Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study
Abstract
:1. Introduction
2. Literature Review and Theoretical Framework
2.1. Twitter and Sport Research
2.2. Two-Step Flow Hypothesis
2.3. Social Network Analysis
RQ1: What are the differences between the user rankings provided by these influence variables taken from SNA (indegree, outdegree, and eigenvector centrality), from Twitter data (number of followers and number of tweets) and from Google (PageRank)?
RQ2: Which user profile, in terms of their role in the event, is more present at the head of the rankings provided by the selected influence variables?
3. Data and Methodology
3.1. The Sporting Event
3.2. Data
3.3. Analysis
4. Results and Discussion
4.1. Interaction Network
4.2. Correlation between Ranks
4.3. Influential Users by Popularity
4.4. Influential Users by Activity
4.5. Influential Users by Authority
5. Implications
6. Limitations and Future Research
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abeza, Gashaw, Ann Pegoraro, Michael L. Naraine, Benoît Séguin, and Norm O’Reilly. 2014. Activating a global sport sponsorship with social media: an analysis of TOP sponsors, Twitter, and the 2014 Olympic Games. International Journal of Sport Management and Marketing 15: 184–213. [Google Scholar] [CrossRef]
- Agre, Philip E. 2002. Real-time politics: The internet and the political process. The Information Society 18: 311–31. [Google Scholar] [CrossRef]
- Anagnostopoulos, Christos, Petros Parganas, Simon Chadwick, and Alex Fenton. 2018. Branding in pictures: using Instagram as a brand management tool in professional team sport organisations. European Sport Management Quarterly 18: 413–38. [Google Scholar] [CrossRef]
- Barabási, Albert-László, and Réka Albert. 1999. Emergence of scaling in random networks. Science 286: 509–12. [Google Scholar] [PubMed]
- Barnes, John A., and Frank Harary. 1983. Graph theory in network analysis. Social Networks 5: 235–244. [Google Scholar] [CrossRef]
- Bastian, Mathieu, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Paper presented at the Third International AAAI Conference on Weblogs and Social Media, San José, CA, USA, May 17–20; pp. 17–20. [Google Scholar]
- Bonacich, Phillip. 1972. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology 2: 113–30. [Google Scholar] [CrossRef]
- Borgatti, Stephen P., and Martin G. Everett. 2006. A graph-theoretic perspective on centrality. Social Networks 28: 466–84. [Google Scholar] [CrossRef]
- Borgatti, Stephen P., Martin G. Everett, and Jeffrey C. Johnson. 2013. Analyzing Social Networks. Los Angeles: Sage. [Google Scholar]
- Bouguessa, Mohamed, and Lofti B. Romdhane. 2015. Identifying authorities in online communities. ACM Transactions on Intelligent Systems and Technology 6: 1–23. [Google Scholar] [CrossRef]
- Brosius, Hans-Bernd, and Gabriel Weimann. 1996. Who sets the agenda: Agenda-setting as a two step flow. Communication Research 23: 561–80. [Google Scholar] [CrossRef]
- Carter, Daniel. 2016. Hustle and Brand: The Sociotechnical Shaping of Influence. Social Media + Society 2: 1–12. [Google Scholar] [CrossRef]
- Cha, Meeyoung, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. 2010. Measuring user influence in Twitter: The million follower fallacy. Paper presented at the 4th International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, May 23–26; pp. 10–17. [Google Scholar]
- Chadwick, Andrew. 2013. The Hybrid Media System: Politics and Power. Oxford: Oxford University Press. [Google Scholar]
