Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data
Abstract
:1. Introduction
2. Building Model
3. System Parameters and Input Ground Motion
3.1. System Parameters
3.2. Input Ground Motion
4. Logical Analysis of Data (LAD)
5. Artificial Neural Network (ANN)
6. Results and Discussion
7. Validation and Comparison
8. Conclusions
Author Contributions
Conflicts of Interest
References
- Chopra, A.K.; Goel, R.K. A modal pushover analysis procedure to estimate seismic demands for buildings: Theory and preliminary evaluation. Civ. Environ. Eng. 2001, 55. [Google Scholar]
- Park, K.; Medina, R.A. Conceptual seismic design of regular frames based on the concept of uniform damage. J. Struct. Eng. 2007, 133, 945–955. [Google Scholar] [CrossRef]
- Villaverde, R. Methods to assess the seismic collapse capacity of building structures: State of the art. J. Struct. Eng. 2007, 133, 57–66. [Google Scholar] [CrossRef]
- Okada, S.; Takai, N. Classifications of structural types and damage patterns of buildings for earthquake field investigation. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zeland, 30 January–4 February 2000; p. 705. [Google Scholar]
- Abrams, D.P.; Calvi, G. Summary of the ATC-33 project on guidelines for seismic rehabilitation of buildings. In Technical Report; US National Center for Earthquake Engineering Research: Buffalo, NY, USA, 1994; pp. 11–23. [Google Scholar]
- Sun, L.; Yu, G.; Sun, Z. Bi-parameters method for structural vulnerability analysis. Intell. Autom. Soft Comput. 2010, 16, 747–754. [Google Scholar] [CrossRef]
- Maram, M.P.; Rao, K.R.M.; Poursalehi, A. Anartificial Neural Network for Prediction of Seismic Behavior in RC Buildings with and Without Infill Walls. Int. J. Mod. Eng. Res. 2013, 1, 3071–3078. [Google Scholar]
- Pei, J.-S.; Smyth, A.W. New approach to designing multilayer feedforward neural network architecture for modeling nonlinear restoring forces. II: Applications. J. Eng. Mech. 2006, 132, 1301–1312. [Google Scholar] [CrossRef]
- Jeng, C.-H.; Mo, Y. Quick seismic response estimation of prestressed concrete bridges using artificial neural networks. J. Comput. Civ. Eng. 2004, 18, 360–372. [Google Scholar] [CrossRef]
- Harris, C.M.; Piersol, A.G. Harris’ Shock and Vibration Handbook; McGraw-Hill: New York, NY, USA, 2002; Volume 5. [Google Scholar]
- Chen, X.; Mahmoud, S. Implicit Runge-Kutta methods for Lipschitz continuous ordinary differential equations. SIAM J. Numer. Anal. 2008, 46, 1266–1280. [Google Scholar] [CrossRef]
- Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Jankowski, R. Earthquake-induced pounding between equal height buildings with substantially different dynamic properties. Eng. Struct. 2008, 30, 2818–2829. [Google Scholar] [CrossRef]
