
- Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A. Development of climatic zones and passive solar design in Madagascar. Energy Convers. Manag. 2009, 50, 1004–1010. [Google Scholar] [CrossRef]
- Luo, M.; Lin, B.; Cao, B. Approach to choose proper passive design strategies for residential buildings. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, Xi’an, China, 19–21 October 2013.
- Singh, M.K.; Mahapatra, S.; Atreya, S.K. Development of bio-climatic zones in north-east India. Energy Build. 2007, 39, 1250–1257. [Google Scholar] [CrossRef]
- Al-Azri, N.; Zurigat, Y.; Al-Rawahi, N. Development of Bioclimatic Chart for Passive Building Design in Muscat-Oman. In Proceedings of the International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain, 28–30 March 2012.
- Visitsak, S. An Evaluation of the Bioclimatic Chart for Choosing Design Strategies for a Thermostatically-Controlled Residence in Selected Climates; Texas A&M University: College Station, TX, USA, 2007. [Google Scholar]
- Bodach, S.; Lang, W.; Hamhaber, J. Climate responsive building design strategies of vernacular architecture in Nepal. Energy Build. 2014, 81, 227–242. [Google Scholar] [CrossRef]
- Passipedia. The Passive House—Definition. Available online: https://passipedia.org/basics/the_passive_house_-_definition (accessed on 11 February 2017).
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Schnieders, J. Adaptive Versus Heat Balance Comfort Models. Available online: https://passipedia.org/basics/building_physics_-_basics/thermal_comfort/heat_balance_vs_comfort_models (accessed on 12 February 2017).
- Passive House Institute. Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard. Available online: http://passiv.de/downloads/03_building_criteria_en.pdf (accessed on 13 February 2017).
- Schnieders, J.; Feist, W.; Rongen, L. Passive Houses for different climate zones. Energy Build. 2015, 105, 71–87. [Google Scholar] [CrossRef]
- Passipedia. Passive House in Different Climate. Available online: https://passipedia.org/basics/passive_houses_in_different_climates (accessed on 11 February 2017).
- Passive House Institute. Passive House Database. Available online: http://www.passivhausprojekte.de/index.php?lang=en#d_4340 (accessed on 14 February 2017).
- De Dear, R.J.; Brager, G.S. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Nicol, F. Adaptive thermal comfort standards in the hot–humid tropics. Energy Build. 2004, 36, 628–637. [Google Scholar] [CrossRef]
- De Dear, R.; Brager, G. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 1–18. [Google Scholar]
- Nguyen, A.T.; Singh, M.K.; Reiter, S. An adaptive thermal comfort model for hot humid South-East Asia. Build. Environ. 2012, 56, 291–300. [Google Scholar] [CrossRef]
- Indraganti, M.; Ooka, R.; Rijal, H.B.; Brager, G.S. Adaptive model of thermal comfort for offices in hot and humid climates of India. Build. Environ. 2014, 74, 39–53. [Google Scholar] [CrossRef]
- Karyono, T. Predicting Comfort Temperature in Indonesia, an Initial Step to Reduce Cooling Energy Consumption. Buildings 2015, 5, 802–813. [Google Scholar] [CrossRef]
- Toe, D.H.C.; Kubota, T. Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Front. Archit. Res. 2013, 2, 278–291. [Google Scholar] [CrossRef]
- Hooi, D.; Toe, C.; Kubota, T. A Review of Adaptive Model of Thermal Comfort for Naturally Ventilated Buildings in Hot-Humid Climate. In Proccedings of 8th International Symposium on Architectural Interchanges in Asia (ISAIA), Kitakyushu, Japan, 9–12 November 2010.
- Indraganti, M.; Rao, K.D. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy Build. 2010, 42, 273–281. [Google Scholar] [CrossRef]
- Santy, S.; Matsumoto, H.; Susanti, L. Development of a Passive House Standard for Tropical Climates (Indonesia)—The Initial Stage. In Proceedings of 12th REHVA World Congress, CLIMA Conference, Aalborg, Denmark, 22–25 May, 2016.
