Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Placement
2.2. Taxonomy
2.3. Description of the Novel Species
3. Discussion
4. Materials and Methods
4.1. Collections and Morphology
4.2. DNA Extraction, PCR Amplification and Sequencing
4.3. Sequence Alignment and Phylogenetic Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.-Z.; Liu, X.-Z.; McKenzie, E.H.; Jeewon, R.; Liu, J.-K.; Zhang, X.-L.; Zhao, Q.; Hyde, K.D. Fungicolous fungi: Terminology, diversity, distribution, evolution, and species checklist. Fungal Divers. 2019, 95, 337–430. [Google Scholar] [CrossRef]
- Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
- Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
- Gams, W. Tolypocladium, eine Hyphomycetengattung mit geschwollenen Phialiden. Persoonia 1971, 6, 185–191. [Google Scholar]
- Hodge, K.T.; Krasnoff, S.B.; Humber, R.A. Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 1996, 88, 715–719. [Google Scholar] [CrossRef]
- Sung, G.H.; Hywel-Jones, N.L.; Sung, J.M.; Luangsa-ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gams, W. Chaunopycnis alba, gen. et sp. nov., a soil fungus intermediate between Moniliales and Sphaeropsidales. Persoonia 1980, 11, 75–79. [Google Scholar]
- Quandt, C.A.; Kepler, R.M.; Gams, W.; Araújo, J.P.M.; Ban, S.; Evans, H.C.; Hughes, D.; Humber, R.; Hywel-Jones, N.; Li, Z.; et al. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 2014, 5, 121–134. [Google Scholar] [CrossRef]
- Mains, E.B. Species of Cordyceps parasitic on Elaphomyces. Bull. Torrey Bot. Club 1957, 84, 243–251. [Google Scholar] [CrossRef]
- Kobayasi, Y.; Shimizu, D. Monographic studies of Cordyceps 1, group parasitic on Elaphomyces. Bull. Natl. Sci. Mus. Tokyo 1960, 5, 69–85. [Google Scholar]
- Nikoh, N.; Fukatsu, T. Interkingdom host jumping underground: Phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol. Biol. Evol. 2000, 17, 629–638. [Google Scholar] [CrossRef]
- Gazis, R.; Skaltsas, D.; Chaverri, P. Novel endophytic lineages of Tolypocladium provide new insights into the ecology and evolution of Cordyceps-like fungi. Mycologia 2014, 106, 1090–1105. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [Google Scholar] [CrossRef] [PubMed]
- Kepler, R.; Ban, S.; Nakagiri, A.; Bischoff, J.; Hywel-Jones, N.; Owensby, C.A.; Spatafora, J.W. The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: An application of One Fungus One Name. Fungal Biol. 2013, 117, 611–622. [Google Scholar] [CrossRef]
- Quandt, C.A.; Patterson, W.; Spatafora, J.W. Harnessing the power of phylogenomics to disentangle the directionality and signatures of interkingdom host jumping in the parasitic fungal genus Tolypocladium. Mycologia 2018, 110, 104–117. [Google Scholar] [CrossRef]
- Quandt, C.A.; Di, Y.; Elser, J.; Jaiswal, P.; Spatafora, J.W. Differential expression of genes involved in host recognition, attachment, and degradation in the mycoparasite Tolypocladium ophioglossoides. G3 Genes Genomes Genet. 2016, 6, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, P.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M.; et al. Notes for genera: Ascomycota. Fungal Divers. 2017, 86, 1–594. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-C.; Zhang, Z.-Z.; Li, C.-L.; Wang, Y. Research Progress of Tolypocladium in Ophiocordycipitaceae. J. Fungal Res. 2019, 1–10. [Google Scholar] [CrossRef]
- Maas Geesteranus, R.A. On ‘Cordyceps capitata’. Persoonia 1963, 2, 477–482. [Google Scholar]
- Ginns, J. Typification of Cordyceps canadensis and C. capitata, and a new species, C. longisegmentis. Mycologia 1988, 80, 217–222. [Google Scholar] [CrossRef]
- Zang, M.; Kinjo, N. Notes on the alpine Cordyceps of China and nearby nations. Mycotaxon 1998, 66, 215–229. [Google Scholar]
- Zhang, D.-Z.; Zhou, W.-N.; Wu, S.-H.; Wang, Y.-Z. Macrofungi in Fushan; Council of Agriculture, Executive Office: Taipei, Taiwan, 2000.
