Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4
Abstract
:1. Introduction
2. Results
2.1. LPS Analysis
2.2. Virulence and Immunogenicity of Mutants
2.3. Involvement of WbtC in Protein Glycosylation
3. Discussion
4. Experimental Section
4.1. Bacterial Strains
4.2. Isolation and Analysis of LPS
4.3. De-O-Acetylation of Cell Samples
4.4. 1D-PAGE and Western Blotting Analysis of LPS
4.5. 2D-PAGE Analysis
4.6. Protein Identification
4.7. Biological Studies
5. Conclusions
Supplementary Files
Acknowledgments
Conflict of Interest
References
- Sjostedt, A. Tularemia: History, epidemiology, pathogen physiology, and clinical manifestations. Ann. N. Y. Acad. Sci. 2007, 1105, 1–29. [Google Scholar] [CrossRef]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a biological weapon: Medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
- Kadzhaev, K.; Zingmark, C.; Golovliov, I.; Bolanowski, M.; Shen, H.; Conlan, W.; Sjostedt, A. Identification of genes contributing to the virulence of francisella tularensis schu s4 in a mouse intradermal infection model. PLoS One 2009, 4, e5463. [Google Scholar]
- Meibom, K.L.; Charbit, A. The unraveling panoply of francisella tularensis virulence attributes. Curr. Opin. Microbiol. 2010, 13, 11–17. [Google Scholar] [CrossRef]
- Vinogradov, E.; Conlan, W.J.; Gunn, J.S.; Perry, M.B. Characterization of the lipopolysaccharide o-antigen of francisella novicida (u112). Carbohydr. Res. 2004, 339, 649–654. [Google Scholar] [CrossRef]
- Conlan, J.W.; Shen, H.; Webb, A.; Perry, M.B. Mice vaccinated with the o-antigen of francisella tularensis lvs lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type a and type b strains of the pathogen. Vaccine 2002, 20, 3465–3471. [Google Scholar] [CrossRef]
- Kim, T.H.; Sebastian, S.; Pinkham, J.T.; Ross, R.A.; Blalock, L.T.; Kasper, D.L. Characterization of the o-antigen polymerase (wzy) of francisella tularensis. J. Biol. Chem. 2010, 285, 27839–27849. [Google Scholar]
- Thomas, R.M.; Titball, R.W.; Oyston, P.C.; Griffin, K.; Waters, E.; Hitchen, P.G.; Michell, S.L.; Grice, I.D.; Wilson, J.C.; Prior, J.L. The immunologically distinct o antigens from francisella tularensis subspecies tularensis and francisella novicida are both virulence determinants and protective antigens. Infect. Immun. 2007, 75, 371–378. [Google Scholar] [CrossRef]
- Prior, J.L.; Prior, R.G.; Hitchen, P.G.; Diaper, H.; Griffin, K.F.; Morris, H.R.; Dell, A.; Titball, R.W. Characterization of the o antigen gene cluster and structural analysis of the o antigen of francisella tularensis subsp. Tularensis. J. Med. Microbiol. 2003, 52, 845–851. [Google Scholar] [CrossRef]
- Hartley, G.; Taylor, R.; Prior, J.; Newstead, S.; Hitchen, P.G.; Morris, H.R.; Dell, A.; Titball, R.W. Grey variants of the live vaccine strain of francisella tularensis lack lipopolysaccharide o-antigen, show reduced ability to survive in macrophages and do not induce protective immunity in mice. Vaccine 2006, 24, 989–996. [Google Scholar] [CrossRef]
- Li, J.; Ryder, C.; Mandal, M.; Ahmed, F.; Azadi, P.; Snyder, D.S.; Pechous, R.D.; Zahrt, T.; Inzana, T.J. Attenuation and protective efficacy of an o-antigen-deficient mutant of francisella tularensis lvs. Microbiology 2007, 153, 3141–3153. [Google Scholar] [CrossRef]
- Raynaud, C.; Meibom, K.L.; Lety, M.A.; Dubail, I.; Candela, T.; Frapy, E.; Charbit, A. Role of the wbt locus of francisella tularensis in lipopolysaccharide o-antigen biogenesis and pathogenicity. Infect. Immun. 2007, 75, 536–541. [Google Scholar] [CrossRef]
- Maier, T.M.; Casey, M.S.; Becker, R.H.; Dorsey, C.W.; Glass, E.M.; Maltsev, N.; Zahrt, T.C.; Frank, D.W. Identification of francisella tularensis himar1-based transposon mutants defective for replication in macrophages. Infect. Immun. 2007, 75, 5376–5389. [Google Scholar] [CrossRef]
- Sebastian, S.; Dillon, S.T.; Lynch, J.G.; Blalock, L.T.; Balon, E.; Lee, K.T.; Comstock, L.E.; Conlan, J.W.; Rubin, E.J.; Tzianabos, A.O.; et al. A defined o-antigen polysaccharide mutant of francisella tularensis live vaccine strain has attenuated virulence while retaining its protective capacity. Infect. Immun. 2007, 75, 2591–2602. [Google Scholar] [CrossRef]
