Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber
Abstract
:1. Introduction
2. Construction of the Reduced Sized Transmission Chamber
2.1. Design and Construction
2.2. Initial State and Preparation
- Generate white or pink noise in the source room by means of a sound source placed in two positions in the room.
- Measure the sound pressure level both in the source room and in the receiving room in five microphone positions for each sound source position.
- Measure the background noise (when the sound source is not emitting noise) in the receiving room in five microphone positions.
- Measure the reverberation time in the receiving room by adapting the specifications of the ISO 3382-2:2008 [46] standard.
2.3. Acoustic Evaluation
2.3.1. Reverberation Time
2.3.2. Sound Field Diffusivity
2.3.3. Cutoff Frequency
3. Materials: Green Composites and Sheep Wool
3.1. Green Composites
3.2. Sheep Whool
4. Results
4.1. Acoustic Validation of the Reduced Sized Transmission Chamber
4.2. Acoustic Characterization of the Proposed Sustainable Solutions
4.2.1. Acoustic Characterization of the Green Composite Boards
4.2.2. Acoustic Characterization of the Sheep Wool Samples
4.2.3. Acoustic Characterization of the Proposed Sustainable Solutions
- Textile waste fibers and biodegradable resin board + S5 Sheep Wool + Jute fibers and biodegradable resin board (70 mm thick).
- Textile waste fibers and biodegradable resin board + Premium Sheep Wool + Jute fibers and biodegradable resin board (60 mm thick).
- Textile waste fibers and polyester resin board + S5 Sheep Wool + Jute fibers and biodegradable resin board (70 mm thick).
- Textile waste fibers and polyester resin board + Premium Sheep Wool + Jute fibers and biodegradable resin board (60 mm thick).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. [Google Scholar] [CrossRef]
- Asdrubali, F.; Bianchi, F.; Cotana, F.; D’Alessandro, F.; Pertosa, M.; Pisello, A.L.; Schiavoni, S. Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Build. Environ. 2016, 102, 217–229. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Kymäläinen, H.-R.; Sjöberg, A.-M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- Or, K.H.; Putra, A.; Selamat, M.Z. Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Appl. Acoust. 2017, 119, 9–16. [Google Scholar] [CrossRef]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Fatima, S.; Mohanty, A.R. Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 2011, 72, 108–114. [Google Scholar] [CrossRef]
- Ramis, J.; Alba, J.; Del Rey, R.; Escuder, E.; Sanchís, V.J. Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Mater. Constr. 2010, 60, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Ekici, B.; Kentli, A.; Küçük, H. Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Arch. Acoust. 2012, 37, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Del Rey, R.; Berto, L.; Alba, J.; Arenas, J.P. Acoustic characterization of recycled textile materials used as core elements in noise barriers. Noise Control Eng. J. 2015, 63, 439–447. [Google Scholar] [CrossRef]
- Othmani, C.; Taktak, M.; Zain, A.; Hantati, T.; Dauchez, N.; Elnady, T.; Fakhfakh, T.; Haddar, M. Acoustic characterization of a porous absorber based on recycled sugarcane wastes. Appl. Acoust. 2017, 120, 90–97. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lascaro, E.; Lopez, G.A.; Ricciardi, P. Sustainable Panels with Recycled Materials for Building Applications: Environmental and Acoustic Characterization. Energy Procedia 2016, 101, 972–979. [Google Scholar] [CrossRef]
- Asdrubali, F.; Pisello, A.L.; Alessandro, F.D.; Bianchi, F.; Cornicchia, M.; Fabiani, C. Innovative Cardboard Based Panels with Recycled Materials from the Packaging Industry: Thermal and Acoustic Performance Analysis. Energy Procedia 2015, 78, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Del Rey, R.; Alba, J.; Ramis, J.; Sanchís, V.J. Nuevos materiales absorbentes acústicos obtenidos a partir de restos de botellas de plástico. Mater. Constr. 2011, 61, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Rushforth, I.M.; Horoshenkov, K.V.; Miraftab, M.; Swift, M.J. Impact sound insulation and viscoelastic properties of underlay manufactured from recycled carpet waste. Appl. Acoust. 2005, 66, 731–749. [Google Scholar] [CrossRef]
- Allard, J.; Champoux, Y. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 1992, 91, 3346–3353. [Google Scholar] [CrossRef]
- Garai, M.; Pompoli, F. A simple empirical model of polyester fibre materials for acoustical applications. Appl. Acoust. 2005, 66, 1383–1398. [Google Scholar] [CrossRef]
- Komatsu, T. Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust. Sci. Technol. 2008, 29, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Del Rey, R.; Alba, J.; Arenas, J.P.; Sanchis, V.J. An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust. 2012, 73, 604–609. [Google Scholar] [CrossRef]
- Perini, K.; Rosasco, P. Cost–benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build. Environ. 2015, 94, 913–923. [Google Scholar] [CrossRef]
- Connelly, M.; Hodgson, M. Experimental investigation of the sound absorption characteristics of vegetated roofs. Build. Environ. 2015, 92, 335–346. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Portal Español del Programa Marco de Investigación e Innovación de la Unión Europea. Horizonte 2020. Available online: https://eshorizonte2020.es/ (accessed on 3 January 2019).