- Bissett, J. Notes on Tolypocladium and related genera. Can. J. Bot. 1983, 61, 1311–1329. [Google Scholar] [CrossRef]
- Samson, R.A.; Soares, G.G. Entomopathogenic species of the hyphomycete genus Tolypocladium. J. Invertebr. Pathol. 1984, 43, 133–139. [Google Scholar] [CrossRef]
- Wright, D.A.; Cummings, N.J.; Haack, N.A.; Jackson, T.A. Tolypocladium cylindrosporum, a novel pathogen for sheep blowflies. New Zeal. J. Agric. Res. 2009, 52, 315–321. [Google Scholar] [CrossRef]
- Xu, W.-S.; LYU, G.-Z.; Jiang, H.; Zhao, Z.-H.; Sun, X.-D.; LYU, S.-Y. Three species of Tolypocladium isolated from forest soil of Changbai mountain. J. Fungal Res. 2012, 10, 143–146. [Google Scholar]
- Montalva, C.; Silva, J.J.; Rocha, L.F.N.; Luz, C.; Humber, R.A. Characterization of Tolypocladium cylindrosporum (Hypocreales, Ophiocordycipitaceae) isolates from Brazil and their efficacy against Aedes aegypti (Diptera, Culicidae). J. Appl. Microbiol. 2019, 126, 266–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.-Q.; Liu, A.-Y.; Liu, M.-H. Two new records of mycogenous Cordyceps in China. Mycosystema 2003, 22, 159–160. [Google Scholar]
- Li, C.; Hywel-jones, N.; Cao, Y.; Nam, S.; Li, Z. Tolypocladium dujiaolongae sp. nov. and its allies. Mycotaxon 2018, 133, 229–241. [Google Scholar] [CrossRef]
- Crous, P.W.; Cowan, D.A.; Yilmaz, N.; Larsson, E.; Angelini, C.; Brandrud, T.E.; Dearnaley, J.D.W.; Dima, B.; Dovana, F.; Fechner, N.; et al. Fungal Planet description sheets: 1112–1181. Persoonia 2020, 45, 251–409. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.S.J.; Barber, P.A.; Alvarado, P.; Barnes, C.W.; Buchanan, P.K.; Heykoop, M.; Moreno, G.; et al. Fungal Planet description sheets: 558–624. Persoonia 2017, 38, 240–384. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.-Y.; Li, T.-H.; Song, B. Cordyceps guangdongensis sp. nov. from China. Mycotaxon 2008, 103, 371–376. [Google Scholar]
- Liang, Z.-Q. Flora Fungorum Sinicorum. Cordyceps; Science Press: Beijing, China, 2007; Volume 32. [Google Scholar]
- Kobayasi, Y.; Shimizu, D. Monographic studies of Cordyceps 2, group parasitic on cicadae. Bull. Natl. Sci. Mus. Tokyo 1963, 6, 286–314. [Google Scholar]
- Suo, F.-Y.; Huang, L.-D.; Yu, H. Identification and antibacterial effect research of a Tolypocladium strain isolated from sclerotium of Ophiocordyceps gracilis in Xinjiang. China J. Chin. Mater. Med. 2014, 39, 965–971. [Google Scholar]
- Imai, S. On a new species of Cordyceps parasitic on Elaphomyces in Japan. Proc. Imp. Acad. 1934, 10, 677–679. [Google Scholar] [CrossRef]
- Ke, Y.-H.; Ju, Y.-M. Two rare ophiocordycipitaceous fungi newly recorded in Taiwan. Bot. Stud. 2015, 56. [Google Scholar] [CrossRef] [Green Version]
- Barron, G.L. Structure and biology of a new Tolypocladium attacking bdelloid rotifers. Can. J. Bot. 1983, 61, 2566–2569. [Google Scholar] [CrossRef]
- Zeng, X.-L.; Yang, W.-S. Cordyceps canadensis a new record in China. Edible Fungi China 1990, 9, 27. [Google Scholar]
- Kobayasi, Y.; Shimizu, D. Cordyceps species from Japan 5. Bull. Natl. Sci. Mus. Tokyo Ser. B Bot. 1982, 8, 111–123. [Google Scholar]
- Han, Y.-F.; Liang, Z.-Q.; Chu, H.-L. Tolypocladium nubicola, a new record of Tolypocladium in China. J. Fungal Res. 2004, 2, 50–52. [Google Scholar]