- Hammer, P.L. Partially defined Boolean functions and cause-effect relationships. In Proceedings of the International Conference on Multi-Attribute Decision Making via or-Based Expert Systems, Passau, Germany, 20–27 April 1986. [Google Scholar]
- Crama, Y.; Hammer, P.L.; Ibaraki, T. Cause-effect relationships and partially defined Boolean functions. Ann. Oper. Res. 1988, 16, 299–325. [Google Scholar] [CrossRef]
- Bores, E.; Hammer, P.L.; Ibaraki, T.; Kogan, A.; Mayoraz, E.; Muchnik, I. An implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 2000, 12, 292–306. [Google Scholar] [CrossRef]
- Hammer, P.L.; Bonates, T.O. Logical analysis of data—An overview: From combinatorial optimization to medical applications. Ann. Oper. Res. 2006, 148, 203–225. [Google Scholar] [CrossRef]
- Ryoo, H.S.; Jang, I.Y. Milp approach to pattern generation in logical analysis of data. Discret. Appl. Math. 2009, 157, 749–761. [Google Scholar] [CrossRef]
- Herrera, J.F.A.; Subasi, M.M. Logical Analysis of Multi Class Data; No. RRR 5-2013; Rutcor Research Report; Rutgers University: New Brunswick, NJ, USA, March 2013. [Google Scholar]
- Russell, S.J.; Norvig, P.; Canny, J.F.; Malik, J.M.; Edwards, D.D. Artificial Intelligence: A Modern Approach; Prentice Hall Englewood Cliffs: Upper Saddle River, NJ, USA, 1995; Volume 74. [Google Scholar]
- Zhang, J.Z.; Chen, J.C.; Kirby, E.D. The development of an in-process surface roughness adaptive control system in turning operations. J. Intell. Manuf. 2007, 18, 301–311. [Google Scholar] [CrossRef]
- Yacout, S.; Salamanca, D.; Mortada, M.-A. Tool and Method for Fault Detection of Devices by Condition Based maintenance. WO Application Wo 2012/009804A1, 26 January 2012. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
Mass (m) | 25 × 103 kg |
---|---|
Damping ratio (ξ) | 0.05 |
Initial stiffness (k) | 3.46 × 106 N/m |
Earthquake (Record) | PGA (g) | PGV (cm/s) | PGD (cm) | Mw | EPD (km) | Soil Class | Tg (s) |
---|---|---|---|---|---|---|---|
Imperial Valley | 0.1 | 8.2 | 1.4 | 5.2 | 15.6 | D, C | 0.75 |
San Fernando | 0.1 | 6.4 | 1.4 | 6.6 | 25.7 | D, B | 0.85 |
Northridge | 0.11 | 8.7 | 1.8 | 6.7 | 22.7 | A, A | 0.8 |
Loma Prieta | 0.19 | 12.7 | 5.5 | 6.9 | 43.4 | B, NA | 0.7 |
Morgan Hill | 0.19 | 11.2 | 2.4 | 6.2 | 14.6 | D, C | 1.1 |
Palm Springs | 0.21 | 40.9 | 15 | 6 | 10.1 | C, B | 1.9 |
Morgan Hill | 0.29 | 36.7 | 6.1 | 6.2 | 11.8 | B, B | 1.2 |
Loma Prieta | 0.37 | 27.2 | 3.8 | 6.9 | 16.9 | D, NA | 0.85 |
Northridge | 0.48 | 62.8 | 11.1 | 6.7 | 19.6 | C, B | 0.85 |
Loma Prieta | 0.48 | 39.7 | 15.2 | 6.9 | 21.8 | A, NA | 0.65 |
Northridge | 0.49 | 45.1 | 12.6 | 6.7 | 12.1 | D, C | 0.7 |
Northridge | 0.51 | 52.2 | 2.4 | 6.7 | 22.6 | B, B | 0.95 |
Cape Mendocino | 0.59 | 48.4 | 21.7 | 7.1 | 9.5 | D, C | 0.75 |
Palm Springs | 0.59 | 73.3 | 11.5 | 6 | 8.2 | D, B | 1.1 |
Coalinga | 0.6 | 34.8 | 8.1 | 5.8 | 17.4 | D, NA | 0.65 |
