The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab
Abstract
:1. Introduction
1.1. Experimental Design in Building Science
1.2. Indoor Environmental Quality
2. Methods
2.1. Facility Description
2.2. Experimental Design
2.2.1. Overview
2.2.2. The Multi-IEQ Study
2.2.3. The Daylighting Study
2.2.4. The Electric Lighting Study
2.3. Environmental Data Collection and Analysis
2.3.1. Continuous IEQ Monitoring
2.3.2. Spatial IEQ Assessments
2.3.3. Cloud Infrastructure and Data Analysis
3. Results and Discussion
3.1. Statistical Summary
3.2. Thermal Conditions
3.3. Lighting Conditions
3.4. Auditory Conditions
3.5. Carbon Dioxide Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Cedeño-Laurent, J.G.; Williams, A.; MacNaughton, P.; Cao, X.; Eitland, E.; Spengler, J.; Allen, J. Building Evidence for Health: Green Buildings, Current Science, and Future Challenges. Annu. Rev. Public Health 2018, 39, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Breysse, P.N.; Gant, J.L. The Importance of Housing for Healthy Populations and Communities. J. Public Health Manag. Pract. 2017, 23, 204–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.G.; MacNaughton, P.; Laurent, J.G.C.; Flanigan, S.S.; Eitland, E.S.; Spengler, J.D. Green Buildings and Health. Curr. Environ. Health Rep. 2015, 2, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; de Dear, R.; Luo, M.; Lin, B.; He, Y.; Ghahramani, A.; Zhu, Y. Individual difference in thermal comfort: A literature review. Build. Environ. 2018, 138, 181–193. [Google Scholar] [CrossRef]
- Reinten, J.; Braat-Eggen, P.E.; Hornikx, M.; Kort, H.S.M.; Kohlrausch, A. The indoor sound environment and human task performance: A literature review on the role of room acoustics. Build. Environ. 2017, 123, 315–332. [Google Scholar] [CrossRef]
- Banbury, S.; Berry, D. Office noise and employee concentration: Identifying causes of disruption and potential improvements. Ergonomics 2005, 48, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Caddick, Z.A.; Gregory, K.; Arsintescu, L.; Flynn-Evans, E.E. A review of the environmental parameters necessary for an optimal sleep environment. Build. Environ. 2018, 132, 11–20. [Google Scholar] [CrossRef]
- Thayer, J.F.; Verkuil, B.; Brosschotj, J.F.; Kevin, K.; West, A.; Sterling, C.; Christie, I.C.; Abernethy, D.R.; Sollers, J.J.; Cizza, G.; et al. Effects of the physical work environment on physiological measures of stress. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vischer, J.C. The effects of the physical environment on job performance: Towards a theoretical model of workspace stress. Stress Health 2007, 23, 175–184. [Google Scholar] [CrossRef]
- Li, Z.; Wen, Q.; Zhang, R. Sources, health effects and control strategies of indoor fine particulate matter (PM 2.5): A review. Sci. Total Environ. 2017, 586, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Coombes, B.K.; Sjøgaard, G.; Jun, D.; O’Leary, S.; Johnston, V. Workplace-based interventions for neck pain in office workers: Systematic review and meta-analysis. Phys. Ther. 2018, 98, 40–62. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Cooper, K.; Hancock, E. Workplace interventions to improve sitting posture: A systematic review. Prev. Med. 2017, 101, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.T.; Melikov, A.K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air 2018, 28, 500–524. [Google Scholar] [CrossRef] [PubMed]