- Feriadi, H.; Wong, N.H. Thermal comfort for naturally ventilated houses in Indonesia. Energy Build. 2004, 36, 614–626. [Google Scholar] [CrossRef]
- Luo, M.; Cao, B.; Zhou, X.; Li, M.; Zhang, J.; Ouyang, Q.; Zhu, Y. Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy Build. 2014, 72, 411–418. [Google Scholar] [CrossRef]
- Sujatmiko, W. Development of the Adaptive Thermal Comfort Standard for Residential in Indonesia. J. Hum. Settlements 2011, 3, 88–99. [Google Scholar]
- SNI Standard Nasional Indonesia. Konservasi Energi Sistem Tata Udara Bangunan Gedung; Badan Standarisasi Nasional: Jakarta, Indonesia, 2011.
- Olgyay, V.; Olgyay, A. Olgay 1992; Van Nostrand New York: New York, NY, USA, 1992. [Google Scholar]
- Bodach, S.; Sc, M. Developing Bioclimatic Zones and Passive Solar Design Strategies for Nepal. In Proceedings of the 30th International PLEA Conference, Ahmedabad, India, 16–18 December 2014.
- Pourvahidi, P. Bioclimatic Analysis of Vernacular Iranian Architecture; Eastern Mediterranean University: Gazimağusa, Cyprus, 2010. [Google Scholar]
- Wan, K.K.W.; Li, D.H.W.; Yang, L.; Lam, J.C. Climate classifications and building energy use implications in China. Energy Build. 2010, 42, 1463–1471. [Google Scholar] [CrossRef]
- Sealey, A. Introduction to Building Climatology—Chapter 10—The Mahoney Tables.pdf. In Introduction to Building Climatology; Commonwealth Association of Architects: London, UK, 1979. [Google Scholar]
- Shi, X.; Zhu, N.; Zheng, G. The combined effect of temperature, relative humidity and work intensity on human strain in hot and humid environments. Build. Environ. 2013, 69, 72–80. [Google Scholar] [CrossRef]
- Givoni, B. Climate Considerations in Building and Urban Design; John Wiley & Sons: Toronto, Canada, 1998. [Google Scholar]
- Watson, D.; Labs, K. Climatic Building Design; MacGraw Hill Inc.: New York, NY, USA, 1983. [Google Scholar]
- Bansal, N.K.; Hauser, G.; Minke, G. Passive Building Design A Handbook of Natural Climatic Control; Elsevier Science BV: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Cheng, V.; Ng, E.; Givoni, B. Effect of envelope colour and thermal mass on indoor temperatures in hot humid climate. Solar Energy 2004, 78, 528–534. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, G.; Lin, Y.; Li, Y. Coupling of Thermal Mass and Natural Ventilation in Buildings. Energy Build. 2008, 40, 979–986. [Google Scholar] [CrossRef]
- Motamedi, S.; Akhavan, M. Energy Analysis of Using Thermal Mass in a Hot Humid climate. In Proceedings of the 3rd International Conference on Development, Energy, Environment, Economics (DEEE '12), Paris, France, 2–4 December 2012.
- Autodesk Inc. AutoDesk Ecotect Weather Tools in Ecotect Software. Available online: http://usa.autodesk.com/ecotect-analysis/ (accessed on 10 March 2017).
- Autodesk Inc. AutoDesk Ecotect Solar Tool in Ecotect Software. Available online: http://usa.autodesk.com/ecotect-analysis/ (accessed on 10 March 2017).
- Baker, N.V. Passive and Low Energy Building Design For Tropical Island Climates. 1987. [Google Scholar]
- Juarez, C.E.M. Impact of Thermal Mass on Energy and Comfort—A Parametric study in a Temperate and a Tropical Climate; Chalmers University of Technology: Gothenborg, Sweden, 2014. [Google Scholar]
- Hilmawan, E. Current Situation and Chalanges in Energy Efficiency S&L Policy Development in Indonesia. Available online: http://eneken.ieej.or.jp/data/3693.pdf (accessed on 10 July 2016).