- Documento Básico HR Protección Frente al Ruido. Available online: https://www.codigotecnico.org/images/stories/pdf/proteccionRuido/DccHR.pdf (accessed on 3 January 2019).
- ISO 10140-5:2010—Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 5: Requirements for Test Facilities and Equipment; International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 10140-1:2016—Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 1: Application Rules for Specific Products; International Organization for Standardization: Geneva, Switzerland, 2016.
- ASTM E2611-17 Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method 1; ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Kuerer, R.C. Classes of acoustical comfort in housing: Improved information about noise control in buildings. Appl. Acoust. 2002, 52, 197–210. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Ouyang, Q.; Cao, B. A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Build. Environ. 2012, 49, 304–309. [Google Scholar] [CrossRef]
- Rychtáriková, M.; Muellner, H.; Urban, D.; Chmelik, V.; Roozen, B.; Glorieux, C. Influence of temporal and spectral features of neighbour’s noise on perception of its loudness. In Proceedings of the 42nd International Congress and Exposition on Noise Control Engineering, Innsbruck, Austria, 15–18 September 2013; pp. 1408–1415. [Google Scholar]
- Hongisto, V.; Mäkilä, M.; Suokas, M. Satisfaction with sound insulation in residential dwellings – The effect of wall construction. Build. Environ. 2015, 85, 309–320. [Google Scholar] [CrossRef]
- Rychtáriková, M.; Muellner, H.; Chmelík, V.; Roozen, N.B.; Urbán, D.; Garcia, D.P.; Glorieux, C. Perceived Loudness of Neighbour Sounds Heard Through Heavy and Light-Weight Walls with Equal Rw + C50–5000. Acta Acust. United Acust. 2016, 102, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Godinho, L.; Masgalos, R.; Pereira, A.; Branco, F.G. On the use of a small-sized acoustic chamber for the analysis of impact sound reduction by floor coverings. Noise Control Eng. J. 2010, 58, 658–668. [Google Scholar] [CrossRef]
- Piedrahita, Y.; Fajardo, F. Construcción de una cámara anecoica para la caracterización de la pérdida de transmisión sonora. Rev. Bras. Ensino Física 2012, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, E.D. Design of a Scaled Down Acoustic Experiment with Anechoic and Reverberation Chambers; The Ohio State University: Columbus, OH, USA, 2013. [Google Scholar]
- Linares, N.; Emilio, J.; Ruiz, N.; Miguel, J. Cualificación acústica de una cámara de trasmisión vertical de dimensiones reducidas. In Proceedings of the 46o Congreso Español De Acústica Encuentro Ibérico De Acústica European Symposium on Virtual Acoustics and Ambisonics, Valencia, Spain, 21–23 October 2015; pp. 756–763. [Google Scholar]
- Del Rey, R.; Alba, J.; Bertó, L.; Gregori, A.; Gregori, A. Small-sized reverberation chamber for the measurement of sound absorption. Mater. Constr. 2017, 67, 139. [Google Scholar] [CrossRef] [Green Version]
- NOISEFREETEX (LIFE+09 ENV/ES/461). Available online: http://www.fomentex.eu/noisefreetex/ (accessed on 3 January 2019).