- Haun, N.; Hooper-Lane, C.; Safdar, N. Healthcare Personnel Attire and Devices as Fomites: A Systematic Review. Infect. Control Hosp. Epidemiol. 2016, 37, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Zivich, P.N.; Gancz, A.S.; Aiello, A.E. Effect of hand hygiene on infectious diseases in the office workplace: A systematic review. Am. J. Infect. Control 2018, 46, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Sublett, J.L. Effectiveness of air filters and air cleaners in allergic respiratory diseases: A review of the recent literature. Curr. Allergy Asthma Rep. 2011, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, E.R.; Gonzales, M.; Commodore, A. The role of the indoor environment: Residential determinants of allergy, asthma and pulmonary function in children from a US-Mexico border community. Sci. Total Environ. 2018, 616–617, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.S.; Turban, S. The impact of the ‘open’workspace on human collaboration. Philos. Trans. R. Soc. B 2018, 373, 20170239. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, S.; Schiavon, S. Occupant satisfaction in LEED and non-LEED certified buildings. Build. Environ. 2013, 68, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Vischer, J.C. Towards an Environmental Psychology of Workspace: How People are Affected by Environments for Work. Archit. Sci. Rev. 2008, 51, 97–108. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Fisk, W.J. How home ventilation rates affect health: A literature review. Indoor Air 2018, 28, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Kumagai, K. Observation-based metrics for residential dampness and mold with dose-response relationships to health: A review. Indoor Air 2017, 27, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P. The mystery of dry indoor air—An overview. Environ. Int. 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Luo, M.; Ouyang, Q.; Huang, L.; Cao, B. Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Build. Environ. 2015, 91, 5–14. [Google Scholar] [CrossRef]
- Enescu, D. A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 2017, 79, 1353–1379. [Google Scholar] [CrossRef]
- Van Craenendonck, S.; Lauriks, L.; Vuye, C.; Kampen, J. A review of human thermal comfort experiments in controlled and semi-controlled environments. Renew. Sustain. Energy Rev. 2018, 82, 3365–3378. [Google Scholar] [CrossRef]
- Cannistraro, G.; Cannistraro, M.; Restivo, R. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature. Smart Sci. 2016, 3, 157–163. [Google Scholar] [CrossRef]
- Ma, K.W.; Wong, H.M.; Mak, C.M. A systematic review of human perceptual dimensions of sound: Meta-analysis of semantic differential method applications to indoor and outdoor sounds. Build. Environ. 2018, 133, 123–150. [Google Scholar] [CrossRef]
- Thatcher, A.; Milner, K. Is a green building really better for building occupants? A longitudinal evaluation. Build. Environ. 2016, 108, 194–206. [Google Scholar] [CrossRef]
- Khoshbakht, M.; Gou, Z.; Lu, Y.; Xie, X.; Zhang, J. Are green buildings more satisfactory? A review of global evidence. Habitat Int. 2018, 74, 57–65. [Google Scholar] [CrossRef]
- Edwards, L.; Torcellini, P. A Literature Review of the Effects of Natural Light on Building Occupants A Literature Review of the Effects of Natural Light on Building Occupants; NREL/TP-550-30769; National Renewable Energy Lab.: Golden, CO, USA, 2002.
