Hybrid Intelligence Strategies for Identifying, Classifying and Analyzing Political Bots
Abstract
:1. Introduction
- Develop Spain’s first account classifier and define characteristics to identify signs of automation. We collected and indexed a massive amount of text from Twitter, analyzing the political bots of the resulting corpus so as to determine their defining characteristics. We measured their effectiveness at the individual and aggregate levels, leveraging various sets of characteristics so as to find the most effective. Among the heuristics explored were those featured in previous studies on Twitter.
- Compile Spain’s first bot database for Twitter. The database will allow for a subsequent analysis of bots’ presence in and influence on Spanish public opinion.
- Determine the typical characteristics of political bots during political campaigns based on political bots’ profiles and tweets.
- Analyze and develop tools for the public at large to identify bots without relying on automated machine detection.
2. Framework
2.1. Political Bots: Identification and Social Impact
2.2. Our Approaches: Hybrid Intelligence
3. Materials and Methods
- (a)
- Structural level (syntactic and communicative). At the communicative level, we analyzed feedback in the network, the development of threads and references to previous messages, the use of denotative language, irony and double entendre, and connection to offline messages.
- (b)
- Content level (framing). At the content level, we pinpointed three components: number of frames, issue-specific frames, and generic frames. Lastly, we evaluated to what extent each of these categories can be automated.
4. Features of the Classifier
4.1. Features
4.1.1. Social Network Features
- Ratio of the number of hashtags, i.e., number of hashtags used by a user account divided by total number of tweets sent from that account;
- Ratio of the number of retweets;
- Ratio of the number of URL links;
- Ratio of the number of user references;
- Ratio of the number of emojis;
- Ratio of the number of textual emoticons;
- Ratio of the number of onomatopoeias, e.g., “haha” in English or jeje in Spanish.
- Ratio of the number of language abbreviations, e.g., “b4” (before) or “btw” (by the way) in English, and “q” (que) or “xq” (porque), in Spanish;
- Ratio of the number of alliterations, e.g., repetition of vowel sounds.
4.1.2. Content-Based Features
- Ratio of the size of tweets;
- Ratio of the number of identical pairs of tweets;
- Lexical richness, defined as lemma/token ratio;
- Similarity between sequential pairs of tweets. To obtain the final similarity ratio associated with a user account, all similarity scores between pairs of sequential tweets are added, and the result is divided by the total number of tweets.
4.1.3. Lexical Features
- A human/bot lexicon consisting of specific words belonging to two classes: the language of bots and the language of humans in Twitter;
- A sentiment lexicon consisting of polarity words (positive or negative) used by bots or humans.
4.2. Heuristics
5. Analysis
#ElDebateDecisivo #ILPJusapol @jusapol @PSOE @populares @ahorapodemos @CiudadanosCs @vox_es @europapress @EFEnoticias//Los talidomidicos hacen público su voto. Comparte2. #Avite #talidomida #28A #28Abril #CampañaElectoral #EleccionesGenerales #YoVotoGrunenthal #28AbrilElecciones #EleccionesGenerales2019 #Elecciones2019 #LaEspañaQueQuieres #110compromisosPSOE https://youtu.be/klCrtCJBkwQ (accessed on 30 June 2021).
El nombre es lo de menos, JUSAPOL SOMOS TODOS Estamos en cada rincón de este país y ¡No vamos a parar! #ILPJusapol #EquiparacionYa and similar retweets://#EquiparacionYa #ILPJusapol @jusapol, eliciting a great number of retweets and likes.3
Extraordinario Editorial de El Mundo (5/5/2019) sobre el apoyo de la Fiscalía de Sánchez a los golpistas. Sánchez-blanqueador de golpistas y ennegrecedor de Jueces-camino de la traición. #España #PP #PSOE #Cs #UP #Vox #Cataluña #BCN2019 #PorEspaña #26M #HablamosEspañol pic.twitter.com/92DcSnUwWT4
body 1: @2Estela #VotaPSOE Las pensiones de viudedad aumentaran 4 puntos. Se beneficiarán más de 414.000 personas, en su mayoría mujeres mayores.5 #HazQuePase #28A #LaEspañaQueQuieres #110CompromisosPSOE #PSOEPonienteSur #CórdobaESP https://pst.cr/6jrZVpic.twitter.com/KWtceL1JX0 (accessed on 30 June 2021); body 2: @AceitesCanoliva #HazQuePase Plan de Acción 2019-20 de internacionalización de la economía española.6 #28A #VotaPSOE #LaEspañaQueQuieres #110CompromisosPSOE #PSOEPonienteSur #CórdobaESP https://pst.cr/4KPakpic.twitter.com/DTGQtb9n26 (accessed on 30 June 2021)
Llenemos las urnas de votos a Unidas Podemos para que tenga más votos que psoe y a la hora d formar Gobierno con Sanchez no se deslice éste hacia la derecha El voto a UNidasPod beneficiará así a la mayoría hasta ahora sacrificada, trabajadores clase media pequeña y grande empresa7 o VOX sin cocinar 37/42. si el voto oculto es mayor del 15% para VOX … PUEDE LLEGAR A 45/47 este es mi pronóstico8.