- Sung, J.M.; Choi, Y.S.; Kim, Y.O.; Kim, S.H.; Sung, G.H. Cordyceps species collected by Korean entomopathogenic fungal collection. In Proceedings of the Third Korean-China Joint Symposium for Mycology (The Korean Society of Mycology and Chinese Academy of Sciences), Seoul, Korea, December 1997; The Korean Society of Mycology: Seoul, Korea, 1997; pp. 49–60. [Google Scholar]
- Lee, T.S.; Yoon, K.H. The Index of Korea-Japan Mushroom Names in Korea; Personal Printing: Seoul, Korea, 2002. [Google Scholar]
- Song, B.; Lin, Q.-Y.; Li, T.-H.; Shen, Y.-H.; Li, J.-J.; Luo, D.-X. Known species of Cordyceps from China and their distribution. J. Fungal Res. 2006, 4, 10–26. [Google Scholar]
- Möller, C.; Gams, W. Two new hyphomycetes isolated from Antarctic lichens. Mycotaxon 1993, 48, 441–450. [Google Scholar]
- Zha, L.-S.; Xiao, Y.-P.; Jeewon, R.; Zou, X.; Wang, X.; Boonmee, S.; Eungwanichayapant, P.D.; McKenzie, E.H.C.; Hyde, K.D.; Wen, T.-C. Notes on the medicinal mushroom chanhua (Cordyceps cicadae (Miq.) Massee). Chiang Mai J. Sci. 2019, 46, 1023–1035. [Google Scholar]
- Chen, Z.-A.; Li, Z.-Z.; Chen, Y.-P. Jin-Chanhua (A Precious Cordyceps: Isaria cicadae Miq.); Publishing House of Ancient Chinese Medical Books: Beijing, China, 2014. [Google Scholar]
- Bills, G.F.; Polishook, J.D.; Goetz, M.A.; Sullivan, R.F.; White, J.F. Chaunopycnis pustulata sp. nov., a new clavicipitalean anamorph producing metabolites that modulate potassium ion channels. Mycol. Prog. 2002, 1, 3–17. [Google Scholar] [CrossRef]
- Teng, S.C. Additional fungi from China IV. Sinensia 1936, 7, 752–823. [Google Scholar]
- Teng, S.C. Fungi of China; Korf, R.P., Ed.; Mycotaxon Ltd.: Ithaca, NY, USA, 1996; pp. 118–125. [Google Scholar]
- Candoussau, F. Un Cordyceps nouveau des Pyrenees Francaises: Cordyceps Rouxii sp. nov. Mycotaxon 1976, IV, 540–544. [Google Scholar]
- Li, C.-L. Study of a new species of Tolypocladium. J. Nanjing Univ. (Nat. Sci. Ed.) 1986, 22, 401–407, 592. [Google Scholar]
- Zang, M. Two New Tropical Mycotaxon from Yunnan, China. Acta Bot. Yunnanica 2001, 23, 295–297. [Google Scholar]
- Weiser, J.; Matha, V.; Jegorov, A. Tolypocladium terricola sp. n., a new mosquito-killing species of the genus Tolypocladium Gams (Hyphomycetes). Folia Parasitol. 1991, 38, 363–369. [Google Scholar]
- Barron, G.L. Two new fungal parasites of bdelloid rotifers. Can. J. Bot. 1981, 59, 1449–1455. [Google Scholar] [CrossRef]
- Kobayasi, Y. Miscellaneous notes of fungi (3). J. Jpn. Bot. 1983, 58, 221–224. [Google Scholar]
- Sung, G.H.; Poinar, G.O.; Spatafora, J.W. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol. 2008, 49, 495–502. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; White, J.F. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol. Ecol. 2007, 16, 1701–1711. [Google Scholar] [CrossRef]
- Bushley, K.E.; Raja, R.; Jaiswal, P.; Cumbie, J.S.; Nonogaki, M.; Boyd, A.E.; Owensby, C.A.; Knaus, B.J.; Elser, J.; Miller, D.; et al. The Genome of Tolypocladium inflatum: Evolution, organization, and expression of the Cyclosporin biosynthetic gene cluster. PLoS Genet. 2013, 9, e1003496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quandt, C.A.; Bushley, K.E.; Spatafora, J.W. The genome of the truffle-parasite Tolypocladium ophioglossoides and the evolution of antifungal peptaibiotics. BMC Genom. 2015, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Pem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Eyre Methuen: London, UK, 1978. [Google Scholar]
- Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.-K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar] [CrossRef]
- Rehner, S.A.; Samuels, G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol. Res. 1994, 98, 625–634. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Hall, T.A. BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Nylander, J.A. MrModeltest 2. Program distributed by the author. Evol. Biol. Cent. Upps. Univ. 2004, 2–4. [Google Scholar]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace aware data structure for phylogenomic inference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
Fungal Name | Hosts/Isolated From | Known Distribution |
---|---|---|
T. album | Soil, sapwood of Hevea brasiliensis | Colombia, France, Scotland, Sri Lanka, Sweden, The Netherlands [7], Peru [12] |
T. amazonense | Sapwood of Hevea brasiliensis and H. guianensis | Peru [12] |
* T. capitatum | Elaphomyces granulatus, E. japonicus, Elaphomyces sp. | Asia (China (Taiwan, Yunnan), Japan), Europe (France, Holland, Hungary), North America (Canada, U.S.A.) [9,10,19,20,21,22] |
T. cylindrosporum | Soil, sewage, peat, roots of Picea mariana; Plecia nearctica, larvae of Aedes sierrensis, larvae of Aedes australis, larvae and pupae of Lucilia sericata, Drosophila larvae (Diptera) | Brazil, China, Czech, England, New Zealand, Nepal, The Netherlands, The North Island, U.S.A. [4,23,24,25,26,27] |
* T. delicatistipitatum | E. asahimontanus | China (Jiangxi) [28], Japan [10] |
* T. dujiaolongae | Cicada nymphs | China (Anhui, Fujian, Jiangsu, Jiangxi, Zhejiang) [29] |
T. endophyticum | Living sapwood of Hevea brasiliensis and H. guianensis | Brazil, Mexico, Peru [12] |
T. extinguens | Larvae of Arachnocampa luminosa (Diptera) | New Zealand [24] |
* T. fractum | E. appalachiensis | U.S.A. (Tennessee) [9] |
* T. flavonigrum | Elaphomyces sp. | Thailand [30] |
* T. fumosum | Cocooned pupa of bagworm moth (Psychidae) buried among mosses | Poland [31] |
T. geodes | Soil | Austria, Canada, China, Denmark, England, The Netherlands [4,23,26] |
* T. guangdongense | Elaphomyces sp. | China (Guangdong) [32] |
* T. inegoense | Cicada nymphs (e.g., Hyalessa maculaticollis) | China (Fujian, Taiwan) [33], Japan [34], Korea [6] |
* T. inflatum | Larvae of Scarabaeidae (e.g., Aphodiinae, Rutelinae) (sexual morph); soil, humus, Picea glauca, roots of P. mariana, surface of Mycobates sp. (Acari, Mycobatidae), sclerotium of Ophiocordyceps gracilis (asexual morph) | Sexual morph: Japan, U.S.A. (Tennessee, North Carolina, Michigan, New York, Washington) [5]; asexual morph: Austria, Canada, China, Nepal, Germany, U.S.A. [4,23,26,35] |
* T. intermedium | E. granulatus, E. subvariegatus | Japan, U.S.A. (New York) [10,36] |
* T. japonicum | E. granulatus, E. japonicus, E. neoasperulus | Austria, Japan [10], China (Guizhou, Taiwan) [28,37] |