- Chew, Song, Erica Metheney, and Thomas Teague. 2017. Modelling and simulation of the formation of social networks. Social Sciences 6: 79. [Google Scholar] [CrossRef]
- Clavio, Galen, Lauren M. Burch, and Evan L. Frederick. 2012. Networked fandom: Applying systems theory to sport Twitter analysis. International Journal of Sport Communication 5: 522–38. [Google Scholar] [CrossRef]
- Cleland, Jamie. 2014. Racism, Football Fans, and Online Message Boards: How Social Media Has Added a New Dimension to Racist Discourse in English Football. Journal of Sport & Social Issues 38: 415–31. [Google Scholar]
- Dahlgren, Peter. 2005. The internet, public spheres, and political communication: Dispersion and deliberation. Political Communication 22: 147–62. [Google Scholar] [CrossRef]
- Dart, Jon. 2014. New media, professional sport and political economy. Journal of Sport & Social Issues 38: 528–47. [Google Scholar]
- Del Campo-Ávila, José, Nathalie Moreno-Vergara, and Mónica Trella-López. 2013. Bridging the gap between the least and the most influential Twitter users. Procedia Computer Science 19: 437–44. [Google Scholar]
- Delia, Elizabeth B., and Cole G. Armstrong. 2015. #Sponsoring the #FrenchOpen: An examination of social media buzz and sentiment. Journal of Sport Management 29: 184–99. [Google Scholar]
- Demir, Robert, and Sten Söderman. 2015. Strategic sponsoring in professional sport: a review and conceptualization. European Sport Management Quarterly 15: 271–300. [Google Scholar] [CrossRef]
- Dubois, Elizabeth, and Devin Gaffney. 2014. The multiple facets of influence: Identifying political influentials and opinion leaders on Twitter. American Behavioral Scientist 58: 1260–77. [Google Scholar] [CrossRef]
- Filo, Kevin, Daniel Lock, and Adam Karg. 2015. Sport and social media research: A review. Sport Management Review 18: 166–81. [Google Scholar] [CrossRef]
- Florez, José L. 2008. Análisis de redes sociales: El poder de la influencia [Social network analysis: The power of influence]. Harvard Deusto Márketing y Ventas 86: 62–71. [Google Scholar]
- Freberg, Karen, Kristin Graham, Karen McGaughey, and Laura A. Freberg. 2011. Who are the social media influencers? A study of public perceptions of personality. Public Relations Review 37: 90–92. [Google Scholar] [CrossRef]
- Freeman, Linton C. 1979. Centrality in social networks: Conceptual clarification. Social Networks 1: 215–39. [Google Scholar] [CrossRef]
- Freeman, Linton C., Stephen P. Borgatti, and Douglas R. White. 1991. Centrality in valued graphs: a measure of betweenness based on network flow. Social Networks 13: 141–54. [Google Scholar] [CrossRef]
- Gayo-Avello, Daniel. 2013. Nepotistic relationships in Twitter and their impact on rank prestige algorithms. Information Processing and Management 49: 1250–80. [Google Scholar] [CrossRef]
- Gibbs, Chris, Norm O’Reilly, and Michelle Brunette. 2014. Professional team sport and Twitter: Gratifications sought and obtained by followers. International Journal of Sport Communication 7: 188–213. [Google Scholar] [CrossRef]
- Hambrick, Marion E. 2012. Six degrees of information: Using social network analysis to explore the spread of information within sport social networks. International Journal of Sport Communication 5: 16–34. [Google Scholar] [CrossRef]
- Hambrick, Marion E., and Tara Q. Mahoney. 2011. “It’s incredible—Trust me”: Exploring the role of celebrity athletes as marketers in online social networks. International Journal of Sport Management and Marketing 10: 161–79. [Google Scholar] [CrossRef]
