Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production
Abstract
:1. Introduction
2. Definitions and Nomenclature
- Multi-dwelling buildingA building containing three or more dwellings. The building may be a balcony access building, point block building, slab block building or terraced building, as explained below and in Figure 1.
- One- or two-dwelling buildingA building containing one or two dwellings. The building may be a one-dwelling building, two-dwelling building, linked building or terraced building, as explained below and in Figure 2.
- Balcony access buildingA multi-dwelling building with one (or more) common staircase. The dwellings are accessed through a common balcony on each storey.
- Point block buildingA multi-dwelling building with one central core/common staircase in the centre of the building.
- Slab block buildingA multi-dwelling building with two or more common staircases.
- Terraced buildingA multi-dwelling building or two-dwelling building, usually with almost identical dwellings, which shares one or two walls with a neighbouring dwelling.
- One-dwelling buildingA building containing one dwelling.
- Two-dwelling buildingA building containing two dwellings, usually with almost identical dwellings stacked on top of each other.
- Linked buildingA number of buildings (may be more than two) which are connected via a complementary building (not used as a dwelling), such as a garage or storage area.
- Transverse load-bearingA superstructure of a building (usually slab block buildings or balcony access building) based on a system where the gable walls and interior walls are load-bearing. The load-bearing walls are oriented transversely in relation to the building’s dominant longitudinal direction.
- Longitudinal load-bearingA superstructure of a building where the load-bearing walls are oriented in the same direction as the building’s dominant longitudinal direction. The gable walls may also be load-bearing.
- Column constructionA superstructure of a building where the dominant load-bearing wall is based on columns.
- Malmö regionIncludes the municipalities of Bara, Burlöv, Dalby, Genarp, Kävlinge, Lomma, Lund, Löddeköpinge, Malmö, Månstorp, Räng, Skannör, Staffanstorp, Svedal, Södra Sandby, Trelleborg, Veberöd and Vellinge.
- Göteborg regionIncludes the municipalities of Askim, Fjärås, Göteborg, Härryda, Kungsbacka, Kungälv, Lerum, Löftadalen, Mölndal, Nödinge, Onsala, Partille, Skepplanda, Starrkärr, Stenungsund, Styrsö, Tjörn and Öckerö.
- Stockholm regionIncludes the municipalities of Botkyrka, Danderyd, Djurö, Ekerö, Gustavsberg, Haninge, Huddinge, Järfälla, Lidingö, Nacka, Salem, Sigtuna, Sollentuna, Solna, Stockholm, Sundbyberg, Tyresö, Täby, Upplands-Bro, Upplands-Väsby, Vallentuna, Vaxholm, Värmdö and Österåker.
- Non-metropolitan regionsIncludes all municipalities except for the ones listed above.
3. Available Data
4. Method
4.1. Step 1—Transfer of Data
4.2. Step 2—Defining Technical Aspects of Interest
4.3. Step 3—Analysis of Data
4.4. Step 4—Comparison of Results in Relation to Previous Studies
5. Results
5.1. Multi-Dwelling Buildings
5.2. One- and Two-Dwelling Buildings
6. Discussion
6.1. Multi-Dwelling Buildings
6.2. One- and Two-Dwelling Buildings
7. Conclusions
7.1. Multi-Dwelling Buildings
7.2. One- and Two-Dwelling Buildings
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A—Multi-Dwelling Buildings
Type of Data | Available Parameters | Period for Available Data |
---|---|---|
Type of building | Balcony access building; Point block building; Slab block building; Terraced building; Other | 1960–1993 * |
Area of construction | Göteborg region; Malmö region; Stockholm region; Sweden excluding metropolitan regions | 1966–1993 ** |
Storeys | 1–2; 3; 4; 5–8; ≥9 | 1962–1993 |
Type of superstructure | Transverse load bearing; Longitudinal load bearing; Pillar construction; Other | 1968–1972 |