* T. jezoense | E. anthracinus, E. miyabeanus, E. nopporensis | Japan [10] |
T. lignicola | Rotting wood (parasitic in bdelloid rotifers) | Canada (Ontario) [38] |
* T. longisegmentatum | E. granulatus, E. japonicus, E. muricatus, Elaphomyces sp. | Asia (China (Jilin), Japan), Europe (England, Germany, Holland), North America (Canada, Mexico, U.S.A.) [9,10,20,21,39] |
T. microsporum | Soil | Canada, Germany, The Netherlands, U.S.A. [23] |
* T. minazukiense | Elaphomyces sp. | Japan [40] |
* T. miomoteanum | Elaphomyces sp. | Japan [40] |
T. nubicola | Soil | Canada (Alberta), China (Guizhou) [23,41] |
* T. ophioglossoides | E. granulatus, E. japonicus, E. muricatus, E. shimizuensis, E. titibuensis, and Elaphomyces sp. | Commonly in Asia (e.g., China (Guangxi, Jiangsu, Jiangxi, Jilin, Shandong, Sichuan, Taiwan, Yunnan), Japan, Korea), Europe and North America [9,10,42,43,44] |
T. ovalisporum | Lichen Polycauliona regalis | Antarctica (King George Island) [45] |
* T. paradoxum | Cicada nymphs (e.g., Platypleura kaempferi, Graptopsaltria nigrofuscata) | China (Hainan, Yunnan) [46], Japan, Koera [34,47] |
T. pustulatum | Soil, twigs in oak forest, and living leaf of Kalmia latifolia | Mexico (Nuevo León), Spain (Cádiz), U.S.A. (New Jersey) [48] |
* T. ramosum | Elaphomyces sp. | China (Anhui, Fujian, Gansu, Guangdong) [44,49,50] |
* T. rouxii | E. variegatus | France [51] |
T. sinense | Stroma and sclerotium of Ophiocordyceps sinensis | China (Yunnan) [52] |
* T. szemaoense | E. granulatus | China (Yunnan) [53] |
* T. tenuisporum | Host not found (probably Elaphomyces sp.) | U.S.A. (Pennsylvania) [9] |
T. terricola | Soil | Finland [54] |
* T. toriharamontanum | Cicada nymph (Auritibicen bihamatus) | Japan [34] |
T. trigonosporum | Rotting stump (parasitic on bdelloid rotifers) | Canada (Nova Scotia) [55] |
T. tropicale | Sapwood and leaf tissue of Hevea brasiliensis | Mexico, Peru [12] |
T. tundrense | Soil | Canada (Northwest Territories) [23] |
* T. valliforme | E. granulatus, Elaphomyces sp. | Canada (Ontario), U.S.A. (Carolina, New York, Virginia) [9] |
* T. valvatistipitatum | E. granulatus, E. neoasperulus | Japan [10] |
* T. virens | Elaphomyces sp. | Japan [56] |
Locus | 522 | 532 | 855 | Ratio | |||||||||
Species | |||||||||||||
T. album | CBS 393.89 # | C | C | C | 0.35% (3/870 bp) | ||||||||
GB5502 | T | T | - | ||||||||||
Locus | 20 | 21 | 23 | 24 | 25 | 27 | Ratio | ||||||
Species | |||||||||||||
T. inflatum | OSC 71235 # | A | G | A | A | C | A | 0.76% (6/794 bp) | |||||
CBS 127302 | G | A | - | - | - | C | |||||||
Locus | 48 | 434 | Ratio | ||||||||||
Species | |||||||||||||
T. ophioglossoides | CBS 100239 # | C | C | 0.25% (2/816 bp) | |||||||||
NBRC 106330 | T | T | |||||||||||
Locus | 164 | 382 | 405 | 433 | 442 | 479 | 496 | 524 | Ratio | ||||
Species | |||||||||||||
T. paradoxum | NBRC 106958 # | T | C | G | C | C | C | T | G | 0.90% (8/891 bp) | |||
NBRC 100945 | C | T | A | T | T | T | C | A | |||||
Locus | 8 | 37 | 44 | 51 | 81 | 96 | 110 | 124 | 204 | 210 | 402 | Ratio | |
Species | |||||||||||||
T. inusitaticapitatum | HKAS 112152 # | T | T | A | A | A | A | T | T | A | A | G | 1.28% (11/862 bp) |
HKAS 112153 | C | C | G | G | G | G | C | C | G | G | T |