Loma Prieta | 0.61 | 51 | 11.5 | 6.9 | 6.1 | A, NA | 0.8 |
Duzce | 0.82 | 62.1 | 13.9 | 7.1 | 17.6 | D, C | 0.9 |
Coalinga | 0.84 | 44.1 | 6.8 | 5.8 | 9.2 | A, NA | 0.75 |
Chi-Chi | 0.9 | 102.4 | 34 | 7.6 | 6.8 | C, C | 1 |
Cape Mendocino | 1.04 | 42 | 12.4 | 7.1 | 8.5 | A, A | 2 |
Class | Range | Number of Observation | |
---|---|---|---|
To (mm) | From (mm) | ||
D1 | 15 | 0 | 67 |
D2 | 30 | 15.1 | 32 |
D3 | 60 | 30.1 | 32 |
D4 | 100 | 60.1 | 24 |
D5 | 150 | 100.1 | 18 |
D6 | 200 | 150.1 | 18 |
D7 | >201.1 | 200.1 | 9 |
No | Tn | PGA | Mw | EPD | PGV | PGD | Soil | Tg | Class |
---|---|---|---|---|---|---|---|---|---|
1 | 0.1 | 0.1 | 1 | 15.6 | 8.2 | 1.4 | 3 | 0.75 | D1 |
2 | 0.1 | 0.1 | 2 | 25.7 | 6.4 | 1.4 | 2 | 0.85 | D1 |
3 | 0.1 | 0.11 | 2 | 22.7 | 8.7 | 1.8 | 1 | 0.8 | D1 |
4 | 0.1 | 0.19 | 2 | 43.4 | 12.7 | 5.5 | 2 | 0.7 | D1 |
5 | 0.1 | 0.19 | 2 | 14.6 | 11.2 | 2.4 | 3 | 1.1 | D1 |
6 | 0.1 | 0.21 | 2 | 10.1 | 40.9 | 15 | 2 | 1.9 | D1 |
Lass | Pattern | Tn | PGA | Mw | EPD | PGV | PGD | Soil | Tg |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | <0.25 | - | - | - | - | - | - | - |
2 | <0.45 | <0.25 | - | - | - | - | - | - | |
3 | <0.55 | <0.45 | - | - | - | <3.1 | - | - | |
4 | <0.65 | <0.25 | - | - | <11.95 | <2.1 | - | - | |
5 | - | <0.25 | - | >24.2 | <11.95 | - | - | - | |
6 | >0.55, <0.95 | <0.33 | - | >24.2 | <31 | - | - | - | |
2 | 1 | >0.25, <0.35 | >0.25 | - | >10.95, <24.2 | - | >2.1 | - | - |
2 | >0.25, <0.35 | >0.25 | >2.5 | - | - | - | - | - | |
3 | >0.25, <0.35 | >0.595 | - | - | - | - | - | - | |
4 | >0.25, <0.45 | >0.25 | - | - | - | <6.45 | - | - | |
5 | >0.25, <0.45 | >0.5 | - | <8.85 | - | >12.5 | - | - | |
6 | >0.45, <0.55 | - | - | <34.55 | - | - | - | - | |
7 | >0.45, <0.55 | <0.45 | - | - | - | >14.45 | - | >0.875 | |
8 | >0.55, <0.85 | - | - | - | <11.95 | - | - | >0.975 | |
9 | >0.25, <0.65 | - | - | - | - | - | >3.5 | - | |
10 | >0.65 | - | <1.5 | - | <11.95 | - | - | - | |
11 | >0.65, <0.95 | - | - | - | - | <3.1 | - | <0.825 | |
12 | >0.95, | - | - | >34.55 | - | - | - | - | |
3 | 1 | >0.25, 0.55 | >0.55, <0.605 | - | >6.45, <8.35 | - | >5.8 | - | - |
2 | >0.35, <0.45 | >0.33 | - | - | - | >6.45 | - | <0.925 | |
3 | >0.35, <0.55 | >0.45 | - | >7.5, <17.5 | >19.95 | >7.45 | - | - | |
4 | >0.45, <0.55 | >0.25 | - | - | - | - | - | >0.925 | |
5 | >0.35, <0.55 | - | - | - | - | - | - | <0.675 | |
6 | >0.55, <0.65 | - | - | - | - | - | - | >1.55 | |
7 | >0.45, <0.65 | >0.25 | - | <12 | <43.05 | - | - | >0.925 | |
8 | >0.65, <0.75 | - | - | <12 | - | >11.95 | - | >1.05 | |
9 | >0.65, <0.75 | - | - | - | - | - | >3.5 | - | |
10 | >0.75 | - | <1.5 | - | - | - | - | <0.675 | |
11 | >0.85 | - | - | - | <11.95 | - | - | >1.05 | |
12 | >0.95 | - | - | >22.65 | - | - | <1.5 | - | |
4 | 1 | >0.45, <0.75 | >0.25 | - | >17.15 | >40.3 | >6.45 | <2.5 | - |