- Hambrick, Marion E., and Ann Pegoraro. 2014. Social Sochi: using social network analysis to investigate electronic word-of-mouth transmitted through social media communities. International Journal of Sport Management and Marketing 15: 120–40. [Google Scholar] [CrossRef]
- Hambrick, Marion E., and Jimmy Sanderson. 2013. Gaining primacy in the digital network: Using social network analysis to examine sports journalists’ coverage of the Penn State football scandal via Twitter. Journal of Sports Media 8: 1–18. [Google Scholar] [CrossRef]
- Hambrick, Marion E., Jason M. Simmons, Greg P. Greenhalgh, and T. Christopher Greenwell. 2010. Understanding professional athletes’ use of Twitter: A content analysis of athlete tweets. International Journal of Sport Communication 3: 454–71. [Google Scholar] [CrossRef]
- Hofer, Matthias, and Viviane Aubert. 2013. Perceived bridging and bonding social capital on Twitter: Differentiating between followers and followees. Computers in Human Behavior 29: 2134–42. [Google Scholar] [CrossRef]
- Hull, Kevin, and Annelie Schmittel. 2015. A fumbled opportunity? A case study of Twitter’s role in concussion awareness opportunities during the Super Bowl. Journal of Sport & Social Issues 39: 78–94. [Google Scholar]
- Hutchins, Brett, and David Rowe. 2010. Reconfiguring Media Sport for the Online World: An Inquiry into “Sports News and Digital Media”. International Journal of Communication 4: 696–718. [Google Scholar]
- Kaplan, Andreas M., and Michael Haenlein. 2010. Users of the world, unite! The challenges and opportunities of social media. Business Horizons 53: 59–68. [Google Scholar] [CrossRef]
- Kassing, Jeffrey W., and Jimmy Sanderson. 2010. Fan–athlete interaction and Twitter tweeting through the Giro: A case study. International Journal of Sport Communication 3: 113–28. [Google Scholar] [CrossRef]
- Katz, Elihu. 1957. The two-step flow of communication: An up-to-date report on an hypothesis. Public Opinion Quarterly 21: 61–78. [Google Scholar] [CrossRef]
- Katz, Elihu, and Paul F. Lazarsfeld. 1955. Personal Influence: The Part Played by People in the Flow of Mass Communications. New York: Free Press. [Google Scholar]
- Khan, Hikmat U., Ali Daud, Umer Ishfaq, Tehmina Amjad, Naif Aljohani, Rabeeh A. Abbasi, and Jalal S. Alowibdi. 2017. Modelling to identify influential bloggers in the blogosphere: A survey. Computers in Human Behavior 68: 64–82. [Google Scholar] [CrossRef]
- Knoke, David, and James H. KuKlinski. 1982. Network Analysis. Sage University Paper series on Quantitative Applications in the Social Sciences, No. 28. Beverly Hills: SAGE Publications. [Google Scholar]
- Koenig-Lewis, Nicole, Yousra Asaad, and Adrian Palmer. 2018. Sports events and interaction among spectators: examining antecedents of spectators’ value creation. European Sport Management Quarterly 18: 193–215. [Google Scholar] [CrossRef]
- Kolyperas, Dimitrios, Georgios Maglaras, and Leigh Sparks. 2018. Sport fans’ roles in value co-creation. European Sport Management Quarterly. Advance Online Publication. [Google Scholar] [CrossRef]
- Kunkel, Thilo, Matthew Walker, and Courtney M. Hodge. 2018. The influence of advertising appeals on consumer perceptions of athlete endorser brand image. European Sport Management Quarterly. Advance Online Publication. [Google Scholar] [CrossRef]