T. intermedium [10] | T. inusitaticapitatum (This Study) | |
---|---|---|
Fertile part | Dark reddish brown | Olive brown, yellowish-brown to dark brown |
Stipe | Slender, 6–8.5 cm long and 2–4 mm thick, middle part clearly expanded, surface with many longitudinal grooves, upper part squamulose | Thicker, 7.5–11.5 cm long and 7–8.5 mm thick, middle part indistinctly expanded, surface smooth |
Asci | 240–300 μm × 7–8 μm, caps about 5 μm in diameter | 410–510 μm × 10–15 μm, caps 6.5–7.5 μm × 6.2–7.0 μm |
Part-spores | Short, 3–6 (commonly 4.5) μm × 1.5–2 μm, truncated at two ends (shape) | Long, 20–32 μm × 3.0–4.5 μm, cylindrical with rounded ends |
Distribution | Japan, USA | P.R. China (Yunnan) |
1. Host insects | 2 |
1′. Host hypogeous Elaphomyces spp. | 7 |
2. Host beetle or moth larvae | 3 |
2′. Host cicada nymphs | 4 |
3. Fertile part capitate, with stellate appearance; perithecia ovoid to pear-shaped, 740–760 × 444–558 μm | T. fumosum |
3′. Fertile part, strap-shaped pseudostalk; perithecia superficial, narrow flask-shaped, 1000–1500 × 330–440 μm | T. inflatum |
4. Stromata arising from underground mycelial membrane or strand; part-spores 3–5 × 1.5–2 μm | T. paradoxum |
4′. Stromata arising directly from host | 5 |
5. Fertile part elongated, obpyriform; part-spores 1.5–2–2.5 × 1.5–1.7 μm wide | T. toriharamontanum |
5′. Fertile part oblong or clavate | 6 |
6. Perithecia superficial or apparently half-immersed, pyriform, 520–550 × 260–280 μm; part-spores 2.5–3 × 2 μm | T. inegoense |
6′. Perithecia wholly immersed, ampullaceous, (233–)520–740(–780) × (250–)300–330 (–360) μm; part-spores 3–5(–7.0) × 2–3 μm | T. dujiaolongae |
7. Stroma attached to host by rhizomorphs | 8 |
7′. Stroma arising directly from the host | 12 |
8. Part-spores articulate, moniliform, 3–3.5 × 2–2.5 μm | T. szemaoense |
8′. Part-spores with truncate or rounded ends | 9 |
9. Stroma capitate | 10 |
9′. Stroma solitary or rarely caespitose | 11 |
10. Perithecia small, 480–540 × 225–255 μm; part-spores large-sized, 18–28 × 3–5 μm | T. delicatistipitatum |
10′. Perithecia 770–800 × 350–430 μm; part-spores medium-sized, 8–11 × 1.5–2 μm | T. miomoteanum |
11. Perithecia oblong with long neck, 700–720 × 200–250 μm; part-spores long, 20–30(50) × 3–4.5 μm | T. jezoense |
11′. Perithecia ovoid, 550–600 × 200–300 μm; part-spores small short rod-shaped, 2.5–5 × 1.5–2 μm | T. ophioglossoides |
12. Perithecia superficial, ascospores nonfractured | T. ramosum |
12′. Perithecia entirely embedded or ostiole slightly projecting | 13 |
13. Fertile part, cortex composed of pseudoparenchymatous peridial layer, and with an ectal layer | 14 |
13′. Fertile part, cortex composed of pseudoparenchymatous peridial layer, but without ectal layer | 19 |
14. Stromata clavate; perithecia narrowly ovoid, 750–1000 × 250–300 μm; part-spores cylindric, 6–8 × 1–1.5 μm | T. tenuisporum |
14′. Stromata capitate | 15 |
15. Part-spores, larger-sized, more than 20 μm long | 16 |
15′. Part-spores, less than 20 μm long | 17 |
16. Part-spores (12–)40–65 × (3–)4–5 μm | T. longisegmentatum |
16′. Part-spores 20–32 × 3.0–4.5 μm | T. inusitaticapitatum |
17. Part-spores, medium-sized, (13–)16(–21) × 2.5–3 μm | T. rouxii |
17′. Part-spores, small-sized, 2.5–6 μm long | 18 |