- del Rey Tormos, R.M.; Alba Fernández, J.; Blanes, M.; Molla, K.; Marco, B.; Fallarella, E.; Peruzzi, F.; Sanchis Rico, V.J.; Carrasco, F. Soluciones demostrativas para reducir la contaminación acústica en las áreas industriales mediante la utilización de tecnologías de acabados en los materiales textiles: Proyecto LIFE 09/ENV/ES/000461-NOISEFREETEX. Rev. Acúst. 2013, 44, 3–11. [Google Scholar]
- ISO 140-1:1997—Acoustics—Measurement of Sound Insulation in Buildings and of Building Elements—Part 1: Requirements for Laboratory Test Facilities with Suppressed Flanking Transmission; International Organization for Standardization: Geneva, Switzerland, 1997.
- Torres Romero, J.V. Diseño y Construcción de una Cámara de Transmisión Acústica a Escala. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2011. [Google Scholar]
- Alba, J.; Del Rey, R.; Torres, J.V.; Bertó, L.; Hervás, C. Cámara de transmisión acústica a escala para el estudio de pantallas acústicas. In Proceedings of the VIII Congreso Iberoamericano de Acústica, el VII Congreso Ibérico de Acústica, el 43o Congreso Español Acústica -Tecniacústica 2012, Évora, Portugal, 1–3 October 2012; pp. 1–11. [Google Scholar]
- Everest, F.A.; Frederick, A.; Pohlmann, K.C. Master Handbook of Acoustics; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- ISO 10140-4:2010—Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 4: Measurement Procedures and Requirements; International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 3382-2:2008—Acoustics—Measurement of Room Acoustic Parameters—Part 2: Reverberation Time in Ordinary Rooms. Available online: https://www.iso.org/standard/36201.html (accessed on 4 March 2017).
- Bertó Carbó, L. Nuevos Materiales, Modelos y Técnicas de Caracterización en Acústica de la Edificación y Acústica Medioambiental; Universitat Politècnica de València: Valencia, Spain, 2015. [Google Scholar] [CrossRef]
- ISO 354:2003—Acoustics—Measurement of Sound Absorption in a Reverberation Room; International Organization for Standardization: Geneva, Switzerland, 2003.
- Schroeder, M.R. Die statistischen Parameter der Frequenzkurven von grossen Räumen. Acustica 1954, 4, 594–600. [Google Scholar]
- Schroeder, M.R.; Kuttruff, K.H. On Frequency Response Curves in Rooms. Comparison of Experimental, Theoretical, and Monte Carlo Results for the Average Frequency Spacing between Maxima. J. Acoust. Soc. Am. 1962, 34, 76–80. [Google Scholar] [CrossRef]
- Skålevik, M. Schroeder Frequency Revisited. Forum Acust. 2011, 1965–1968. [Google Scholar] [CrossRef]
- Pedersen, D.B.; Roland, J.; Raabe, G.; Maysenhölder, W. Measurement of the Low-Frequency Sound Insulation of Building Components. Acta Acust. United Acust. 2000, 86, 495–505. [Google Scholar]
- Roozen, N.B.; Labelle, L.; Rychtarikova, M.; Glorieux, C. Determining Radiated Sound Power of Building Structures by Means of Laser Doppler Vibrometry. J. Sound Vib. 2015, 346. [Google Scholar] [CrossRef]
- Roozen, N.B.; Leclère, Q.; Urbán, D.; Kritly, L.; Glorieux, C. Assessment of the Sound Reduction Index of Building Elements by Near Field Excitation through an Array of Loudspeakers and Structural Response Measurements by Laser Doppler Vibrometry. Appl. Acoust. 2018, 140, 225–235. [Google Scholar] [CrossRef]
- Roozen, N.B.; Leclère, Q.; Urbán, D.; Echenagucia, T.; Block, P.; Rychtarikova, M.; Glorieux, C. Assessment of the Airborne Sound Insulation from Mobility Vibration Measurements; a Hybrid Experimental Numerical Approach. J. Sound Vib. 2018, 432, 680–698. [Google Scholar] [CrossRef]
- Quintana, A.; Alba, J.; del Rey, R.; Guillén-Guillamón, I. Comparative Life Cycle Assessment of gypsum plasterboard and a new kind of bio-based epoxy composite containing different natural fibers. J. Clean. Prod. 2018, 185, 408–420. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Crespo, J.E.; Fontoba, J. Estudio de la influencia del tipo de fibra y resina en composites como soluciones ligeras para aislamiento acústico. In Proceedings of the 48o Congreso Español De Acústica (Tecniacústica 2017) y Encuentro Ibérico De Acústica, A Coruña, Spain, 4–6 October 2017. [Google Scholar]
- Wool4build: El Aislante Natural Para Construcciones Sostenibles. Available online: http://www.wool4build.com/ (accessed on 3 January 2019).