Material for superstructure | Autoclaved aerated concrete; Clay bricks; Concrete; Wood; Other | 1963–1987 |
Method of production for superstructure | On site; Prefabricated | 1968–1979 |
Façade material | Asbestos; Autoclaved aerated concrete; Clay bricks; Concrete; Render; Sandlime bricks; Sheet metal; Wood; Other | 1963–1993 *** |
Inner material in exterior wall | Autoclaved aerated concrete; Clay bricks; Concrete; Wood; Other | 1963–1979 |
Method of production for exterior wall | On site; Prefabricated | 1968–1979 |
Roofing | Asbestos; Clay tiles; Concrete tiles; Roof felt; Sheet metal; Other | 1969–1993 |
Appendix B—One- and Two-Dwelling Buildings
Type of Data | Available Parameters | Period for Available Data |
---|---|---|
Type of building | One-dwelling building; Two-dwelling building; Linked building; Terraced building; Other | 1966–1994 |
Area of construction | Göteborg region; Malmö region; Stockholm region; Sweden excluding metropolitan regions | 1968–1994 |
Storeys | 1; 1.5; 2; >2 | 1970–1987 |
Material for superstructure | Autoclaved aerated concrete; Clay bricks; Concrete; Wood; Other | 1966-1987 |
Method of production for superstructure | On site: Prefabricated; Partly prefabricated | 1968–1993 |
Façade material | Asbestos; Autoclaved aerated concrete; Clay bricks; Concrete; Render; Sandlime bricks; Sheet metal; Wood; Other | 1966–1993 * |
Insulation in exterior wall | Expanded polystyrene; Wood insulation/wood wool/wood shavings; Autoclaved aerated concrete; Mineral wool | 1966–1972 |
Roofing | Asbestos; Clay tiles; Concrete tiles; Roof felt; Sheet metal; Other | 1966–1993 |
References
- International Energy Agency (IEA). SHC Task 40/ECBCS Annex 52 Towards Net Zero Energy Solar Buildings, Fact Sheet; IEA: Paris, France, 2011; p. 2. Available online: http://task40.iea-shc.org/ (accessed on 7 March 2019).
- Economidou, M.; Atanasiu, B.; Despert, C.; Maio, J.; Nolte, I.; Rapf, O. Europe’s Buildings under the Microscope—A Country-by-Country Review of the Energy Performance of Buildings. 2011, p. 132. Available online: http://bpie.eu/publication/europes-buildings-under-the-microscope/ (accessed on 7 March 2019).
- Boverket, Energimyndigheten, Förslag Till Nationell Strategi för Energieffektiviserande Renovering av Byggnader. 2013, p. 244. Available online: https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2013/forslag-till-nationell-strategi-for-energieffektiviserande-renovering-av-byggnader/ (accessed on 7 March 2019).
- Berggren, B.; Janson, U.; Wall, M. Nationella Och Internationella Erfarenheter Från Energirenovering Med Stor Energibesparing, Bygg och Teknik. 2011, p. 5. Available online: https://issuu.com/byggteknikforlaget/docs/2-11/46 (accessed on 7 March 2019).
- Hastings, R. Lessons from Exemplary Housing Renovations. 2010, p. 33. Available online: http://mojo.iea-shc.org/Data/Sites/1/publications/Lessons_from_Case_Studies.pdf (accessed on 7 March 2019).
- Risholt, B.; Time, B.; Hestnes, A.G. Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy Build. 2013, 60, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.; Rønby, L.; Mikkelsen, S.E.; Minzari, M.G.; Kildemoes, T.; Tommerup, H.M. Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment. Energy Build. 2012, 54, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Tommerup, H.; Svendsen, S. Energy savings in Danish residential building stock. Energy Build. 2006, 38, 618–626. [Google Scholar] [CrossRef]
- Liu, L.; Moshfegh, B.; Akander, J.; Cehlin, M. Comprehensive investigation on energy retrofits in eleven multi-family buildings in Sweden. Energy Build. 2014, 84, 704–715. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Advanced Housing Renovation with Solar and Conservation. 2010. Available online: http://task37.iea-shc.org/ (accessed on 7 March 2019).