2 | >0.45, <0.65 | >0.25 | - | - | >49.7 | >6.45 | <1.5 | - | |
3 | >0.45, <0.55 | >0.605 | - | >17.5 | - | - | - | - | |
4 | >0.45, <0.55 | >0.605 | <1.5 | - | - | - | - | - | |
5 | >0.55, <0.75 | - | - | <17.5 | >31 | - | - | <0.725 | |
6 | >0.55, <0.65 | - | - | >22.2 | >49.7 | - | - | - | |
7 | >0.55, <0.75 | >0.395 | - | - | >62.45 | - | - | >1.05 | |
8 | >0.55, <0.65 | - | - | <8.85 | >49.7 | - | - | - | |
9 | >0.65, <0.75 | - | - | - | <38.2 | - | - | >1.15 | |
10 | >0.75 | - | - | - | - | - | - | >1.55 | |
11 | >0.75, <0.85 | >0.33, <0.485 | - | - | <44.6 | - | - | - | |
12 | >0.75 | >0.33, | - | - | >31, <43.05 | >11.3 | <2.5 | - | |
5 | 1 | >0.55, <0.75 | >0.45 | - | - | >35.75, <62.45 | >15.1 | <2.5 | - |
2 | >0.55, <0.65 | - | - | - | - | >13.25 | - | <0.925 | |
3 | >0.55, <0.65 | - | - | <9.8 | >43.05 | - | - | <0.775 | |
4 | >0.65, <0.75 | >0.25 | - | - | >49.7 | <6.45 | - | >0.925 | |
5 | >0.65, <0.75 | - | - | <7.5 | - | - | - | - | |
6 | >0.75, <0.85 | - | - | - | >35.75 | <11.95 | - | >0.925 | |
7 | >0.85 | >0.25 | - | - | <38.2 | <7.45 | - | - | |
8 | >0.95 | - | - | <6.45 | - | - | - | - | |
6 | 1 | >0.65 | >0.5 | - | <20.7 | >43.05 | - | - | <0.775 |
2 | >0.65, <0.75 | >0.715 | - | - | - | - | - | - | |
3 | >0.75, <0.85 | - | - | - | >43.05 | - | - | <0.875 | |
4 | >0.75, <0.85 | - | - | <7.5 | >43.05 | - | - | - | |
5 | >0.75, <0.95 | - | - | <13.4 | >43.05 | >6.45 | - | <0.975 | |
6 | >0.85 | >0.485 | - | >22.2 | >43.05 | - | - | - | |
7 | >0.85, <0.95 | >0.5 | - | - | >43.05 | <11.95 | - | - | |
7 | 1 | >0.75 | - | - | >17.5 | >57.15 | >11.3 | - | <1.05 |
2 | >0.85 | - | - | - | >57.15 | - | - | <1.05 | |
3 | >0.95 | - | - | - | >44.6 | >9.6, <14.45 | >1.5 | - |
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | Class 7 | |
---|---|---|---|---|---|---|---|
62 | 5 | 0 | 0 | 0 | 0 | 0 | Class 1 |
5 | 26 | 1 | 0 | 0 | 0 | 0 | Class 2 |
1 | 5 | 22 | 4 | 0 | 0 | 0 | Class 3 |
0 | 0 | 3 | 15 | 3 | 4 | 1 | Class 4 |
0 | 0 | 1 | 5 | 10 | 0 | 0 | Class 5 |
0 | 0 | 0 | 6 | 2 | 9 | 1 | Class 6 |
0 | 0 | 0 | 1 | 3 | 1 | 4 | Class 7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elhamed, A.; Shaban, Y.; Mahmoud, S. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data. Buildings 2018, 8, 61. https://doi.org/10.3390/buildings8040061
Abd-Elhamed A, Shaban Y, Mahmoud S. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data. Buildings. 2018; 8(4):61. https://doi.org/10.3390/buildings8040061
Chicago/Turabian StyleAbd-Elhamed, Ayman, Yasser Shaban, and Sayed Mahmoud. 2018. "Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data" Buildings 8, no. 4: 61. https://doi.org/10.3390/buildings8040061
APA StyleAbd-Elhamed, A., Shaban, Y., & Mahmoud, S. (2018). Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data. Buildings, 8(4), 61. https://doi.org/10.3390/buildings8040061