- Raetz, C.R.; Reynolds, C.M.; Trent, M.S.; Bishop, R.E. Lipid a modification systems in gram-negative bacteria. Annu. Rev. Biochem. 2007, 76, 295–329. [Google Scholar] [CrossRef]
- Vinogradov, E.; Perry, M.B.; Conlan, J.W. Structural analysis of francisella tularensis lipopolysaccharide. Eur. J. Biochem. 2002, 269, 6112–6118. [Google Scholar] [CrossRef]
- Schoenhofen, I.C.; McNally, D.J.; Vinogradov, E.; Whitfield, D.; Young, N.M.; Dick, S.; Wakarchuk, W.W.; Brisson, J.R.; Logan, S.M. Functional characterization of dehydratase/ aminotransferase pairs from helicobacter and campylobacter: Enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 2006, 281, 723–732. [Google Scholar]
- Sebastian, S.; Pinkham, J.T.; Lynch, J.G.; Ross, R.A.; Reinap, B.; Blalock, L.T.; Conlan, J.W.; Kasper, D.L. Cellular and humoral immunity are synergistic in protection against types a and b francisella tularensis. Vaccine 2009, 27, 597–605. [Google Scholar] [CrossRef]
- Thomas, R.M.; Twine, S.M.; Fulton, K.M.; Tessier, L.; Kilmury, S.L.; Ding, W.; Harmer, N.; Michell, S.L.; Oyston, P.C.; Titball, R.W.; et al. Glycosylation of dsba in francisella tularensis subsp. Tularensis. J. Bacteriol. 2011, 193, 5498–5509. [Google Scholar]
- Egge-Jacobsen, W.; Salomonsson, E.N.; Aas, F.E.; Forslund, A.L.; Winther-Larsen, H.C.; Maier, J.; Macellaro, A.; Kuoppa, K.; Oyston, P.C.; Titball, R.W.; et al. O-linked glycosylation of the pila pilin protein of francisella tularensis: Identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide. J. Bacteriol. 2011, 193, 5487–5497. [Google Scholar] [CrossRef]
- Balonova, L.; Hernychova, L.; Mann, B.F.; Link, M.; Bilkova, Z.; Novotny, M.V.; Stulik, J. Multimethodological approach to identification of glycoproteins from the proteome of francisella tularensis, an intracellular microorganism. J. Proteome Res. 2010, 9, 1995–2005. [Google Scholar] [CrossRef]
- Knirel, Y.A.; Skvortsov, I.M.; Shashkov, A.S.; Dmitriev, B.A.; Kochetkov, N.K.; Stanislavsky, E.S.; Mashilova, G.M. Somatic antigens of pseudomonas aeruginosa. The structure of the o-specific polysaccharide chains of p. Aeruginosa o11 (lanyi) lipopolysaccharides. Eur. J. Biochem. 1985, 150, 551–557. [Google Scholar] [CrossRef]
- Belanger, M.; Burrows, L.L.; Lam, J.S. Functional analysis of genes responsible for the synthesis of the b-band o antigen of pseudomonas aeruginosa serotype o6 lipopolysaccharide. Microbiology 1999, 145 ( Pt 12), 3505–3521. [Google Scholar]
- Wyk, P.; Reeves, P. Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group b salmonellae: Homology with galactose epimerase. J. Bacteriol. 1989, 171, 5687–5693. [Google Scholar]
- Apicella, M.A.; Post, D.M.; Fowler, A.C.; Jones, B.D.; Rasmussen, J.A.; Hunt, J.R.; Imagawa, S.; Choudhury, B.; Inzana, T.J.; Maier, T.M.; et al. Identification, characterization and immunogenicity of an o-antigen capsular polysaccharide of francisella tularensis. PLoS One 2010, 5, e11060. [Google Scholar]
- Forsberg, L.S.; Noel, K.D.; Box, J.; Carlson, R.W. Genetic locus and structural characterization of the biochemical defect in the o-antigenic polysaccharide of the symbiotically deficient rhizobium etli mutant, ce166. Replacement of n-acetylquinovosamine with its hexosyl-4-ulose precursor. J. Biol. Chem. 2003, 278, 51347–51359. [Google Scholar]
- Balonova, L.; Mann, B.F.; Cerveny, L.; Alley, W.R.; Chovancova, E.; Forslund, A.L.; Salomonsson, E.N.; Forsberg, A.; Damborsky, J.; Novotny, M.V.; et al. Characterization of protein glycosylation in francisella tularensis subsp. Holarctica; identification of a novel glycosylated lipoprotein required for virulence. Mol. Cell Proteomics 2012, 11, M111.015016. [Google Scholar] [CrossRef]
- Qin, A.; Scott, D.W.; Thompson, J.A.; Mann, B.J. Identification of an essential francisella tularensis subsp. Tularensis virulence factor. Infect. Immun. 2009, 77, 152–161. [Google Scholar] [CrossRef]