- Janson, U.; Berggren, B.; Sundqvist, H. Energieffektivisering vid Renovering av Rekordårens Flerbostadshus. 2008, p. 105. Available online: http://vpp.sbuf.se/Public/Documents/ProjectDocuments/3ce58210-ddae-4c70-8761-b62ee696a4b3/FinalReport/SBUF%2011936%20Slutrapport%20Energieffektivisering%20vid% 20renovering%20av%20rekordårens%20flerbostadshus.pdf (accessed on 7 March 2019).
- Nik, V.M.; Mata, E.; Kalagasidis, A.S.; Scartezzini, J.-L. Effective and robust energy retrofitting measures for future climatic conditions—Reduced heating demand of Swedish households. Energy Build. 2016, 121, 176–187. [Google Scholar] [CrossRef]
- Österbring, M. Spatial Analysis of Urban Housing Stocks. Licentiate Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Caputo, P.; Costa, G.; Ferrari, S. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 2013, 55, 261–270. [Google Scholar] [CrossRef]
- Ascione, F.; de Masi, R.F.; de Rossi, F.; Fistola, R.; Sasso, M.; Vanoli, G.P. Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities 2013, 35, 270–283. [Google Scholar] [CrossRef]
- Wang, Q.; Holmberg, S. A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings. Sustain. Cities Soc. 2015, 14, 254–266. [Google Scholar] [CrossRef]
- Zimmermann, M. Prefabricated Systems for Low Energy Renovation of Residential Buildings. 2012, p. 24. Available online: http://www.iea-ebc.org/Data/publications/EBC_PSR_Annex50.pdf (accessed on 7 March 2019).
- Mjörnell, K.; Werner, G. Teknikupphandling: Rationell isolering av klimatskärmen på befintliga flerbostadshus. 2011, p. 52. Available online: http://www.bebostad.se/library/1858/slutrapport-turik-etapp-1.pdf (accessed on 7 March 2019).
- International Energy Agency (IEA). EBC Annex 50 Prefabricated Systems for Low Energy Renovation of Residential Buildings. 2012. Available online: http://www.iea-ebc.org/projects/project?AnnexID=50 (accessed on 7 March 2019).
- Mata, É.; Kalagasidis, A.S.; Johnsson, F. Energy usage and technical potential for energy saving measures in the Swedish residential building stock. Energy Policy 2013, 55, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Ekström, T.; Bernardo, R.; Blomsterberg, Å. Cost-effective passive house renovation packages for Swedish single-family houses from the 1960s and 1970s. Energy Build. 2018, 161, 89–102. [Google Scholar] [CrossRef]
- Niemelä, T.; Kosonen, R.; Jokisalo, J. Energy performance and environmental impact analysis of cost-optimal renovation solutions of large panel apartment buildings in Finland. Sustain. Cities Soc. 2017, 32, 9–30. [Google Scholar] [CrossRef]
- Niemelä, T.; Kosonen, R.; Jokisalo, J. Cost-effectiveness of energy performance renovation measures in Finnish brick apartment buildings. Energy Build. 2017, 137, 60–75. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E.; de Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Environ. 2018, 146, 190–205. [Google Scholar] [CrossRef]
- Sandberg, K.; Orskaug, T.; Andersson, A. Prefabricated wood elements for sustainable renovation of residential building façades. Energy Procedia 2016, 96, 756–767. [Google Scholar] [CrossRef]
- Hall, T.; Vidén, S. The Million Homes Programme: A review of the great Swedish planning project. Plan. Perspect. 2005, 20, 301–328. [Google Scholar] [CrossRef]
- Wittchen, K.B.; Mortensen, L.; Holøs, S.B.; Björk, N.F.; Vares, S.; Malmqvist, T. Building Typologies in the Nordic Countries; SBi: København, Denmark, 2012; p. 83. [Google Scholar]
- Boverket, Bostadspolitiken—Svensk Politik för Boende, Planering och Byggande under 130 år. 2007, p. 133. Available online: https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2007/ bostadspolitiken/ (accessed on 7 March 2019).