- Katili, A.R.; Boukhanouf, R.; Wilson, R. Space Cooling in Buildings in Hot and Humid Climates—A Review of the Effect of Humidity on the Applicability of Existing Cooling Techniques. In Proccedings of 14th International Conference on Sustainable Energy Technologies (SET), Nottingham, UK, 25–27 August 2015.
- Autodesk Inc Green Building Studio. Available online: https://gbs.autodesk.com/GBS/ (accessed on 14 July 2016).
- Case, T.E.; Enugu, O.F.; Obi, A.N.I. The Influence of Vegetation on Microclimate in Hot Humid Tropical Environment—A Case of Enugu Urban; Arc, N.I., Ed.; OBI Department of Architecture, University of Nigeria Enugu Campus (UNEC): Enugu, Nigeria, 2014; Volume 2, pp. 28–38. [Google Scholar]
Olgyay Bioclimatic Chart | Szokolay Bioclimatic Chart | Givoni–Milne Bioclimatic Chart | Mahoney Table | |
---|---|---|---|---|
Monitored ambient variables |
|
|
|
|
Strategy proposed/Design recommendation |
|
|
|
|
Advantage |
|
|
|
|
Limitation |
|
|
|
|
Climate | Investigated Region, Country or City | Climate Characteristic | Passive Strategy |
---|---|---|---|
Warm | Southwest Europe (12 selected locations in Portugal, Spain, Italy and Southern France) | Temperature: −5–32 °C |
|
New Zealand (Auckland, Wellington and Christchurch) | Temperature: 6–24 °C |
| |
Hot dry climates | Las Vegas | Winter temperature: 0–20 °C Summer temperature: 15–45 °C Humidity: 2–15 g/kgDA |
|
Hot humid | Dubai | Temperature: 25–45 °C Humidity: 5–25 g/kgDA |
|
Tropical climates | Salvador da Bahia Mumbai Singapore | Temperature: 25–30 °C Humidity: 15–20 g/kgDA |
|
Mexico |
|
No. | Source | Equation | Outdoor Temperature Limitation |
---|---|---|---|
1 | ASHRAE 55-2004 [20] | Tc = 0.31To * + 17.8 | 10–33 °C |
2 | Humphreys and Nicol [21,22] | Tc = 0.54To * + 13.5 | 10–34 °C |
3 | Nguyen [24] | Tc = 0.341To * + 18.83 | 26–34 °C |
4 | Toe and Kubota [27,28] | Tc = 0.57 Toutdm # + 13.8 | 10–33 °C |
5 | Indraganti et al. [29] | Tc = 0.26Trm + 21.4 | 24.5–35.5 °C |
6 | Karyono [26] | PCT = 0.749Td # + 5.953 | 24–29 °C |
7 | Santy [30] | PCTu = 0.61Td # + 9.69 | 24–30.8 °C |
Group | Relative Humidity |
---|---|
1 | Below 30% |
2 | 30%–50% |
3 | 50%–70% |
4 | Above 70% |
Month | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly mean max | 30 | 30 | 31 | 31 | 32 | 32 | 32 | 32 | 34 | 34 | 33 | 31 |
Monthly mean min | 23 | 22 | 22 | 22 | 21 | 20 | 20 | 20 | 20 | 21 | 22 | 23 |
Monthly mean range | 7 | 8 | 9 | 9 | 11 | 12 | 12 | 12 | 14 | 13 | 11 | 8 |
Month | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly mean max a.m. | 96 | 95 | 93 | 94 | 91 | 90 | 89 | 87 | 85 | 86 | 90 | 92 |
Monthly mean min p.m. | 64 | 62 | 61 | 57 | 52 | 46 | 45 | 41 | 32 | 33 | 43 | 57 |
Average | 80 | 78 | 77 | 75 | 72 | 68 | 67 | 64 | 59 | 60 | 66 | 74 |
Humidity group | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 4 |
Month | J | F | M | A | M | J | J | A | S | O | N | D | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rain fall (mm) | 622 | 147 | 184 | 204 | 101 | 257 | 257 | 61 | 50 | 110 | 197 | 339 | 2528 |