El día 25 ante la sede del PSOE en las capitales de provincia, para hacerle saber que la equiparación no se ha ejecutado. #EquiparacionYa #ILPJusapol @jusapol9.
- (a)
- Structural level (syntactic and communicative)
- (b)
- Content level (framing)
la fuga de Garrido a @CiudadanosCs no creo q sea beneficioso ni para él, ni para el partido de Rivera; Nadie habla del gobierno d ahora en Portugal con lo cerca q está. No interesa Gobiernan los Socialistas con la izquierda. No hablan, porque están mejorando todos los indicadores Están recuperando el Estado del Bienestar q empezó a destruirlo Tacher Felipe Aznar Caída Muro>10.
- Identify a tweet’s syntactic features;
- Identify its communicative features;
- Analyze the frames used: (1) frequency, (2) issue-specific frames, (3) generic frames;
- Interaction with the automated message.
6. Discussion and Conclusions
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
1 | https://github.com/catenae (accessed on 30 June 2021). |
2 | People affected by thalidomide make their vote known. Pass it on. |
3 | The name is the least important thing. WE ARE ALL JUSAPOL We’re in all four corners of this country and we won’t stop! #ILPJusapol #ParityNOW</body. |
4 | Amazing editorial in El Mundo on Sánchez’s Attorney General’s support of the coup plotters. Sánchez whitewashes coup plotters and besmirches judges—the path to treachery. |
5 | Widows’ and widowers’ pensions will rise 4 points. More than 414,000 people will benefit, mostly older women. |
6 | Action Plan to globalize Spain’s economy. |
7 | Get out and vote for Unidas Podemos to get more votes than the psoe so that when it comes time to form a Government with Sánchez he doesn’t slide to the right. A vote for UNidasPod will benefit the until-now sacrificial majority, middle class workers small and large company [sic]. |
8 | VOX as is stands at 37/42. If the secret vote for VOX is greater than 15% it COULD REACH 45/47 that’s my prediction. |
9 | On the 25th in front of the PSOE headquarters in the provincial capitals, to let them know that the equalisation has not been implemented. |
10 | I don’t think Garrido switching to @CiudadanosCs benefits him or Rivera’s party; Nobody’s talking about Portugal’s current government despite how close they are. It doesn’t matter the Socialists govern with the left. They don’t say anything, because all the indicators are improving. They’re getting back the Welfare State that Tacher [Thatcher] Felipe Aznar Fallen Wall started to destroy. |
References
- Aalberg, Toril, Jesper Strömbäck, and Claes De Vreese. 2012. The framing of politics as strategy and game: A review of concepts, operationalizations and key findings. Journalism 13: 162–78. [Google Scholar] [CrossRef] [Green Version]
- Aarøe, Lene. 2011. Investigating frame strength: The case of episodic and thematic frames. Political Communication 28: 207–26. [Google Scholar] [CrossRef]
- Abitbol, Alan, and S. Y. Lee. 2017. Messages on CSR-dedicated Facebook pages: What works and what doesn’t. Public Relations Review 43: 796–808. [Google Scholar] [CrossRef]
- Alarifi, Abdulrahman, Mansour Alsaleh, and AbdulMalik Al-Salman. 2016. Twitter turing test: Identifying social machines. Information Sciences 372: 332–46. [Google Scholar] [CrossRef]
- Albadi, Nuha, Maram Kurdi, and Shivakant Mishra. 2019. Hateful people or hateful bots? Detection and characterization of bots spreading religious hatred in Arabic social media. Proceedings of the ACM on Human-Computer Interaction 3: 1–25. [Google Scholar] [CrossRef] [Green Version]
- Almatarneh, Sattam, and Pablo Gamallo. 2018. A lexicon based method to search for extreme opinion. PLoS ONE 13: e197816. [Google Scholar] [CrossRef] [PubMed]
- Anelli, Massimo, Italo Colantone, and Piero Stanig. 2019. We Were The Robots: Automation and Voting Behavior in Western Europe. BAFFI CAREFIN Centre Research Paper No. 2019-115. Available online: https://doi.org/10.2139/ssrn.3419966 (accessed on 30 June 2021).