- Lahuerta-Otero, Eva, and Rebeca Cordero-Gutiérrez. 2016. Looking for the perfect tweet. The use of data mining techniques to find influencers on Twitter. Computers in Human Behavior 64: 575–83. [Google Scholar] [CrossRef]
- Lewin, Kurt. 1939. Field theory and experiment in social psychology: Concepts and methods. American Journal of Sociology 44: 868–96. [Google Scholar] [CrossRef]
- Lozares, Carlos. 1996. La teoría de redes sociales [Social network theory]. Revista de Sociología 48: 103–26. [Google Scholar]
- McNeill, Andrew R., and Pam Briggs. 2014. Understanding Twitter influence in the health domain. In WWW ’14 Companion, Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, pp. 673–78. [Google Scholar]
- McPherson, Miller, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a feather: Homophily in social networks. Annual Review of Sociology 27: 415–44. [Google Scholar] [CrossRef]
- Meenaghan, Tony, Damien McLoughlin, and Alan McCormack. 2013. New challenges in sponsorship evaluation actors, new media, and the context of praxis. Psychology & Marketing 30: 444–60. [Google Scholar]
- Misener, Laura, and Daniel S. Mason. 2006. Creating community networks: Can sporting events offer meaningful sources of social capital? Managing Leisure 11: 39–56. [Google Scholar] [CrossRef]
- Morone, Flaviano, and Hernán A. Makse. 2015. Influence maximization in complex networks through optimal percolation. Nature 524: 65–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraine, Michael L., and Milena M. Parent. 2016. Illuminating centralized users in the social media ego network of two national sport organizations. Journal of Sport Management 30: 689–701. [Google Scholar] [CrossRef]
- Naraine, Michael L., Jessie Schenk, and Milena M. Parent. 2016. Coordination in international and domestic sports events: Examining stakeholder network governance. Journal of Sport Management 30: 521–37. [Google Scholar] [CrossRef]
- Newman, Mark E. J. 2010. Networks: An Introduction. Oxford: Oxford University Press. [Google Scholar]
- Norris, Pippa, and John Curtice. 2008. Getting the message out: A two-step model of the role of the internet in campaign communication flows during the 2005 British general election. Journal of Information Technology & Politics 4: 3–13. [Google Scholar]
- Page, Lawrence, and Sergey Brin. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Paper presented at the Seventh International Conference on the World Wide Web, Brisbane, Australia; pp. 107–17. [Google Scholar]
- Pegoraro, Ann. 2010. Look who’s talking—Athletes on Twitter: A case study. International Journal of Sport Communication 3: 501–14. [Google Scholar] [CrossRef]
- Perić, Marko. 2018. Estimating the perceived socio-economic impacts of hosting large-scale sport tourism events. Social Sciences 7: 176. [Google Scholar] [CrossRef]
- Quatman, Catherine, and Packianathan Chelladurai. 2008a. Social network theory and analysis: A complementary lens for inquiry. Journal of Sport Management 22: 338–60. [Google Scholar] [CrossRef]
- Quatman, Catherine, and Packianathan Chelladurai. 2008b. The social construction of knowledge in the field of sport management: A social network perspective. Journal of Sport Management 22: 651–76. [Google Scholar] [CrossRef]
- Riquelme, Fabián, and Pablo González-Cantergiani. 2016. Measuring user influence on Twitter: A survey. Information Processing and Management 52: 949–75. [Google Scholar] [CrossRef]
- Rogers, Everett M. 2010. Diffusion of Innovations, 4th ed. New York: Free Press. [Google Scholar]