- Statiscis Sweden. 2018. Available online: http://www.scb.se/ (accessed on 7 March 2019).
- Statistics Sweden Statistiska Meddelanden. Flerfamiljshus och Småhus med Beslut om Statliga Bostadslån 1967–1994; Statistics Sweden: Örebro, Sweden, 1967–1994.
- European Parliament, Directive 2010/31/EU of the European Parliament and the Council of 19 May 2010 on the energy perfromance of buildings. Off. J. Eur. Union 2010, 153, 13–15.
- Intelligent Energy Europe, TABULA—Typology Approach for Building Stock Energy Assessment 2009–2012. Available online: http://episcope.eu/iee-project/tabula (accessed on 7 March 2019).
- Spets, K. Byggnadstypologier—Sverige, TABULA 2009–2012. 2012, p. 95. Available online: http://episcope.eu/fileadmin/tabula/public/docs/brochure/SE_TABULA_TypologyBrochure_Mdh.pdf (accessed on 7 March 2019).
- Boverket, Teknisk Status i den Svenska Bebyggelsen—Resultat Från Projektet BETSI. 2010, p. 184. Available online: http://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2011/teknisk-status-i-den-svenska-bebyggelsen/ (accessed on 7 March 2019).
- Boverket, Optimala Kostnader för Energieffektivisering—Underlag Enligt Europaparlamentets och Rådets direktiv 2010/31/EU om Byggnaders Energiprestanda. 2013, p. 332. Available online: https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2013/optimala-kostnader-for-energieffektivisering/ (accessed on 7 March 2019).
- Corrado, V.; Ballarini, I. Refurbishment trends of the residential building stock: Analysis of a regional pilot case in Italy. Energy Build. 2016, 132, 91–106. [Google Scholar] [CrossRef]
- Csoknyai, T.; Hrabovszky-Horváth, S.; Georgiev, Z.; Jovanovic-Popovic, M.; Stankovic, B.; Villatoro, O.; Szendrő, G. Building stock characteristics and energy performance of residential buildings in Eastern-European countries. Energy Build. 2016, 132, 39–52. [Google Scholar] [CrossRef]
- Dascalaki, E.G.; Balaras, C.A.; Kontoyiannidis, S.; Droutsa, K.G. Modeling energy refurbishment scenarios for the Hellenic residential building stock towards the 2020 & 2030 targets. Energy Build. 2016, 132, 74–90. [Google Scholar]
- Diefenbach, N.; Loga, T.; Stein, B. Reaching the climate protection targets for the heat supply of the German residential building stock: How and how fast? Energy Build. 2016, 132, 53–73. [Google Scholar] [CrossRef]
- Filippidou, F.; Nieboer, N.; Visscher, H. Energy efficiency measures implemented in the Dutch non-profit housing sector. Energy Build. 2016, 132, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Loga, T.; Stein, B.; Diefenbach, N. TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy Build. 2016, 132, 4–12. [Google Scholar] [CrossRef]
- Sandberg, N.H.; Sartori, I.; Heidrich, O.; Dawson, R.; Dascalaki, E.; Dimitriou, S.; Vimm-r, T.; Filippidou, F.; Stegnar, G.; Zavrl, M.Š.; et al. Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy Build. 2016, 132, 26–38. [Google Scholar] [CrossRef]
- Sandberg, N.H.; Sartori, I.; Vestrum, M.I.; Brattebø, H. Explaining the historical energy use in dwelling stocks with a segmented dynamic model: Case study of Norway 1960–2015. Energy Build. 2016, 132, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Sartori, I.; Sandberg, N.H.; Brattebø, H. Dynamic building stock modelling: General algorithm and exemplification for Norway. Energy Build. 2016, 132, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Serghides, D.K.; Dimitriou, S.; Katafygiotou, M.C. Towards European targets by monitoring the energy profile of the Cyprus housing stock. Energy Build. 2016, 132, 130–140. [Google Scholar] [CrossRef]