- Aruguete, Natalia, and Erenesto Calvo. 2018. Time to #protest: Selective exposure, cascading activation, and framing in social media. Journal of Communication 68: 480–502. [Google Scholar] [CrossRef]
- Badawy, Adam, Aseel Addawood, Kristina Lerman, and Emilio Ferrara. 2019. Characterizing the 2016 Russian IRA influence campaign. Social Network Analysis and Mining 9: 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bastos, Marco T., and Dan Mercea. 2017. The Brexit Botnet and User-Generated Hyperpartisan Newsle. Social Science Computer Review 10: 38–54. [Google Scholar] [CrossRef] [Green Version]
- Bateson, Gregory. 2002. Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology. Chicago: University of Chigaco Press. [Google Scholar]
- Bessi, Alessandro, and Emilio Ferrara. 2016. Social bots distort the 2016 U.S. Presidential election online discussion. First Monday 21: 11. [Google Scholar] [CrossRef]
- Bichard, Shannon. 2006. Building Blogs: A Multi-Dimensional Analysis of the Distribution of Frames on the 2004 Presidential Candidate Web Sites. Journalism and Mass Communication Quarterly 83: 329–45. [Google Scholar] [CrossRef]
- Bradshaw, Samantha, and Philip Howard. 2018. Challenging Truth and Trust: A Global Inventory of Organized Social Media Manipulation. Oxford: University of Oxford, p. 26. [Google Scholar]
- Campos-Domínguez, Eva, and Berta García-Orosa. 2018. Algorithmic communication and political parties: Automation of production and flow of messages. Profesional de La Informacion 27: 769–77. [Google Scholar] [CrossRef]
- Chong, Dennis, and James Druckman. 2007. Framing public opinion in competitive democracies. American Political Science Review 101: 637–55. [Google Scholar] [CrossRef] [Green Version]
- Chu, Zi, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. 2010. Who is tweeting on twitter: Human, bot, or cyborg? Paper presented at the Annual Computer Security Applications Conference, Austin, TX, USA, December 6–10. [Google Scholar] [CrossRef]
- Dagon, David, Guofei Gu, and Christopher Lee. 2008. A taxonomy of Botnet structures. Advances in Information Security 36: 143–64. [Google Scholar] [CrossRef]
- De Vreese, Claes. 2002. Framing Europe: Television News and European Integration. Amsterdam: Aksant. [Google Scholar]
- De Vreese, Claes. 2005. News framing: Theory and typology. Information Design Journal 13: 51–62. [Google Scholar] [CrossRef]
- Dellermann, Dominik, Nikolaus Lipusch, Philipp Ebel, and Jan Marco Leimeister. 2017. Building Your IoT Ecosystem: Proposing the Hybrid Intelligence Accelerator. Paper presented at the European Workshop on Software Ecosystems 2017, Darmstadt, Germany, December 17. [Google Scholar]
- Dellermann, Dominik, Philipp Ebel, Matthias Söllner, and Jan Marco Leimeister. 2019. Hybrid Intelligence. Business and Information Systems Engineering 61: 637–43. [Google Scholar] [CrossRef] [Green Version]
- Dubois, Elizabeth, and Fenwick McKelvey. 2019. Political bots: Disrupting Canada’s Democracy. Canadian Journal of Communication Policy Portal 44: 27–34. [Google Scholar] [CrossRef] [Green Version]
- Entman, Robert. 2003. Cascading Activation: Contesting the White House’s Frame after 9/11. Political Communication 20: 415–32. [Google Scholar] [CrossRef]
- Entman, Robert. 2010. Media framing biases and political power: Explaining slant in news of Campaign 2008. Journalism 11: 389–408. [Google Scholar] [CrossRef]
- Entman, Robert, and Nikki Usher. 2018. Framing in a Fractured Democracy: Impacts of Digital Technology on Ideology, Power and Cascading Network Activation. Journal of Communication 68: 298–308. [Google Scholar] [CrossRef]
- European Commission. 2018. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Tackling Online Disinformation: A European Approach. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0236 (accessed on 30 June 2021).