- Saaty, Thomas L. 1992. Decision Making for Leaders, 2nd ed. Pittsburg: RWS Publications. [Google Scholar]
- Santesmases, Miguel. 2009. Dyane versión 4: Diseño y análisis de encuestas en investigación social y de mercados [Dyane Version 4: Design and Analysis of Surveys in Social and Market Research]. Madrid: Pirámide. [Google Scholar]
- Santomier, James. 2008. New media, branding and global sports sponsorship. International Journal of Sports Marketing and Sponsorship 10: 9–22. [Google Scholar] [CrossRef]
- Scott, John. 2017. Social Network Analysis: A Handbook, 4th ed. Croydon: SAGE Publications. [Google Scholar]
- Small, Tamara A. 2011. What the hashtag? A content analysis of Canadian politics on Twitter. Information, Communication & Society 14: 872–95. [Google Scholar]
- Sousa, Daniel, Luís Sarmento, and Eduarda Mendes. 2010. Characterization of the Twitter @replies network. In SMUC ’10, Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents. New York: ACM, pp. 63–70. [Google Scholar]
- Towner, Terri, and Caroline L. Munoz. 2016. Boomers versus millennials: Online media influence on media performance and candidate evaluations. Social Sciences 5: 56. [Google Scholar] [CrossRef]
- Turner, Graeme. 2014. Understanding Celebrity, 2nd ed. Croydon: SAGE Publications. [Google Scholar]
- Veglis, Andreas, and Theodora A. Maniou. 2018. The mediated data model of communication flow. KOME: An International Journal of Pure Communication Inquiry 6: 32–43. [Google Scholar] [CrossRef]
- Wäsche, Hagen. 2015. Interorganizational cooperation in sport tourism: A social network analysis. Sport Management Review 18: 542–54. [Google Scholar] [CrossRef]
- Wäsche, Hagen, Geoff Dickson, Alexander Woll, and Ulrik Brandes. 2017. Social network analysis in sport research: an emerging paradigm. European Journal for Sport and Society 14: 138–65. [Google Scholar] [CrossRef]
- Wilson, Christopher, and Alexandra Dunn. 2011. The Arab Spring|Digital Media in the Egyptian Revolution: Descriptive Analysis from the Tahrir Data Set. International Journal of Communication 5: 1248–72. [Google Scholar]
- Yamamoto, Masahiro, Seungahn Nah, and Deborah Chung. 2017. U.S. Newspaper Editors’ Ratings of Social Media as Influential News Sources. International Journal of Communication 11: 684–700. [Google Scholar]
- Yan, Grace, Ann Pegoraro, and Nicholas M. Watanabe. 2018a. Student-Athletes’ Organization of Activism at the University of Missouri: Resource Mobilization on Twitter. Journal of Sport Management 32: 24–37. [Google Scholar] [CrossRef]
- Yan, Grace, Nicholas M. Watanabe, Stephen L. Shapiro, Michael L. Naraine, and Kevin Hull. 2018b. Unfolding the Twitter scene of the 2017 UEFA Champions League Final: social media networks and power dynamics. European Sport Management Quarterly. [Google Scholar] [CrossRef]
- Yu, Yang, and Xiao Wang. 2015. World Cup 2014 in the Twitter World: A big data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior 48: 392–400. [Google Scholar] [CrossRef]
Item | Number |
---|---|
Tweets | 55,572 |
Users | 20,175 |
Retweets | 35,667 |
Mentions | 28,176 |
Nodes | 23,339 |
Edges | 66,444 |
First Metric | Paired Metric | Spearman’s Rank | Probability |
---|---|---|---|
Indegree | Number of followers | −0.490 | 0.000 ** |
Indegree | Outdegree | −0.022 | 0.001 ** |
Indegree | Number of tweets | 0.695 | 0.000 ** |
Indegree | PageRank | 0.818 | 0.000 ** |
Indegree | Eigencentrality | 1.000 | 0.000 ** |
Outdegree | Number of followers | 0.145 | 0.000 ** |