- Serrano-Lanzarote, B.; Ortega-Madrigal, L.; García-Prieto-Ruiz, A.; Soto-Francés, L.; Soto-Francés, V.-M. Strategy for the energy renovation of the housing stock in Comunitat Valenciana (Spain). Energy Build. 2016, 132, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.W.O.; Olsson, S.; Malmqvist, T. Embodied greenhouse gas emissions from refurbishment of residential building stock to achieve a 50% operational energy reduction. Build. Environ. 2014, 79, 46–56. [Google Scholar] [CrossRef]
- Brown, N.W.O.; Malmqvist, T.; Bai, W.; Molinari, M. Sustainability assessment of renovation packages for increased energy efficiency for multi-family buildings in Sweden. Build. Environ. 2013, 61, 140–148. [Google Scholar] [CrossRef]
- Gontia, P.; Nägeli, C.; Rosado, L.; Kalmykova, Y.; Österbring, M. Material-intensity database of residential buildings: A case-study of Sweden in the international context. Resour. Conserv. Recycl. 2018, 130, 228–239. [Google Scholar] [CrossRef]
- Björk, C.; Kallstenius, P.; Reppen, L. Så Byggdes Husen 1880–2000: Arkitektur, Konstruktion och Material i Våra Flerbostadshus; Svensk Byggtjänst: Stockholm, Sweden, 2013. [Google Scholar]
- Björk, C.; Nordling, L.; Reppen, L. Så Byggdes Villan: Svensk Villaarkitektur Från 1890 Till 2010; Formas: Stockholm, Sweden, 2009. [Google Scholar]
- Nägeli, C.; Camarasa, C.; Jakob, M.; Catenazzi, G.; Ostermeyer, Y. Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy Build. 2018, 173, 443–460. [Google Scholar] [CrossRef]
- Statistics Sweden. Number of Completed Dwellings. 2017. Available online: http://www.scb.se/en/finding-statistics/statistics-by-subject-area/housing-construction-and-building/housing-construction-and-conversion/new-construction-of-residential-buildings/pong/tables-and-graphs/number-of-completed-dwellings/ (accessed on 7 March 2019).
- Microsoft, Excel 2013, Redmond, Washington, USA. 2013. Available online: www.microsoft.com (accessed on 17 April 2019).
- Statistics Sweden. Antal Lägenheter Efter Region, Hustyp och Byggnadsperiod, År 2013–2016. 2017. Available online: http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/ START__BO__BO0104/BO0104T02/?rxid=5fd6c9a0-a705-41c0-86a1-e69915f0e8d1 (accessed on 7 March 2019).
Type of Construction | Region | |||
---|---|---|---|---|
Non-Metropolitan | Malmö-Region | Göteborg-Region | Stockholm-Region | |
Insulated wood infill walls with clay brick façades | X | X | X | X |
Lightweight concrete walls with rendered façades | X | X | ||
Concrete sandwich walls | X | X | X |
Type of Construction | Region | |||
---|---|---|---|---|
Non-Metropolitan | Malmö-Region | Göteborg-Region | Stockholm-Region | |
Insulated wood walls with clay brick façades | X | X | X | X |
Insulated wood walls with wood façades | X | X | X | X |
Roof constructions with insulated tie beam | X | X | X | X |
Roof constructions for 1.5-storey buildings | X | X | X | X |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berggren, B.; Wall, M. Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production. Buildings 2019, 9, 99. https://doi.org/10.3390/buildings9040099
Berggren B, Wall M. Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production. Buildings. 2019; 9(4):99. https://doi.org/10.3390/buildings9040099
Chicago/Turabian StyleBerggren, Björn, and Maria Wall. 2019. "Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production" Buildings 9, no. 4: 99. https://doi.org/10.3390/buildings9040099
APA StyleBerggren, B., & Wall, M. (2019). Review of Constructions and Materials Used in Swedish Residential Buildings during the Post-War Peak of Production. Buildings, 9(4), 99. https://doi.org/10.3390/buildings9040099