- European Parliament. 2017. European Parliament Resolution of 14 March 2017 on Fundamental Rights Implications of Big Data: Privacy, Data Protection, Non-Discrimination, Security and Law-Enforcement. Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2017-0076_EN.html (accessed on 30 June 2021).
- Ferrara, Emilio. 2017. Disinformation and Social Bots Operations in the Run Up to the 2017 French Presidential Election. arXiv arXiv:1707.00086. [Google Scholar]
- Filer, Tanya, and Rolf Fredheim. 2017. Popular with the Robots: Accusation and Automation in the Argentine Presidential Elections, 2015. International Journal of Politics, Culture and Society 30: 259–74. [Google Scholar] [CrossRef] [Green Version]
- Forelle, Michelle, Phillip Howard, Andres Monroy-Hernandez, and Saiph Savage. 2015. Political Bots and the Manipulation of Public Opinion in Venezuela. Available online: https://doi.org/10.2139/ssrn.2635800 (accessed on 30 June 2021).
- Frey, Carl Benedikt, Thor Berger, and Chinchih Chen. 2018. Political machinery: Did robots swing the 2016 US presidential election? Oxford Review of Economic Policy 34: 418–42. [Google Scholar] [CrossRef]
- Gainous, Jason, and Kevin Wagner. 2014. Tweeting to Power: The Social Media Revolution in American Politics. Public Opinion Quarterly 78: 1026–28. [Google Scholar] [CrossRef]
- Gamallo, Pablo, Marcos Garcia, César Piñeiro, Rodrigo Martínez-Castaño, and Juan Pichel. 2018. LinguaKit: A Big Data-Based Multilingual Tool for Linguistic Analysis and Information Extraction. Paper presented at the 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), Valencia, Spain, October 15–18. [Google Scholar]
- Gamallo, Pablo, and Sattam Almatarneh. 2019. Naive-Bayesian Classification for Bot Detection in Twitter. Paper presented at the Conference and Labs of the Evaluation Forum 2019, Lugano, Switzerland, September 9–12. [Google Scholar]
- Gamson, William, and Andre Modigliani. 1989. Media discourse and public opinion on nuclear power: A constructionist approach. American Journal of Sociology 95: 1–35. [Google Scholar] [CrossRef]
- García-Orosa, Berta, Pablo Vázquez-Sande, and Xosé López-García. 2017. Digital narratives of the major political parties of Spain, France, Portugal and the United States. El Profesional de La Información 26: 4. [Google Scholar] [CrossRef] [Green Version]
- Gitlin, Todd. 1980. The Whole World Is Watching: Mass Media in the Makin and unmaking of the New Left. Berkeley: University of California Press. [Google Scholar]
- Glowacki, Monika, Vidya Narayanan, Sam Maynard, Gustavo Hirsch, Bence Kollanyi, Lisa-Maria Neudert, Phil Howard, Thomas Lederer, and Vlad Barash. 2018. News and Political Information Consumption in Mexico: Mapping the 2018 Mexican Presidential Election on Twitter and Facebook. pp. 1–6. Available online: https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/93/2018/06/Mexico2018.pdf (accessed on 30 June 2021).
- Goffman, Erving. 1974. Frame Analysis: An Essay on the Organization of Experience. Cambridge: Harvard University Press. [Google Scholar]
- Goldman, Adria, and Jim Kuypers. 2010. Contrasts in News Coverage. Relevant Rethoric: A New Journal of Rhetorical Studies 1: 1–18. [Google Scholar]
- Grčić, Klara, Marina Bagic Babac, and Vedran Podobnik. 2017. Generating politician profiles based on content analysis of social network datasets. Journal of Universal Computer Science 23: 236–55. [Google Scholar]
- Hagen, Loni, Stephen Neely, Thomas E. Keller, Ryan Scharf, and Fatima Espinoza Vasquez. 2020. Rise of the Machines? Examining the Influence of Social Bots on a Political Discussion Network. Social Science Computer Review. [Google Scholar] [CrossRef]
- Hänggli, Regula, and Hanspeter Kriesi. 2010. Political framing strategies and their impact on media framing in a swiss direct-democratic campaign. Political Communication 27: 141–57. [Google Scholar] [CrossRef]
- Hänggli, Regula, and Hanspeter Kriesi. 2012. Frame Construction and Frame Promotion (Strategic Framing Choices) Title. American Behavioral Scientist 56: 9. [Google Scholar] [CrossRef]
- Hedman, Freja, Fabian Sivnert, Bence Kollanyi, Vidya Narayanan, Lisa-Maria Neudert, and Philip Howard. 2018. News and Political Information Consumption in Sweden: Mapping the 2018 Swedish General Election on Twitter. Oxford: Oxford Internet Institute. [Google Scholar]
- Howard, Philip, and Bence Kollanyi. 2017. Bots, #Strongerin, and #Brexit: Computational Propaganda During the UK-EU Referendum. Available online: https://doi.org/10.2139/ssrn.2798311 (accessed on 30 June 2021).