- Cannistraro, M.; Castelluccio, M.E.; Germanò, D. New sol-gel deposition technique in the Smart-Windows—Computation of possible applications of Smart-Windows in buildings. J. Build. Eng. 2018, 19, 295–301. [Google Scholar] [CrossRef]
- Kim, J.; Hong, T.; Jeong, J.; Koo, C.; Kong, M. An integrated psychological response score of the occupants based on their activities and the indoor environmental quality condition changes. Build. Environ. 2017, 123, 66–77. [Google Scholar] [CrossRef]
- Kang, S.; Ou, D.; Mak, C.M. The impact of indoor environmental quality on work productivity in university open-plan research offices. Build. Environ. 2017, 124, 78–89. [Google Scholar] [CrossRef]
- Li, P.; Froese, T.M.; Brager, G. Post-occupancy evaluation: State-of-the-art analysis and state-of-the-practice review. Build. Environ. 2018, 133, 187–202. [Google Scholar] [CrossRef]
- Torresin, S.; Pernigotto, G.; Cappelletti, F.; Gasparella, A. Combined effects of environmental factors on human perception and objective performance: A review of experimental laboratory works. Indoor Air 2018, 28, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Wargocki, P.; Chan, Y.H.; Chen, L.; Tham, K.W. Indoor environmental quality, occupant satisfaction, and acute building-related health symptoms in Green Mark-certified compared with non-certified office buildings. Indoor Air 2018, 29, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Ou, D. A comparative field study of indoor environmental quality in two types of open-plan offices: Open-plan administrative offices and open-plan research offices. Build. Environ. 2019, 148, 394–404. [Google Scholar] [CrossRef]
- Ozcelik, G.; Becerik-Gerber, B.; Chugh, R. Understanding human-building interactions under multimodal discomfort. Build. Environ. 2018, 151, 280–290. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, K. Investigation of the feasibility of POE methodology for a modern commercial office building. Build. Environ. 2018, 143, 591–604. [Google Scholar] [CrossRef]
- Park, J.; Loftness, V.; Aziz, A. Post-Occupancy Evaluation and IEQ Measurements from 64 Office Buildings: Critical Factors and Thresholds for User Satisfaction on Thermal Quality. Buildings 2018, 8, 156. [Google Scholar] [CrossRef]
- Berquist, J.; Ouf, M.; O’Brien, W. A method to conduct longitudinal studies on indoor environmental quality and perceived occupant comfort. Build. Environ. 2019, 150, 88–98. [Google Scholar] [CrossRef]
- Kidd, C.D.; Orr, R.; Abowd, G.D.; Atkeson, C.G.; Essa, I.A.; MacIntyre, B.; Mynatt, E.; Starner, T.E.; Newstetter, W. The Aware Home: A Living Laboratory for Ubiquitous Computing Research. In Cooperative Buildings. Integrating Information, Organizations, and Architecture; Springer: Berlin/Heidelberg, Germany, 1999; pp. 191–198. [Google Scholar]
- Abowd, G.D.; Atkeson, C.G.; Bobick, A.E.; Irfan, A.E.; Macintyre, B.; Mynatt, E.D.; Starner, T.E. Living Laboratories: The Future Computing Environments Group at the Georgia Institute of Technology. In Proceedings of the CHI’00 Extended Abstracts on Human Factors in Computing Systems, The Hague, The Netherlands, 1–6 April 2000. [Google Scholar]
- Bluyssen, P.M.; van Zeist, F.; Kurvers, S.; Tenpierik, M.; Pont, S.; Wolters, B.; van Hulst, L.; Meertins, D. The creation of SenseLab: A laboratory for testing and experiencing single and combinations of indoor environmental conditions. Intell. Build. Int. 2018, 10, 5–18. [Google Scholar] [CrossRef]
- Ogonowski, C.; Ley, B.; Hess, J.; Wan, L.; Wulf, V. Designing for the Living Room: Long-Term User Involvement in a Living Lab. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI’13, Paris, France, 27 April–2 May 2013; ACM Press: New York, NY, USA, 2013; p. 1539. [Google Scholar]
- Bygholm, A.; Kanstrup, A.M. This Is not Participatory Design—A Critical Analysis of Eight Living Laboratories. Stud. Health Technol. Inform. 2017, 233, 78–92. [Google Scholar] [PubMed]
- Buhl, J.; Hasselkuß, M.; Suski, P.; Berg, H. Automating Behavior? An Experimental Living Lab Study on the Effect of Smart Home Systems and Traffic Light Feedback on Heating Energy Consumption. Curr. J. Appl. Sci. Technol. 2017, 22, 1–18. [Google Scholar] [CrossRef]
- Bliek, F.; van den Noort, A.; Roossien, B.; Kamphuis, R.; de Wit, J.; van der Velde, J.; Eijgelaar, M. PowerMatching City, a living lab smart grid demonstration. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenberg, Sweden, 11–13 October 2010; pp. 1–8. [Google Scholar]