18. Perithecia elongate-ovoid, (560–)567–697(–750) × (200–)206–248(–250) μm; part-spores 2–5 × 1.5–2 μm | T. flavonigrum |
18′. Perithecia ovoid, 450–540 μm × 230–260 μm; part-spores 3–6 (commonly 4.5) × 1.5–2 μm | T. intermedium |
19. Stromata clavate | 20 |
19′. Stromata capitate | 21 |
20. Perithecia small, 245–495 μm long, deeply embedded; asci short, 195–270 μm long | T. guangdongense |
20′. Perithecia 500–550 μm long, ostiola slightly projecting; asci 330–370 μm long | T. japonicum |
21. Perithecia large, more than 900 μm long | 22 |
21′. Perithecia medium-sized, 400–700 μm long | 23 |
22. Perithecia ovoid, 900–1100 × 340–430 μm; part-spores cylindric or somewhat fusoid, 18–27 (commonly 24) × 2.5–3 μm | T. capitatum |
22′. Perithecia ampullaceous, 900–930 × 220–250 μm; part-spores fusoid, 16–18 × 3 μm | T. minazukiense |
23. Stipe slender, less than 1.0 mm thick | 24 |
23′. Stipe thick, columnar, 1.0–6.0 mm thick | 25 |
24. Perithecia 500–600 × 250–350 μm; part-spores 2–5 × 1.5–2 μm | T. fractum |
24′. Perithecia 400 × 250 μm; part-spores 6 × 1.5 μm | T. virens |
25. Asci 10–12 μm wide; part-spores medium-sized, 7.5–16 × 2.5–3 μm | T. valvatistipitatum |
25′. Asci slender, 6–8 μm wide; part-spores small-sized, 3–8 × 2 μm | T. valliforme |
Taxon | Strain/Specimen Voucher | GenBank Accession Numbers | ||||
---|---|---|---|---|---|---|
ITS | 28S | 18S | TEF1-α | RPB2 | ||
Aschersonia confluens | BCC 7961 | JN049841 | DQ384947 | DQ372100 | DQ384976 | DQ452465 |
A. paraphysata | BCC 1467 | DQ377987 | DQ372090 | DQ384967 | DQ452463 | |
Drechmeria gunnii | OSC 76404 | JN049822 | AF339522 | AF339572 | AY489616 | DQ522426 |
D. sinensis | CBS 567.95 | MH862540 | AF339545 | AF339594 | DQ522343 | DQ522443 |
D. zeospora ex | CBS 335.80 | MH861269 | AF339540 | AF339589 | EF469062 | EF469109 |
Ophiocordyceps gracilis | EFCC 8572 | JN049851 | EF468811 | EF468956 | EF468751 | EF468912 |
O. heteropoda | EFCC 10125 | JN049852 | EF468812 | EF468957 | EF468752 | EF468914 |
Paecilomyces lilacinus | CBS 431.87 | AY624188 | EF468844 | EF468791 | EF468940 | |
Pa. lilacinus ex | CBS 284.36 | AY624189 | FR775484 | EF468792 | EF468941 | |
Perennicordyceps cuboidea | NBRC 101740 | JN943331 | JN941417 | JN941724 | KF049684 | |
Pe. cuboidea | NBRC 100941 | JN943329 | JN941416 | JN941725 | ||
Pe. paracuboidea | NBRC 101742 | JN943338 | JN941431 | JN941710 | KF049685 | KF049669 |
Pe. paracuboidea | NBRC 100942 | JN943337 | JN941430 | JN941711 | AB972954 | AB972958 |
Pe. prolifica | TNS-F-18481 | KF049659 | KF049631 | KF049612 | KF049686 | |
Pe. prolifica | TNS-F-18547 | KF049660 | KF049632 | KF049613 | KF049687 | KF049670 |
Polycephalomyces aurantiacus | MFLU 17-1393 | MG136919 | MG136913 | MG136907 | MG136877 | MG136873 |
Po. aurantiacus | MFLUCC 17 2113 | MG136916 | MG136910 | MG136904 | MG136875 | MG136870 |
Po. marginaliradians | MFLU 17-1582 | MG136920 | MG136914 | MG136908 | MG136878 | MG271931 |
Po. marginaliradians | MFLUCC 17-2276 | MG1369 21 | MG136915 | MG136909 | MG136879 | MG271930 |
Po. nipponicus | NBRC 101406 | JN943301 | JN941388 | JN941753 | ||
Po. nipponicus | BCC 1682 | KF049664 | KF049638 | KF049620 | KF049694 | MF416463 |