- Iyengar, Shanto. 1991. Is Anyone Responsible? How Television Frames Political Issues. Chicago: University of Chicago Press. [Google Scholar]
- Ji, Yi Grace, Zifei Fay Chen, Weiting Tao, and Zongchao Cathy Li. 2018. Functional and emotional traits of corporate social media message strategies: Behavioral insights from SandP 500 Facebook data. Public Relations Review 45: 88–103. [Google Scholar] [CrossRef]
- Jungherr, Andreas. 2016. Twitter use in election campaigns: A systematic literature reviewNo Title. Journal of Information Technology and Politics 13: 72–91. [Google Scholar] [CrossRef]
- Kamar, Ece. 2016. Direction in Hybrid Intelligence: Complementing AI System with Human Intelligence. Paper presented at the 25th International Joint Conference on Artificial Intelligence, New York, NY, USA, July 9–15; pp. 4070–73. [Google Scholar]
- Keller, Tobias, and Ulrike Klinger. 2019. Social Bots in Election Campaigns: Theoretical, Empirical, and Methodological Implications. Political Communication 36: 171–89. [Google Scholar] [CrossRef] [Green Version]
- Kudugunta, Sneha, and Emilio Ferrara. 2018. Deep Neural Networks for Bot Detection. Information Sciences 467: 312–22. [Google Scholar] [CrossRef] [Green Version]
- Kušen, Ema, and Mark Strembeck. 2020. You talkin’ to me? Exploring Human/Bot Communication Patterns during Riot Events. Information Processing and Management 57: 102126. [Google Scholar] [CrossRef]
- Lai, Mirko, Marcella Tambuscio, Viviana Patti, Giancarlo Ruffo, and Paolo Rosso. 2019. Stance polarity in political debates: A diachronic perspective of network homophily and conversations on Twitter. Data and Knowledge Engineering 124: 101738. [Google Scholar] [CrossRef]
- Lamo, Madeline, and Ryan Calo. 2019. Regulating Bot Speech (July 16, 2018). UCLA Law Review. Available online: https://ssrn.com/abstract=3214572 (accessed on 30 June 2021).
- Lee, Hyunmin, and Hyojung Park. 2013. Testing the impact of message interactivity on relationship management and organizational reputation. Journal of Public Relations Research 25: 188–206. [Google Scholar] [CrossRef]
- Lengauer, Günter, and Iris Höller. 2013. Generic frame building in the 2008 Austrian elections. Public Relations Review 39: 303–14. [Google Scholar] [CrossRef]
- Lewis, Seth C., Andrea Guzman, and Thomas Schmidt. 2019. Automation, Journalism, and Human–Machine Communication: Rethinking Roles and Relationships of Humans and Machines in News. Digital Journalism 7: 409–27. [Google Scholar] [CrossRef]
- López Urrea, Laura María, Julián Enrique Páez Valdez, and Arlex Darwin Cuellar Rodríguez. 2016. El Discurso Político Mediado Por Ordenadores. Revista Nexus Comunicación 19: 110–29. [Google Scholar] [CrossRef] [Green Version]
- Luceri, Luca, Ashok Badawy, Adam Deb, and Emilio Ferrara. 2019. Red bots do it better: Comparative analysis of social bot partisan behavior. Paper presented at the Web Conference 2019—Companion of the World Wide Web Conference (WWW 2019), San Francisco, CA, USA, May 13–17; pp. 1007–12. [Google Scholar] [CrossRef] [Green Version]
- Machado, Caio, Beatriz Kira, Gustavo Hirsch, Nahema Marchal, Bence Kollanyi, Philip Howard, Thomas Lederer, and Vlad Barash. 2018. News and Political Information Consumption in Brazil: Mapping the First Round of the 2018 Brazilian Presidential Election on Twitter. Comprop Data Memo 2018.4/October 5. pp. 1–7. Available online: https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/93/2018/10/machado_et_al.pdf (accessed on 30 June 2021).