- Jamrozik, A.; Ramos, C.; Zhao, J.; Bernau, J.; Clements, N.; Vetting Wolf, T.; Bauer, B. A novel methodology to realistically monitor office occupant reactions and environmental conditions using a living lab. Build. Environ. 2018, 130, 190–199. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, S.; Yang, B.; Donner, Y.; Chang, V.W.C.; Nazaroff, W.W. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons. Indoor Air 2017, 27, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Renz, T.; Leistner, P.; Liebl, A. Effects of the location of sound masking loudspeakers on cognitive performance in open-plan offices: Local sound masking is as efficient as conventional sound masking. Appl. Acoust. 2018, 139, 24–33. [Google Scholar] [CrossRef]
- Ghahramani, A.; Pantelic, J.; Lindberg, C.; Mehl, M.; Srinivasan, K.; Gilligan, B.; Arens, E. Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems. Appl. Energy 2018, 230, 42–51. [Google Scholar] [CrossRef]
- Cross, E.S.; Williams, L.R.; Lewis, D.K.; Magoon, G.R.; Onasch, T.B.; Kaminsky, M.L.; Worsnop, D.R.; Jayne, J.T. Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmos. Meas. Tech. 2017, 10, 3575–3588. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Pereira, P.F.; Ramos, N.M.M. Detection of occupant actions in buildings through change point analysis of in-situ measurements. Energy Build. 2018, 173, 365–377. [Google Scholar] [CrossRef]
- Pereira, P.F.; Ramos, N.M.M.; Almeida, R.M.S.F.; Simões, M.L. Methodology for detection of occupant actions in residential buildings using indoor environment monitoring systems. Build. Environ. 2018, 146, 107–118. [Google Scholar] [CrossRef]
- Vieira, E.M. de A.; Silva, L.B. da; Souza, E.L. De The influence of the workplace indoor environmental quality on the incidence of psychological and physical symptoms in intensive care units. Build. Environ. 2016, 109, 12–24. [Google Scholar] [CrossRef]
- Adams, E.W.; Jackson, M.C.; Brodsky, E.; Emmerich, S.J.; Grimes, C.; Olesen, B.W.; Reindl, D.T.; Harrold, R.M.; Aswegan, J.D.; Clark, J.A.; et al. ASHRAE Guideline 10-2016: Interactions Affecting the Achievement of Acceptable Indoor Environments; ASHRAE: Atlanta, GA, USA, 2016; Volume 2016. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55-2013—Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Campanella, C.; Jamrozik, A. Introduction to Living Labs. In Proceedings of the Living Labs: Measuring Human Experiences in the Built Environment, Montreal, QC, Canada, 21–26 April 2018. [Google Scholar]
- Jamrozik, A.; Clements, N.; Hasan, S.S.; Zhao, J.; Zhang, R.; Campanella, C.; Porter, P.; Ly, S.; Loftness, V.; Wang, S.; et al. Access to daylight and view in an office environment improves cognitive performance and satisfaction and reduces eyestrain: A controlled study in a living lab. Build. Environ. 2019. in review. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Maula, H.; Hongisto, V.; Naatula, V.; Haapakangas, A.; Koskela, H. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms. Indoor Air 2017, 27, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, N.; Wargocki, P.; Tanabe, S. Cerebral blood flow, fatigue, mental effort, and task performance in offices with two different pollution loads. Build. Environ. 2014, 71, 153–164. [Google Scholar] [CrossRef]
- Tanabe, S.; Haneda, M.; Nishihara, N. Workplace productivity and individual thermal satisfaction. Build. Environ. 2015, 91, 42–50. [Google Scholar] [CrossRef]
- Veselý, M.; Molenaar, P.; Vos, M.; Li, R.; Zeiler, W. Personalized heating—Comparison of heaters and control modes. Build. Environ. 2017, 112, 223–232. [Google Scholar] [CrossRef]
- Fadeyi, M.O.; Tham, K.W.; Wu, W.Y. Impact of asthma, exposure period, and filters on human responses during exposures to ozone and its initiated chemistry products. Indoor Air 2015, 25, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, J.; Wargocki, P. Can a photocatalytic air purifier be used to improve the perceived air quality indoors? Indoor Air 2010, 20, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, T.; Tanabe, S.-i.; Yanai, T.; Sasaki, M. Thermal comfort and productivity—Evaluation of workplace environment in a task conditioned office. Build. Environ. 2010, 45, 45–50. [Google Scholar] [CrossRef]
- National Primary and Secondary Ambient Air Quality Standards; 40 C.F.R. Part 50; U.S. Government Printing Office: Washington, DC, USA, 2018.