Outdegree | Number of tweets | 0.614 | 0.000 ** |
Outdegree | PageRank | 0.549 | 0.000 ** |
Outdegree | Eigencentrality | −0.017 | 0.017 * |
Number of followers | Number of tweets | 0.180 | 0.000 ** |
Number of followers | PageRank | 0.059 | 0.000 ** |
Number of followers | Eigencentrality | −0.487 | 0.000 ** |
Number of tweets | PageRank | 0.925 | 0.000 ** |
Number of tweets | Eigencentrality | 0.697 | 0.000 ** |
PageRank | Eigencentrality | 0.820 | 0.000 ** |
Rank | Indegree | Number of Followers | |||||
---|---|---|---|---|---|---|---|
User | Value | Number of Followers | Class | User | Value | Class | |
1 | trackworlds | 1924 | 5749 | 6 | bbcnews | 6,232,200 | 2 |
2 | britishcycling | 1842 | 117,368 | 6 | bbcsport | 5,352,955 | 2 |
3 | markcavendish | 1453 | 1,280,000 | 1 | juanmansantos | 4,348,023 | 7 |
4 | uci_track | 1315 | 6817 | 6 | independent | 1,811,168 | 2 |
5 | officialwiggins | 1243 | 51,557 | 1 | aztecadeportes | 1,692,541 | 2 |
6 | lauratrott31 | 940 | 306,000 | 1 | gazzetta_it | 1,531,605 | 2 |
7 | jasonkenny107 | 613 | 101,000 | 1 | bundesliga_de | 1,397,813 | 7 |
8 | fndogaviria | 565 | 13,932 | 1 | markcavendish | 1,280,000 | 1 |
9 | teamgb | 531 | 676,042 | 6 | khairykj | 1,204,386 | 7 |
10 | leevalleyvp | 468 | 5891 | 6 | bild | 1,182,922 | 2 |
11 | jondibben1 | 466 | 4353 | 1 | juanpabloraba | 1,132,804 | 5 |
12 | bbcsport | 345 | 5,352,995 | 2 | gettysport | 978,940 | 7 |
13 | cyclingaus | 305 | 27,529 | 6 | casaleantonio | 771,673 | 5 |
14 | uci_cycling | 290 | 168,002 | 6 | aierta | 739,479 | 7 |
15 | mundociclistico | 255 | 17,821 | 4 | adidasuk | 735,479 | 7 |
16 | azizulawang | 253 | 44,894 | 1 | chrishoy | 677,632 | 5 |
17 | eurosportuktv | 247 | 44,965 | 2 | teamgb | 676,042 | 6 |
18 | bicigoga | 242 | 112,567 | 5 | nos | 618,643 | 2 |
19 | owaindoull | 221 | 5652 | 1 | silvioluiz | 615,984 | 5 |
20 | etixx_quickstep | 214 | 175,953 | 6 | clarebalding | 609,473 | 5 |
21 | becksjames | 213 | 23,570 | 1 | teamsky | 580,043 | 6 |
22 | sebastianmorav | 207 | 1497 | 1 | bbc5live | 577,698 | 2 |
23 | cvndsh | 183 | 21,851 | 7 | teamcanada | 545,464 | 7 |
24 | skycycling | 177 | 52,449 | 6 | infopresidencia | 530,276 | 7 |
25 | eliaviviani | 157 | 32,423 | 1 | telegraaf | 453,957 | 2 |
Rank | Outdegree | Number of Tweets | ||||||
---|---|---|---|---|---|---|---|---|
User | Value | Number of Followers | Class | User | Value | Number of Followers | Class | |
1 | groupiecam | 168 | 55 | 4 | Robayocolombia | 682 | 2635 | 3 |
2 | fixedgearfever | 167 | 1286 | 4 | Pelotonwatch | 559 | 21,999 | 4 |
3 | velodromomed | 162 | 255 | 7 | Fixedgearfever | 420 | 1286 | 4 |
4 | robayocolombia | 144 | 2635 | 3 | Groupiecam | 367 | 55 | 4 |
5 | trackworlds | 120 | 5749 | 6 | Britishcycling | 355 | 117,368 | 6 |
6 | leevalleyvp | 107 | 5891 | 6 | Gazettedessport | 317 | 4487 | 2 |
7 | realdeanporter | 100 | 1969 | 3 | Trackworlds | 304 | 5749 | 6 |
8 | _pigeons_ | 89 | 6926 | 5 | _pigeons_ | 261 | 6926 | 5 |
9 | britishcycling | 86 | 117,368 | 6 | Velodromomed | 257 | 255 | 7 |
10 | cyclismactu | 81 | 15,525 | 4 | Cyclingaus | 256 | 27,529 | 6 |
11 | ramonap1988 | 79 | 350 | 3 | Twowheeledtank | 247 | 3964 | 5 |
12 | iflck | 68 | 740 | 3 | uci_track | 236 | 6817 | 6 |
13 | seigneurlouis | 67 | 205 | 3 | Leevalleyvp | 227 | 5891 | 6 |
14 | swaragency | 67 | 376 | 3 | cyclogy_ | 168 | 90 | 7 |
15 | actusportvideo | 66 | 6098 | 2 | Clubsforkids | 152 | 233 | 7 |
16 | tony_bobfan | 62 | 280 | 3 | Kevinpersyn | 147 | 209 | 5 |