- Martínez-Castaño, Rodrigo, Juan Pichel, and David Losada. 2018a. Building python-based topologies for massive processing of social media data in real time. Paper presented at the 5th Spanish Conference on Information Retrieva, Zaragoza, Spain, June 25–27; pp. 1–8. [Google Scholar]
- Martínez-Castaño, Rodrigo, Juan Pichel, and Pablo Gamallo. 2018b. Polypus: A Big Data Self-Deployable Architecture for Microblogging Text Extraction and Real-Time Sentiment Analysis. arXiv arXiv:1801.03710. [Google Scholar]
- Martínez-Castaño, Rodrigo, Juan Pichel, David Losada, and Fabio Crestani. 2018c. A Micromodule Approach for Building Real-Time Systems with Python-Based Models: Application to Early Risk Detection of Depression on Social MediaTitle. Paper presented at the European Conference on Information Retrieval, Grenoble, France, March 26–29; pp. 801–5. [Google Scholar]
- Matthes, Jörg. 2009. What’s in a frame? A content analysis of media framing studies in the world’s leading communication journals, 1990-2005. Journalism and Mass Communication Quarterly 86: 349–67. [Google Scholar] [CrossRef]
- McKelvey, F., and E. Dubois. 2017. Computational Propaganda in Canada: The Use of Political Bots. Working Paper No. 2017.6. Oxford: University of Oxford. [Google Scholar]
- Montal, Tal, and Zvi Reich. 2017. I, Robot. You, Journalist. Who is the Author? Authorship, bylines and full disclosure in automated journalism. Digital Journalism 5: 829–49. [Google Scholar] [CrossRef]
- Morstatter, Fred, Liang Wu, Tahora Nazer, Kathlenn Carley, and Huan Liu. 2016. A New Approach to Bot Detection. Paper presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, August 18–21; pp. 533–40. [Google Scholar]
- Murthy, Dhiraj, Alison Powell, Ramine Tinati, Nick Anstead, Leslie Carr, Susan Halford, and Mark Weal. 2016. Bots and political influence: A sociotechnical investigation of social network capital. International Journal of Communication 10: 4952–71. [Google Scholar]
- Neuman, Russell, Marion Just, and Ann Crigler. 1992. News and the Construction of Political Meaning. Chicago: The University of Chicago. [Google Scholar]
- Painter, David Lynn. 2015. Online Political Public Relations and Trust: Source and Interactivity Effects in the 2012 US Presidential Campaign. Public Relations Review 41: 801–8. [Google Scholar] [CrossRef]
- Pan, Zhongdang, and Gerald Kosicki. 1993. Framing analysis: An approach to news discourse. Political Communication 10: 55–75. [Google Scholar] [CrossRef]
- Pedersen, Ramus Tue. 2012. The game frame and political efficacy: Beyond the spiral of cynicism. European Journal of Communication 27: 225–40. [Google Scholar] [CrossRef]
- Perdana, Rizal Setya, Tri Hadiah Muliawati, and Reddy Alexandro. 2015. Bot Spammer Detection in Twitter Using Tweet Similarity and Time Interval Entropy. Jurnal Ilmu Komputer Dan Informasi 8: 19. [Google Scholar] [CrossRef] [Green Version]
- Puyosa, Iria. 2017. Political Bots on Twitter in #Ecuador2017 Presidential Campaigns. Contratexto 27: 39–60. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, Devakunchari, and Valliyammai Chinnaiah. 2018. Fake profile detection techniques in large-scale online social networks: A comprehensive review. Computers and Electrical Engineering 65: 165–77. [Google Scholar] [CrossRef]
- Rangel, Francisco, and Paolo Rosso. 2019. Overview of the 7th author profiling task at PAN 2019: Bots and gender profiling in twitter. Paper presented at the CEUR Workshop Proceedings, Lugano, Switzerland, September 9–12. [Google Scholar]
- Ross, Björn, Laura Pilz, Benjamin Cabrera, Florian Brachten, German Neubaum, and S. Stieglitz. 2019. Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks. European Journal of Information Systems 28: 394–412. [Google Scholar] [CrossRef]