- Parkinson, T.; Parkinson, A.; de Dear, R. Continuous IEQ monitoring system: Context and development. Build. Environ. 2019, 149, 15–25. [Google Scholar] [CrossRef]
- Parkinson, T.; Parkinson, A.; de Dear, R. Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Build. Environ. 2019, 149, 241–252. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- ISO. ISO 7730: 2005—Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Hasan, M.H.; Alsaleem, F.; Rafaie, M. Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Build. Environ. 2016, 110, 173–183. [Google Scholar] [CrossRef]
- Ji, W.; Luo, M.; Cao, B.; Zhu, Y.; Geng, Y.; Lin, B. A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber. Energy Build. 2018, 177, 402–412. [Google Scholar] [CrossRef]
- Brager, G.S.; de Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Navai, M.; Veitch, J. Acoustic Satisfaction in Open-Plan Offices: Review and Recommendations; Institute for Research in Construction: Ottawa, ON, Canada, 2003. [Google Scholar]
- Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep learning. Appl. Intell. 2015, 42, 722–737. [Google Scholar] [CrossRef]
- Mustafa, M.K.; Allen, T.; Appiah, K. A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition. Neural Comput. Appl. 2017, 1–9. [Google Scholar] [CrossRef]
Condition Name | Week No. | EC Glass (Tint No., Control?) | Mesh Shades (Black-Out Shades) | Desk-Surface Electric Light Illuminance (lx) | Lighting CCT (K) | Temp (°C) | RH (%) | Sound Masking |
---|---|---|---|---|---|---|---|---|
Multi-IEQ Study (5/31/2016-9/30/2016) | ||||||||
Near-Optimal (Baseline) | 1, 5, 10, 14 | Level 1 (None) | Open, Operable (Open) | - | 3500 | 21.7 | 40 | None |
Optimal | 2, 6, 9, 11, 15, 18 | Intelligence (None) | Open, Operable (Open) | - | 4200 | 21.7 | 40 | None |
Sub-Optimal 1 | 3, 12 | Level 4 (None) | Closed, Inoperable (Closed) | - | 2700 | 19.4 | 40 | White Noise, Low Volume |
Mixed 1 | 4, 13 | Level 1 (None) | Open, Operable (Open) | - | 2700 | 23.9 | 40 | Office Sounds 1 |
Sub-Optimal 2 | 7, 16 | Level 4 (None) | Closed, Inoperable (Closed) | - | 6500 | 19.4 | 40 | White Noise, High Volume |
Mixed 2 | 8, 17 | Intelligence (None) | Open, Operable (Open) | - | 6500 | 23.9 | 40 | Office Sounds 2 |
Daylighting Study (6/19/2017-9/8/2017) | ||||||||
No View (Baseline) | 1, 2, 9, 10 | Level 4 (None) | Closed, Inoperable (Closed) | 300 | 4000 | 23.9 | 40 | None |
Mesh Shades | 5, 6, 11, 12 | Level 2 (None) | Open, Operable (Open) | 300 | 4000 | 23.9 | 40 | None |
Dynamic Tint | 3, 4, 7, 8 | Intelligence (App override) | Open, Inoperable (Open) | 300 | 4000 | 23.9 | 40 | None |