AMT | >20 °C | 15–20 °C | <15 °C | |||
---|---|---|---|---|---|---|
Humidity Group | Day | Night | Day | Night | Day | Night |
1 | 26–34 | 17–25 | 23–32 | 14–23 | 21–30 | 12–21 |
2 | 25–31 | 17–24 | 22–30 | 14–22 | 20–27 | 12–20 |
3 | 23–29 | 17–23 | 21–28 | 14–21 | 19–26 | 12–19 |
4 | 22–27 | 17–21 | 20–25 | 14–20 | 18–24 | 12–18 |
Month | J | F | M | A | M | J | J | A | S | O | N | D | AMT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly mean max (°C) | 30 | 30 | 31 | 31 | 32 | 32 | 32 | 32 | 34 | 34 | 33 | 31 | 27 |
Day comfort upper (°C) | 27 | 27 | 27 | 27 | 27 | 29 | 29 | 29 | 29 | 29 | 29 | 27 | |
Day comfort lower (°C) | 22 | 22 | 22 | 22 | 22 | 23 | 23 | 23 | 23 | 23 | 23 | 22 | |
Monthly mean min (°C) | 23 | 22 | 22 | 22 | 21 | 20 | 20 | 20 | 20 | 21 | 22 | 23 | |
Night comfort upper (°C) | 21 | 21 | 21 | 21 | 21 | 23 | 23 | 23 | 23 | 23 | 23 | 21 | |
Night comfort lower (°C) | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | |
Thermal stress day | H | H | H | H | H | H | H | H | H | H | H | H | |
Thermal stress night | H | H | H | H | O | O | O | O | O | O | O | H |
Indicator | Thermal Stress | Monthly Rainfall | Humidity Group | Monthly Mean Temperature Range | |
---|---|---|---|---|---|
Day | Night | ||||
H1(Air movement essential) | H | 4 | |||
H | 2, 3 | <10 °C | |||
H2 (Air movement desirable) | O | 4 | |||
H3 (Rain protection) | Over 200 mm/month | ||||
A1 (Thermal storage) | 1, 2, 3 | >10 °C | |||
A2 (Outdoor sleeping) | H | 1, 2 | |||
H | O | 1, 2 | >10 °C | ||
A3 (Cold season problem) | C |
Indicator | J | F | M | A | M | J | J | A | S | O | N | D | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1(Air movement essential) | √ | √ | √ | √ | √ | √ | 6 | ||||||
H2 (Air movement desirable) | |||||||||||||
H3 (Rain Protection) | √ | √ | √ | √ | √ | 5 | |||||||
A1 (Thermal storage) | √ | √ | √ | √ | √ | √ | 6 | ||||||
A2 (Outdoor sleeping) | |||||||||||||
A3 (Cold season problem) |
Indicator Total | Recommendation | ||||||
H1 | H2 | H3 | A1 | A2 | A3 | ||
6 | 0 | 5 | 6 | 0 | 0 | ||
Layout | |||||||
0–10 | * | 1. Buildings orientated north-south (long axis from east-west) to reduce exposure to the Sun | |||||
11–12 | 5–12 | ||||||
0–4 | 2. Compact courtyard planning | ||||||
Spacing | |||||||
11–12 | 3. Open spacing for breeze penetration | ||||||
2–10 | * | 4. As A3, but protect from cold, hot wind | |||||
0–1 | 5. Compact planning | ||||||
Air Movement | |||||||
3–12 | * | 6. Rooms single-banked. Permanent provision for air movement. | |||||
1–2 | 0–5 | 7. Double-banked rooms with temporary provision for air movement | |||||
6–12 | |||||||
0 | 2–12 | 8. No air movement requirement. | |||||
0–1 | |||||||
Size of the Openings | |||||||
0–1 | 0 | 9. Large openings, 40%–80% of wall area | |||||
0–1 | 1–12 | 10. Medium openings, 25%–40% of wall area | |||||
2–5 | 4–12 | ||||||
11–12 | |||||||