- Salge, Carolina Alves de Lima, and Elena Karahanna. 2018. Protesting Corruption on Twitter: Is It a Bot or Is It a Person? Academy of Management Discoveries 4: 32–49. [Google Scholar] [CrossRef]
- Sanovich, Sergey. n.d. Computational Propaganda in Russia: The Origins of Digital Misinformation. Oxford: The University of Oxford. [Google Scholar]
- Santana, Luis, and Gonzalo Huerta Cánepa. 2019. ¿Son bots? Automatización en redes sociales durante las elecciones presidenciales de Chile 2017. Cuadernos.info 44: 61–77. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, Fabian, Evert Stefan, and Philip Heinrich. 2017. Japan’s 2014 general election: Political bots, right-wing internet activism, and prime minister Shinzō Abe’s hidden nationalist agenda. Big Data 5: 294–309. [Google Scholar] [CrossRef]
- Scheufele, Dietram. 1999. Framing as a theory of media effects. Journal of Communication 49: 103–22. [Google Scholar] [CrossRef]
- Schuchard, Ross, Andrew Crooks, Anthony Stefanidis, and Arie Croitoru. 2019. Bot stamina: Examining the influence and staying power of bots in online social networks. Applied Network Science 4: 55. [Google Scholar] [CrossRef] [Green Version]
- Semetko, Holli, and Patti Valkenburg. 2000. Framing European Politics: A content analysis of press and television news. JOurnal of Communication 50: 93–109. [Google Scholar] [CrossRef]
- Sheafer, Tamir, and Itay Gabay. 2009. Mediated public diplomacy: A strategic contest over international agenda building and frame building. Political Communication 26: 447–67. [Google Scholar] [CrossRef]
- Stukal, Denis, Sergey Sanovich, Joshua Tucker, and Richard Bonneau. 2019. For Whom the Bot Tolls: A Neural Networks Approach to Measuring Political Orientation of Twitter Bots in Russia. SAGE Open 9: 2158244019827715. [Google Scholar] [CrossRef]
- Treré, Emiliano. 2016. The dark side of digital politics: Understanding the algorithmic manufacturing of consent and the hindering of online dissidence. IDS Bulletin 47: 127–38. [Google Scholar] [CrossRef] [Green Version]
- Utz, Sonja, Schultz Friederike, and Sandra Glocka. 2013. Crisis communication online: How medium, crisis type and emotions affected public reactions in the Fukushima Daiichi nuclear disaster. Public Relations Review 39: 40–46. [Google Scholar] [CrossRef]
- van der Kaa, Hille, and Emiel Krahmer. 2014. Journalist versus news consumer: The perceived credibility of machine written news. Paper presented at the Computation+ Journalism Conference, New York, NY, USA, October 24–25; pp. 1–4. [Google Scholar]
- Waddell, Franklin. 2018. A Robot Wrote This? Digital Journalism 6: 236–55. [Google Scholar] [CrossRef]
- Wang, Wei, Yaoyao Shang, Yongzhong He, Yidong Li, and Jiqiang Liu. 2020. BotMark: Automated botnet detection with hybrid analysis of flow-based and graph-based traffic behaviors. Information Sciences 511: 284–96. [Google Scholar] [CrossRef]
- Wasike, Ben. 2013. Framing news in 140 characters: How social media Editors frame the news and interact with audiences via Twitter. Global Media Journal, Canadian Edition 6: 5–23. [Google Scholar]
- Wölker, Anja, and Thomas Powell. 2018. Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism. Journalism 22: 86–103. [Google Scholar] [CrossRef] [Green Version]
- Woolley, Samuel, and Philip Howard. 2016. Political communication, Computational Propaganda, and autonomous agents: Introduction. International Journal of Communication 10: 4882–90. [Google Scholar]
- Zheng, Lei, Chistopher Albano, Neev Vora, Feng Mai, and Jeffrey Nickerson. 2019. The roles bots play in Wikipedia. Paper presented at ACM on Human-Computer Interaction, 3(CSCW), Boston, MA, USA, June 30–July 3. [Google Scholar]
- Zhou, Yuqiong, and Patricia Moy. 2007. Parsing Framing Processes: The Interplay Between Online Public Opinion and Media Coverage. Journal of Communication 57: 79–98. [Google Scholar] [CrossRef]