Electric Lighting Study (7/10/2017-9/8/2017) | ||||||||
Fluorescent (Baseline) | 1-4 | Level 4 (None) | Closed, Inoperable (Closed) | 250 | 3300 | 22.8 | 40 | None |
LED | 5-8 | Level 4 (None) | Closed, Inoperable (Closed) | 250 | 5000 | 22.8 | 40 | None |
Sensor Type | Deployment Type | Sampling Interval | Multi-IEQ Study (No. of Sensors) | Daylighting Study (No. of Sensors) | Electric Lighting Study (No. of Sensors) |
---|---|---|---|---|---|
Air Flow | - | 5 s to 10 min ** | AHU (1), VAV (3) | AHU (1), VAV (3) | AHU (1), VAV (2) |
Return Air RH | - | 10 min | AHU (1) | AHU (1) | AHU (1) |
Air Temp./RH | Desk-level | 1–5 min ** | D01, D03, D05-D08 (6, D02 *, D04 *) | D01-D10 (10) | D04, D06, D08 (3) |
Background | 5 min | Coffee Table (1) Filing cabinet next to D06/D09 (1) | - | - | |
Air Temp. | Window | 5 min | W01, W05, W08 (3) | W01-W08 (8) | - |
Background | 10 min | Thermostats (3) | Thermostats (3) Walls next to W01-W08 (8) | Thermostats (2) Walls next to W01-W04, south wall, west wall, east wall/conf. room (7) | |
Illuminance | Desk-Level | 1–10 min ** | D01-D08 (8, horizontal ill.) Behind D08 and D09 (2, vertical ill.) | D01-D10 (10) | D01-D10 (10) |
Window | 10 min | W02-W08 (8, W01 *, vertical ill.) | W01-W08 (16, left/right per window) | - | |
Background | 10 min | Conference table (1) Coffee table (1) Filing cabinet next to D06/D09 (1) Kitchen table * (1) | Kitchen table (1) Filing cabinet in southwest corner (1) | - | |
CCT/Illuminance | Desk-Level | 1 min | - | D01-D10 (10) | D01-D10 (10) |
Window | 10 min | - | W01-W08 (8) | - | |
Background | 10 min | - | - | Conf. room (1) | |
Carbon Dioxide | Desk-Level | 1 min | D01/05, D03/04, D06/07, D08/09 (4) | - | - |
Background | 1 min | Kitchen (1) Conference table (1) | - | - | |
External | 1 min | Break room (1) | - | - | |
Sound Level | Background | 10 s | D05 (1) | - | - |
Multi-IEQ Study | ||||||
---|---|---|---|---|---|---|
Environmental Measurement | Near-Optimal (Baseline) | Optimal | Sub-Optimal 1 | Mixed 1 | Sub-Optimal 2 | Mixed 2 |
(Sensor No., Units) | Geometric Mean ± SD (N) | |||||
AHU Air Flow (N = 1, CFM) | 992 ± 182 (54,006) | 962 ± 177 (52,175) | 1054 ± 42 (48,878) | 752 ± 288 (44,814) | 1031 ± 76 (3840) | 774 ± 250 (4258) |
VAV Air Flow (N = 3, CFM) | 353 ± 88 (65,601) | 336 ± 97 (65,930) | 388 ± 49 (59,556) | 249 ± 133 (48,419) | 396 ± 65 (10,106) | 212 ± 120 (8967) |
AHU Return RH (N = 1, %RH) | 44 ± 3 (1797) | 45 ± 6 (2706) | 48 ± 3 (1087) | 44 ± 4 (1114) | 48 ± 4 (1041) | 44 ± 3 (900) |