6–10 | * | 11. Composite, 20%–35% of wall area | |||||
11–12 | 0–3 | 12. Very small openings, 15%–25% of wall area | |||||
Position of the Opening | |||||||
3–12 | * | 13. In N and south walls at body height | |||||
1–2 | 0–5 | ||||||
6–12 | 14. In N and south walls at body height and also in internal walls | ||||||
0 | 2–12 | ||||||
Protection of Openings | |||||||
0–2 0–2 | 3–12 | 15. No special protection necessary | |||||
0–2 | 16. Exclude direct sunlight | ||||||
3–12 | 0–2 | * | 17. Protect from rain and direct sunlight | ||||
3–12 | 18. Protect from rain | ||||||
Walls | |||||||
0–2 | 19. Light and low heat capacity walls | ||||||
3–12 | * | 20. Heavy walls, over an 8-h time lag | |||||
Roofs | |||||||
0–5 | 21. Light insulated roofs | ||||||
6–12 | * | 22. Heavy roofs; over an 8-h time lag | |||||
Outdoor Sleeping | |||||||
2–12 | 23. Space for outdoor sleeping required | ||||||
Rain Penetration | |||||||
3–12 | * | 24. Protection from heavy rain needed |
Element | Recommendation |
---|---|
Layout | Buildings orientated from north-south (long axis from east-west) to reduce exposure to the Sun |
Spacing | Open spacing for protection from hot wind |
Air movement | Rooms single-banked. Permanent provision for air movement. |
Size of openings | Composite, 20%–35% of wall area |
Position of openings | In N and S walls at body height |
Protection of opening | Protect from rain and direct sunlight |
Walls and floors | Heavy walls, over an 8-h time lag |
Roofs | Heavy roofs, over an 8-h time lag |
Outdoor sleeping | Space for outdoor sleeping is not needed |
Protection from heavy rain | Protection from heavy rain is needed |
Olgyay | Wind Penetration and Shading Devices |
---|---|
Givoni–Milne | Natural ventilation and shading device |
Mahoney Table | Buildings oriented north-south (long axis from east to west) Open spacing for protection from hot wind Single banked room for permanent provision of air Composite openings, 20%–35% of wall area at body height Position of windows in north and south walls Protection of the openings from rain and direct sunlight Heavy walls with more than an 8-h time lag Heavy roof with more than an 8-h time lag Protection from heavy rain |
Month | Avg. SC | Max SC | Min SC |
---|---|---|---|
January | Behind | ||
February | Behind | ||
March | 63.2% | 100% | 0% |
April | 63.5% | 100% | 0% |
May | 62.3% | 100% | 0% |
June | 64.8% | 100% | 0% |
July | 65.5% | 100% | 0% |
August | 62.9% | 100% | 0% |
September | 70.5% | 100% | 14% |
October | Behind | ||
November | Behind | ||
December | Behind | ||
Annual | 37.70% | 58.30% | 42.80% |
House Envelope Elements | Illustration | Layer Name | Width (mm) | Density (kg/m3) | Specific Heat (J/kgK) | Thermal Conductivity (W/mK) |
---|---|---|---|---|---|---|
Roof | | 1. Clay tiles | 10 | 1922 | 590 | 0.69 |
2. Air gap | Thermal resistant: 0.18 m2·K/W | |||||
3. Gypsum plasterboard | 19 | 800 | 1090 | 0.16 | ||
Wall | | 1. Cement and sand plaster | 10 | 1858 | 837 | 0.6918 |