17 | cyclingaus | 60 | 27,529 | 6 | Realdeanporter | 126 | 1969 | 3 |
18 | kolkwitzer | 60 | 294 | 5 | davidverral | 124 | 97 | 3 |
19 | davidverrall | 59 | 97 | 3 | ciclo21 | 120 | 10,833 | 4 |
20 | oidoracritica | 59 | 1569 | 3 | Joanseguidor | 118 | 4151 | 5 |
21 | uci_track | 59 | 6817 | 6 | cyclismactu | 116 | 15,525 | 4 |
22 | aubondossard | 53 | 542 | 5 | Velouk | 115 | 20,241 | 6 |
23 | germansportnews | 53 | 49 | 2 | Aussielarry | 109 | 11,984 | 5 |
24 | carolynb66 | 51 | 376 | 3 | Teamgb | 107 | 676,042 | 6 |
25 | cyclogy_ | 51 | 90 | 7 | Kerrrrrryyy | 102 | 870 | 3 |
Rank | Eigencentrality | PageRank | ||||||
---|---|---|---|---|---|---|---|---|
User | Value | Number of Followers | Class | User | Value | Number of Followers | Class | |
1 | britishcycling | 0.902 | 117,368 | 6 | trackworlds | 0.032 | 5749 | 6 |
2 | markcavendish | 0.733 | 1,280,000 | 1 | britishcycling | 0.025 | 117,368 | 6 |
3 | uci_track | 0.704 | 6817 | 6 | uci_track | 0.019 | 6817 | 6 |
4 | officialwiggins | 0.636 | 51,557 | 1 | markcavendish | 0.019 | 1,280,000 | 1 |
5 | lauratrott31 | 0.555 | 306,000 | 1 | officialwiggins | 0.015 | 51,557 | 1 |
6 | jasonkenny107 | 0.394 | 101,000 | 1 | lauratrott31 | 0.013 | 306,000 | 1 |
7 | leevalleyvp | 0.370 | 5891 | 6 | fndogaviria | 0.010 | 13,932 | 1 |
8 | fndogaviria | 0.355 | 13,932 | 1 | jondibben1 | 0.008 | 4353 | 1 |
9 | jondibben1 | 0.348 | 4353 | 1 | edwinavila189 | 0.008 | 8262 | 1 |
10 | cyclingaus | 0.288 | 27,529 | 6 | jasonkenny107 | 0.008 | 101,000 | 1 |
11 | teamgb | 0.279 | 676,042 | 6 | leevalleyvp | 0.008 | 5891 | 6 |
12 | bbcsport | 0.233 | 5,352,995 | 2 | cyclingaus | 0.008 | 27,529 | 6 |
13 | uci_cycling | 0.216 | 168,002 | 6 | teamgb | 0.005 | 676,042 | 6 |
14 | tennanto | 0.197 | 8324 | 1 | bbcsport | 0.005 | 5,352,955 | 2 |
15 | becksjames | 0.187 | 23,570 | 1 | uci_cycling | 0.004 | 168,002 | 6 |
16 | eurosportuktv | 0.185 | 44,965 | 2 | owaindoull | 0.003 | 5652 | 1 |
17 | annameares | 0.154 | 31,349 | 1 | eurosportuktv | 0.003 | 44,965 | 2 |
18 | kristinavogel | 0.150 | 4428 | 1 | sebastianmorav | 0.003 | 1497 | 1 |
19 | ed_clancy | 0.147 | 46,600 | 1 | azizulawang | 0.003 | 44,894 | 1 |
20 | eliaviviani | 0.142 | 32,423 | 1 | eliaviviani | 0.003 | 32,423 | 1 |
21 | stevenburke88 | 0.135 | 12,600 | 1 | tennanto | 0.003 | 8324 | 1 |
22 | azizulawang | 0.135 | 44,894 | 1 | becksjames | 0.003 | 23,570 | 1 |
23 | cyclingnzl | 0.131 | 4447 | 6 | bicigoga | 0.003 | 112,567 | 5 |
24 | sebastianmorav | 0.130 | 1497 | 1 | skycycling | 0.002 | 52,449 | 6 |
25 | matthewglaetzer | 0.128 | 1090 | 1 | mundociclistico | 0.002 | 17,821 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamirán-Palomares, J.M.; Baviera, T.; Baviera-Puig, A. Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study. Soc. Sci. 2019, 8, 141. https://doi.org/10.3390/socsci8050141
Lamirán-Palomares JM, Baviera T, Baviera-Puig A. Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study. Social Sciences. 2019; 8(5):141. https://doi.org/10.3390/socsci8050141
Chicago/Turabian StyleLamirán-Palomares, José M., Tomás Baviera, and Amparo Baviera-Puig. 2019. "Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study" Social Sciences 8, no. 5: 141. https://doi.org/10.3390/socsci8050141
APA StyleLamirán-Palomares, J. M., Baviera, T., & Baviera-Puig, A. (2019). Identifying Opinion Leaders on Twitter during Sporting Events: Lessons from a Case Study. Social Sciences, 8(5), 141. https://doi.org/10.3390/socsci8050141