- Castric, P.; Cassels, F.J.; Carlson, R.W. Structural characterization of the pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 2001, 276, 26479–26485. [Google Scholar] [CrossRef]
- Tabei, S.M.; Hitchen, P.G.; Day-Williams, M.J.; Merino, S.; Vart, R.; Pang, P.C.; Horsburgh, G.J.; Viches, S.; Wilhelms, M.; Tomas, J.M.; et al. An aeromonas caviae genomic island is required for both o-antigen lipopolysaccharide biosynthesis and flagellin glycosylation. J. Bacteriol. 2009, 191, 2851–2863. [Google Scholar] [CrossRef]
- Hug, I.; Couturier, M.R.; Rooker, M.M.; Taylor, D.E.; Stein, M.; Feldman, M.F. Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein n-glycosylation. PLoS Pathog. 2010, 6, e1000819. [Google Scholar] [CrossRef]
- Cullen, T.W.; Trent, M.S. A link between the assembly of flagella and lipooligosaccharide of the gram-negative bacterium campylobacter jejuni. Proc. Natl. Acad. Sci. USA 2010, 107, 5160–5165. [Google Scholar] [CrossRef]
- Clementz, T. The gene coding for 3-deoxy-manno-octulosonic acid transferase and the rfaq gene are transcribed from divergently arranged promoters in escherichia coli. J. Bacteriol. 1992, 174, 7750–7756. [Google Scholar]
- Sorokin, V.M.; Pavlovich, N.V.; Prozorova, L.A. Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol. Med. Microbiol. 1996, 13, 249–252. [Google Scholar] [CrossRef]
- Clay, C.D.; Soni, S.; Gunn, J.S.; Schlesinger, L.S. Evasion of complement-mediated lysis and complement c3 deposition are regulated by francisella tularensis lipopolysaccharide o antigen. J. Immunol. 2008, 181, 5568–5578. [Google Scholar]
- Sandstrom, G.; Lofgren, S.; Tarnvik, A. A capsule-deficient mutant of francisella tularensis lvs exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 1988, 56, 1194–1202. [Google Scholar]
- Eigelsbach, H.T.; Braun, W.; Herring, R.D. Studies on the variation of bacterium tularense. J. Bacteriol. 1951, 61, 557–569. [Google Scholar]
- Baker, C.N.; Hollis, D.G.; Thornsberry, C. Antimicrobial susceptibility testing of francisella tularensis with a modified mueller-hinton broth. J. Clin. Microbiol. 1985, 22, 212–215. [Google Scholar]
- Twine, S.M.; Petit, M.D.; Fulton, K.M.; House, R.V.; Conlan, J.W. Immunoproteomics analysis of the murine antibody response to vaccination with an improved francisella tularensis live vaccine strain (lvs). PLoS One 2010, 5, e10000. [Google Scholar]
- Twine, S.M.; Mykytczuk, N.C.; Petit, M.; Tremblay, T.L.; Lanthier, P.; Conlan, J.W.; Kelly, J.F. Francisella tularensis proteome: Low levels of asb-14 facilitate the visualization of membrane proteins in total protein extracts. J. Proteome Res. 2005, 4, 1848–1854. [Google Scholar] [CrossRef]
- Twine, S.M.; Reid, C.W.; Aubry, A.; McMullin, D.R.; Fulton, K.M.; Austin, J.; Logan, S.M. Motility and flagellar glycosylation in clostridium difficile. J Bacteriol. 2009, 191, 7050–7062. [Google Scholar] [CrossRef]
- Conlan, J.W.; Chen, W.; Shen, H.; Webb, A.; KuoLee, R. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of francisella tularensis: Bacteriologic and histopathologic studies. Microb. Pathog. 2003, 34, 239–248. [Google Scholar] [CrossRef]
- Chamberlain, R.E. Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl. Microbiol. 1965, 13, 232–235. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Twine, S.M.; Vinogradov, E.; Lindgren, H.; Sjostedt, A.; Conlan, J.W. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4. Pathogens 2012, 1, 12-29. https://doi.org/10.3390/pathogens1010012
Twine SM, Vinogradov E, Lindgren H, Sjostedt A, Conlan JW. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4. Pathogens. 2012; 1(1):12-29. https://doi.org/10.3390/pathogens1010012
Chicago/Turabian StyleTwine, Susan M., Evguenii Vinogradov, Helena Lindgren, Anders Sjostedt, and J. Wayne Conlan. 2012. "Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4" Pathogens 1, no. 1: 12-29. https://doi.org/10.3390/pathogens1010012
APA StyleTwine, S. M., Vinogradov, E., Lindgren, H., Sjostedt, A., & Conlan, J. W. (2012). Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4. Pathogens, 1(1), 12-29. https://doi.org/10.3390/pathogens1010012