Thermostat Temp. (N = 3, °C) | 22.5 ± 0.8 (5112) | 22.0 ± 0.9 (7604) | 20.6 ± 0.7 (2855) | 23.7 ± 0.7 (2879) | 20.9 ± 1.5 (3139) | 23.4 ± 0.7 (2342) |
Desk Temp. (N = 7, °C) | 24.1 ± 1.7 (17,474) | 23.5 ± 1.6 (26,970) | 22.0 ± 1.7 (9305) | 25.4 ± 1.6 (9647) | 22.0 ± 1.4 (9758) | 25.1 ± 1.5 (8915) |
Window Temp. (N = 3, °C) | 23.5 ± 2.4 (4605) | 22.4 ± 2.1 (6377) | 24.3 ± 3.8 (2757) | 24.7 ± 2.3 (2299) | 22.2 ± 2.8 (2784) | 24.1 ± 1.6 (2315) |
Wearable Air Temp. (N = 8, °C) | 30.3 ± 1.6 (23,024) | 29.7 ± 1.7 (35,682) | 29.2 ± 1.7 (12,852) | 31.0 ± 1.6 (16,470) | 28.9 ± 1.9 (14,866) | 30.9 ± 1.5 (16,929) |
Wearable Skin Temp. (N = 8, °C) | 31.6 ± 1.3 (22,396) | 31.1 ± 1.3 (35,472) | 30.5 ± 1.3 (12,719) | 32.3 ± 1.2 (16,406) | 30.6 ± 1.2 (14,794) | 32.2 ± 1.1 (16,876) |
Desk RH (N = 7, %RH) | 41.2 ± 4.3 (17,473) | 43.9 ± 6.1 (26,966) | 48.3 ± 4.3 (9305) | 38.2 ± 3.5 (9648) | 48.3 ± 5.0 (9758) | 40.3 ± 3.8 (8915) |
Desk Illum. (N = 9, lx) | 385 ± 601 (10,615) | 275 ± 466 (14,593) | 154 ± 358 (5938) | 367 ± 593 (6504) | 277 ± 510 (5469) | 340 ± 513 (4649) |
Window Illum. (N = 7, lx) | 2555 ± 9851 (9193) | 557 ± 1662 (12,658) | 57 ± 2625 (4800) | 2112 ± 8954 (5011) | 23 ± 143 (4765) | 564 ± 1580 (3608) |
Wearable Illuminance (N = 8, lx) | 80 ± 552 (23,483) | 54 ± 200 (35,767) | 56 ± 145 (12,903) | 77 ± 573 (16,510) | 57 ± 140 (14,904) | 70 ± 211 (16,982) |
Near-Desk CO2 (N = 4, ppm) | 512 ± 61 (53,222) | 512 ± 59 (80,288) | 515 ± 58 (28,645) | 530 ± 70 (29,872) | 508 ± 49 (29,866) | 533 ± 66 (25,918) |
Background CO2 (N = 2, ppm) | 486 ± 70 (17,018) | 484 ± 58 (27,073) | 514 ± 60 (11,192) | 516 ± 60 (11,169) | 480 ± 47 (11,174) | 503 ± 68 (9239) |
External CO2 (N = 1, ppm) | 467 ± 67 (13,487) | 481 ± 55 (20,467) | 466 ± 52 (7475) | 456 ± 56 (7474) | 473 ± 34 (7469) | 472 ± 39 (6486) |
Desk Sound Level * (N = 1, dBA) | 46.9 ± 4.3 (224) | 46.4 ± 4.6 (377) | 46.9 ± 4.5 (130) | 46.4 ± 4.4 (130) | 47.2 ± 3.2 (130) | 46.1 ± 3.9 (130) |
Daylighting Study | Electric Lighting Study | |||||
---|---|---|---|---|---|---|
Environmental Measurement | No View (Baseline) | Mesh Shades | Dynamic Tint | Environmental Measurement | Fluorescent (Baseline) | LED |
(Sensor No., Units) | Geometric Mean ± SD (N) | (Sensor No., Units) | Geometric Mean ± SD (N) | |||
AHU Air Flow (N = 1, CFM) | 479 ± 193 (10,017) | 606 ± 296 (13,795) | 628 ± 330 (14,603) | - | - | - |
VAV Air Flow (N = 3, CFM) | 190 ± 129 (16,266) | 213 ± 145 (17,042) | 188 ± 147 (20,590) | VAV Air Flow (N = 2, CFM) | 133 ± 70 (23,171) | 106 ± 39 (24,942) |