- Del Rey, R.; Uris, A.; Alba, J.; Candelas, P. Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials 2017, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Del Rey, R.; Uris, J.; Candelas, P. WOOL4BUILD: Improved isolation material for eco-building based on natural wool. Rev. Acúst. 2017, 48, 3–10. [Google Scholar]
- ISO 10140-2:2010—Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 2: Measurement of Airborne Sound Insulation; International Organization for Standardization: Geneva, Switzerland, 2010.
- Alba, J.; Ramis, J.; Hernández, F. Aisla 3.0.: Herramienta informática para el cálculo del aislamiento acústico a ruido aéreo de configuraciones multicapa con paneles perforados. In Proceedings of the 36o Congreso Nacional de Acústica (Tecniacústica 05), Encuentro Ibérico de Acústica y EAA Symposium, Terrasa, Spain, October 2005. [Google Scholar]
- Ookura, K.; Saito, Y. Transmission loss of multiple panels containing sound absorbing materials in a random incidence field. In Inter-noise 78: Designing for Noise Control, Proceedings of the International Conference, San Francisco, CA, USA, 8–10 May 1978; pp. 637–642. [Google Scholar]
- Chen, K.T.; Jan, S.H. Sound Transmission Loss of Thick Perforated Panels. Build. Acoust. 2001, 8, 41–56. [Google Scholar] [CrossRef]
- Ingard, K.U.; Dear, T.A. Measurement of acoustic flow resistance. J. Sound Vib. 1985, 103, 567–572. [Google Scholar] [CrossRef]
- ISO 10534-2:1998—Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method; International Organization for Standardization: Geneva, Switzerland, 1998.
Dimensions According to International Organization for Standardization (ISO) Standard | Dimensions Reduced by a Factor of 1:5 | Final Dimensions | |
---|---|---|---|
Source Room Volume (m3) | 60.00 | 0.48 | 0.44 |
Receiving Room Volume (m3) | 50.00 | 0.40 | 0.38 |
Wall under test (m2) | 10.00 | 0.40 | 0.40 |
Minimum length of a room edge (m) | 2.30 | 0.46 | 0.55 |
According to the Standard ISO 10140-4:2010 | According to the Size of the Small Transmission Chamber |
---|---|
0.7 m between microphone positions | 0.14 m between microphone positions |
0.7 m between microphone position and walls | 0.14 m between microphone position and walls |
0.7 m between microphone position and diffusers | 0.14 m between microphone position and diffusers |
1.0 m between microphone position and the wall under test | 0.2 m between microphone position and the wall under test |
1.0 m between any microphone position and the source | 0.2 m between any microphone position and the source |
Board Composition | Fiber Volume (%) | Board Thickness (10−3 m) | Board Density (103 kg/m3) |
---|---|---|---|
Textile waste fibers and biodegradable resin | 0.73 | 4.9 | 1.07 |
Textile waste fibers and polyester resin | 0.71 | 4.6 | 1.23 |
Jute fibers and biodegradable resin | 0.70 | 5.1 | 1.08 |
Jute fibers and polyester resin | 0.60 | 4.7 | 1.12 |
Composition (%) | Density (kg/m2) | Thickness (10−3 m) | |||
---|---|---|---|---|---|
PET BI-CO | 1st Quality Wool | 2nd Quality Wool | |||
S5 | 20 | 40 | 40 | 30 | 60 |
Premium | 15 | 40 | 45 | 30 | 50 |
Airflow Resistance (rayls/m) × 1000 | |
---|---|
S5 | 7.2 |
Premium | 8.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Rey, R.; Alba, J.; Rodríguez, J.C.; Bertó, L. Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber. Buildings 2019, 9, 60. https://doi.org/10.3390/buildings9030060
del Rey R, Alba J, Rodríguez JC, Bertó L. Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber. Buildings. 2019; 9(3):60. https://doi.org/10.3390/buildings9030060
Chicago/Turabian Styledel Rey, Romina, Jesús Alba, Juan C. Rodríguez, and Laura Bertó. 2019. "Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber" Buildings 9, no. 3: 60. https://doi.org/10.3390/buildings9030060
APA Styledel Rey, R., Alba, J., Rodríguez, J. C., & Bertó, L. (2019). Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber. Buildings, 9(3), 60. https://doi.org/10.3390/buildings9030060