Po. yunnanensis | YHCPY1005 | KF977848 | KF977848 | KF977848 | KF977850 | KF977854 |
Po. yunnanensis | YHHPY1006 | KF977849 | KF977849 | KF977849 | KF977851 | KF977855 |
Tolypocladium amazonense | VPB179 | KF747267 | KF747329 | |||
T. amazonense ex | MS308 | KF747134 | KF747314 | KF747099 | ||
T. capitatum | NBRC 106325 | JN941402 | JN941739 | AB968598 | AB968559 | |
T. capitatum | NBRC 100997 | JN941401 | JN941740 | AB968597 | AB968558 | |
T. cylindrosporum | ARSEF 2920 | MG228381 | MG228390 | MG228387 | ||
T. cylindrosporum | YFCC 1805001 | MK984581 | MK984577 | MK984565 | MK984569 | MK984573 |
T. endophyticum | MX535 | KF747260 | KF747153 | KF747322 | KF747117 | |
T. flavonigrum ex | BCC 66576 | MN338090 | MN337287 | MN338495 | ||
T. flavonigrum | BCC 66578 | MN338091 | MN337288 | MN338496 | ||
T. flavonigrum | BCC66580 | MN337289 | MN338497 | |||
T. fractum | OSC 110990 | DQ518759 | DQ522545 | DQ522328 | DQ522425 | |
T. fumosum | WA18945 | KU925171 | KU985053 | |||
T. geodes | CBS 126054 | MH864065 | MH875520 | |||
T. inflatum | OSC 71235 | JN049844 | EF469077 | EF469124 | EF469061 | EF469108 |
T. inflatum | CBS 127302 | MH864514 | MH875949 | |||
T. inusitaticapitatum | HKAS 112152 | MW537735 | MW537718 | MW537733 | MW507527 | MW507529 |
T. inusitaticapitatum | HKAS 112153 | MW537736 | MW537719 | MW537734 | MW507528 | MW507530 |
T. jezoense | txid94205 | AB027365 | AB027365 | AB027319 | ||
T. longisegmentatum | OSC 110992 | EF468816 | EF468919 | |||
T. nubicola | CBS 568.84 | MH861780 | MH873478 | |||
T. ophioglossoides | CBS 100239 | KU382155 | KJ878874 | KJ878910 | KJ878958 | |
T. ophioglossoides | NBRC 8992 | JN943316 | JN941405 | JN941736 | AB968601 | AB968562 |
T. ovalisporum | CBS 700.92 | AB457006 | ||||
T. paradoxum | NBRC 106958 | JN943324 | JN941411 | JN941730 | AB968600 | AB968561 |
T. paradoxum | NBRC 100945 | JN943323 | JN941410 | JN941731 | AB968599 | AB968560 |
T. pustulatum | MRL GB6597 | AF389189 | AF389190 | |||
T. tropicale | MX338 | KF747259 | KF747149 | KF747318 | KF747113 | |
T. tropicale ex | IQ214 | KF747254 | KF747125 | KF747090 | ||
T. tundrense | CBS 569.84 | MH861781 | MH873479 | |||
T. valliforme | DAOM 196368 | AY245640 | AY245648 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.-M.; Thilini Chethana, K.W.; Wei, D.-P.; Liu, J.-W.; Zhao, Q.; Tang, S.-M.; Li, L.; Hyde, K.D. Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China. Pathogens 2021, 10, 1389. https://doi.org/10.3390/pathogens10111389
Yu F-M, Thilini Chethana KW, Wei D-P, Liu J-W, Zhao Q, Tang S-M, Li L, Hyde KD. Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China. Pathogens. 2021; 10(11):1389. https://doi.org/10.3390/pathogens10111389
Chicago/Turabian StyleYu, Feng-Ming, Kandawatte Wedaralalage Thilini Chethana, De-Ping Wei, Jian-Wei Liu, Qi Zhao, Song-Ming Tang, Lu Li, and Kevin David Hyde. 2021. "Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China" Pathogens 10, no. 11: 1389. https://doi.org/10.3390/pathogens10111389
APA StyleYu, F. -M., Thilini Chethana, K. W., Wei, D. -P., Liu, J. -W., Zhao, Q., Tang, S. -M., Li, L., & Hyde, K. D. (2021). Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China. Pathogens, 10(11), 1389. https://doi.org/10.3390/pathogens10111389