AHU Return RH (N = 1, %RH) | 44 ± 2 (3118) | 43 ± 3 (3713) | 43 ± 1 (3338) | AHU Return RH (N = 1, %RH) | 47 ± 1 (5597) | 46 ± 2 (7064) |
Thermostat Temp. (N = 3, °C) | 23.3 ± 0.5 (7842) | 23.6 ± 0.5 (9674) | 23.6 ± 0.5 (9565) | Thermostat Temp. (N = 2, °C) | 22.3 ± 0.3 (5923) | 22.0 ± 0.4 (7293) |
Desktop Temp. (N = 10, °C) | 23.8 ± 0.9 (15,741) | 24.5 ± 1.3 (15,512) | 24.7 ± 1.1 (15,710) | Desktop Temp. (N = 4, °C) | 22.4 ± 0.4 (46,476) | 22.0 ± 0.5 (57,611) |
Window Temp. (N = 8, °C) | 25.5 ± 4.9 (12,495) | 25.8 ± 4.2 (12,326) | 26.6 ± 3.8 (12,496) | - | - | - |
Wall Temp. (N = 8, °C) | 23.2 ± 0.8 (12,785) | 23.8 ± 1.2 (12,658) | 23.9 ± 1.0 (12,753) | Wall Temp. (N = 7, °C) | 22.3 ± 0.9 (21,856) | 21.4 ± 1.3 (27,026) |
Desktop RH (N = 10, %RH) | 39.6 ± 2.9 (15,741) | 37.6 ± 3.0 (15,512) | 37.7 ± 2.3 (15,710) | Desktop RH (N = 4, %RH) | 41.9 ± 0.9 (46,476) | 42.4 ± 1.8 (57,612) |
Desktop Illum. (N = 10, lx) | 291 ± 45 (128,577) | 457 ± 539 (128,475) | 463 ± 450 (130,095) | Desktop Illum. (N = 10, lx) | 230 ± 92 (140,324) | 295 ± 105 (167,451) |
Desktop Illum. (CCT sensors, N = 10, lx) | 290 ± 40 (130,208) | 689 ± 2865 (130,496) | 724 ± 1468 (130,930) | Desktop Illum. (CCT sensors, N = 10, lx) | 281 ± 83 (121,920) | 298 ± 105 (150,652) |
Window Illum. (N = 16, lx) | 26 ± 115 (25,340) | 1226 ± 6035 (24,404) | 1020 ± 3550 (24,780) | - | - | - |
Window Illum. (CCT sensors, N = 8, lx) | 19 ± 365 (12,208) | 1673 ± 6654 (11,994) | 1296 ± 2776 (12,247) | - | - | - |
Desktop CCT (N = 10, K) | 4290 ± 121 (130,208) | 4786 ± 474 (130,497) | 5216 ± 728 * (130,931) | Desktop CCT (N = 10, K) | 3515 ± 353 (121,923) | 5967 ± 173 (150,653) |
Window CCT (N = 8, K) | 9300 ± 4660 * (11,832) | 5537 ± 810 (11,994) | 6365 ± 2572 * (12,219) | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clements, N.; Zhang, R.; Jamrozik, A.; Campanella, C.; Bauer, B. The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings 2019, 9, 62. https://doi.org/10.3390/buildings9030062
Clements N, Zhang R, Jamrozik A, Campanella C, Bauer B. The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings. 2019; 9(3):62. https://doi.org/10.3390/buildings9030062
Chicago/Turabian StyleClements, Nicholas, Rongpeng Zhang, Anja Jamrozik, Carolina Campanella, and Brent Bauer. 2019. "The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab" Buildings 9, no. 3: 62. https://doi.org/10.3390/buildings9030062
APA StyleClements, N., Zhang, R., Jamrozik, A., Campanella, C., & Bauer, B. (2019). The Spatial and Temporal Variability of the Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings, 9(3), 62. https://doi.org/10.3390/buildings9030062