2. Concrete block | 120 | 2200 | 750 | 0.339 | ||
3. Cement and sand plaster | 10 | 1858 | 837 | 0.6918 | ||
Floor | | 1. Ceramic tile | 10 | 2390 | 730 | 1.5 |
2. Concrete screed | 20 | 2000 | 656.9 | 0.753 | ||
3. Soil | 1500 | 1300 | 1046 | 0.837 | ||
Window | Tinted Single glazing (wood frame) | 3 | 0.9 | |||
Door | Wood | 30 | 0.6 | 1500 | 0.147 |
Room | Lighting Power (Watt) | Electrical Appliances | Appliances Power (Watt) | Appliances Usage |
---|---|---|---|---|
Main bedroom | 40 | Fan Laptop Hand phone | 100 100 20 | 8 h/day 2 h/day 2 h/day |
Bathroom | 25 | Washing machine | 250 | 4 h/week |
Children bedroom | 40 | Fan | 100 | 8 h/day |
Living room | 40 | Television Fan | 240 100 | 8 h/day 8 h/day |
Kitchen | 40 | Refrigerator Rice cooker | 120 100 | 24 h/day 24 h/day |
Thermal Comfort Analysis | Temperature Limit | Main Bedroom | Children’s Bedroom | Living Room |
---|---|---|---|---|
Out of comfort zone (hour) | <25.3 °C | 0 | 0 | 0 |
>28.3 °C | 8073 | 8548 | 8721 | |
Total | 8073 | 8548 | 8721 | |
Out of comfort zone (percentage) | <25.3 °C | 0% | 0% | 0% |
>28.3 °C | 92% | 98% | 100% | |
Total | 92% | 98% | 100% |
Type of Wall | Illustration | Layer Name | Width (mm) | Density (kg/m3) | Specific Heat (J/kgK) | Thermal Conductivity (W/mK) |
---|---|---|---|---|---|---|
Heavy wall | |
| 10 20 10 | 1250 2243 1250 | 1088 837 1088 | 0.431 1.729 0.431 |
Light wall | |
| 10 10 10 | 1250 512.52 1250 | 1088 1046.69 1088 | 0.431 0.1344 0.431 |
Type of Wall | Thermal Comfort Analysis | Temperature Limit | Main Bedroom | Children’s Bedroom | Living Room |
---|---|---|---|---|---|
Heavy Wall | Out of comfort zone (hour) | <25.3 °C | 0 | 0 | 0 |
>28.3 °C | 8158 | 8576 | 8716 | ||
Total | 8158 | 8576 | 8716 | ||
Out of comfort zone (percentage) | <25.3 °C | 0% | 0% | 0% | |
>26.3 °C | 93% | 98% | 99% | ||
Total | 93% | 98% | 99% | ||
Light Wall | Out of comfort zone (hour) | <25.3 °C | 21 | 0 | 106 |
>28.3 °C | 5324 | 6832 | 6738 | ||
Total | 5345 | 6832 | 6844 | ||
Out of comfort zone (percentage) | <25.3 °C | 0% | 0% | 1% | |
>26.3 °C | 61% | 78% | 77% | ||
Total | 61% | 78% | 78% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santy; Matsumoto, H.; Tsuzuki, K.; Susanti, L. Bioclimatic Analysis in Pre‐Design Stage of Passive House in Indonesia. Buildings 2017, 7, 24. https://doi.org/10.3390/buildings7010024
Santy, Matsumoto H, Tsuzuki K, Susanti L. Bioclimatic Analysis in Pre‐Design Stage of Passive House in Indonesia. Buildings. 2017; 7(1):24. https://doi.org/10.3390/buildings7010024
Chicago/Turabian StyleSanty, Hiroshi Matsumoto, Kazuyo Tsuzuki, and Lusi Susanti. 2017. "Bioclimatic Analysis in Pre‐Design Stage of Passive House in Indonesia" Buildings 7, no. 1: 24. https://doi.org/10.3390/buildings7010024
APA StyleSanty, Matsumoto, H., Tsuzuki, K., & Susanti, L. (2017). Bioclimatic Analysis in Pre‐Design Stage of Passive House in Indonesia. Buildings, 7(1), 24. https://doi.org/10.3390/buildings7010024