Unique users: | 1,036,920 |
Tweets: | 4,547,482 |
Tweets plus retweets: | 22,296,826 |
Accounts, Hashtags and Terms | |
---|---|
Accounts | @PSOE, @PPopular, @ahorapodemos, @CiudadanosCs, @eajpnv, @JuntsXCat, @compromis, @vox_es, @navarra_suma, @ForoAsturias, @coalicion@Esquerra_ERC, @ehbildu, @Nueva_Canarias, @sanchezcastejon, @pablocasado, @Pablo_Iglesias, @Albert_Rivera, @Aitor_Esteban, @jordialapreso, @LauraBorras, @joanbaldovi, @junqueras, @gabrielrufian, @sergiosayas, @PedroQuevedoIt, @anioramas, @Santi_ABASCAL, @meritxell_batet, @InesArrimadas, @cayetanaAT @Jaumeasens |
Hashtags | #elecciones2019, #debates, #eleccionesgenerales2019, #28deabril, #eleccionesgenerales28A, #LaEspañaQueQuieres, #HazQuePase, #ValorSeguro, #VamosCiudadanos, #PorEspaña, #Perotampocoteconformes, #ahorapodemos |
Terms | PSOE, PP, Podemos, Ciudadanos, PNV, Junts per Catalunya, Junts, Compromís, Navarra Suma, Partido Popular, Coalición Canaria, Esquerra Republicana, EH-Bildu, Nueva Canarias, Vox, Pedro Sánchez, Pablo Casado, Pablo Iglesias, Albert Rivera, Aitor Esteban, Jordi Sánchez, Laura Borrás, Joan Baldoví, Paloma Gázquez, Oriol Junqueras, Gabriel Rufián, Sergio Sayas, Garazi Dorronsoro, Pedro Quevedo, Ana Oramas, Santiago Abascal, Meritxell Batet, Inés Arrimadas, Cayetana Álvarez, Jaume Asens |
Level | Type | swDescription | Max Score | Applicable by Individuals? | Automatable? | |
---|---|---|---|---|---|---|
Structural | Syntax | The bot uses telegraphic language | 1 | Yes | Yes | |
The bot is repetitive | 1 | Yes | Yes | |||
The bot has a simple syntactic structure | 1 | yes | No | |||
Communicative | Lack of interaction and references to previous messages | 1 | Yes | Yes | ||
Scarce feedback on the network | Yes | Yes | ||||
Does not develop threads | Yes | Ongoing learning process | ||||
Links to media outlets | Yes | Yes | ||||
Use of denotative language | Yes | No | ||||
Lacks irony and double entendre | Yes | No | ||||
Content level | Number of frames | One frame | 1 | Yes | No | |
Two or more | 0 | Yes | No | |||
Issue-specific | Dissemination of media outlets | Issue focused on reproducing news by a media outlet | 1 | Yes | No | |
Dissemination of leaders | Issue focused on reproducing statements by a political leader | 1 | Yes | No | ||
Repetition | Not issue-heavy, heavy on repetition/dissemination with same issue | 1 | Sí | No | ||
Hybrid | Features calls to offline action | 0 | Yes | No | ||
Partisan dissemination | Reference to a party or leader | 1 | Yes | No | ||
Generic frames | Game frame | 1 | Yes | No | ||
Strategic frame | 0 | Yes | No | |||
Definition of a problem | 0 | Yes | No | |||
Interpretation of its causes | 0 | Yes | No | |||
Moral judgment | 1 | Yes | No | |||
Treatment recommendation | 0 | Yes | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Orosa, B.; Gamallo, P.; Martín-Rodilla, P.; Martínez-Castaño, R. Hybrid Intelligence Strategies for Identifying, Classifying and Analyzing Political Bots. Soc. Sci. 2021, 10, 357. https://doi.org/10.3390/socsci10100357
García-Orosa B, Gamallo P, Martín-Rodilla P, Martínez-Castaño R. Hybrid Intelligence Strategies for Identifying, Classifying and Analyzing Political Bots. Social Sciences. 2021; 10(10):357. https://doi.org/10.3390/socsci10100357
Chicago/Turabian StyleGarcía-Orosa, Berta, Pablo Gamallo, Patricia Martín-Rodilla, and Rodrigo Martínez-Castaño. 2021. "Hybrid Intelligence Strategies for Identifying, Classifying and Analyzing Political Bots" Social Sciences 10, no. 10: 357. https://doi.org/10.3390/socsci10100357
APA StyleGarcía-Orosa, B., Gamallo, P., Martín-Rodilla, P., & Martínez-Castaño, R. (2021). Hybrid Intelligence Strategies for Identifying, Classifying and Analyzing Political Bots. Social Sciences, 10(10), 357. https://doi.org/10.3390/socsci10100357