Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh
Abstract
:1. Introduction
2. Results
2.1. Comparison of Genotypic and Phenotypic Susceptibility
2.2. gyr Gene Mutations among MDR-TB Isolates
2.3. Distribution of Mutation Patterns with MICs
2.4. Association of gyrA and gyrB Mutations with Beijing and non-Beijing Isolates
3. Discussion
4. Materials and Methods
4.1. Study Setting
4.2. GenoType MTBDRsl Assay
4.3. Selection of Different Drug Concentrations
4.4. Drug Susceptibility Testing
4.5. Spoligotyping
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Chernyaeva, E.; Fedorova, E.; Zhemkova, G.; Korneev, Y.; Kozlov, A. Characterization of multiple and extensively drug resistant Mycobacterium tuberculosis isolates with different ofloxacin-resistance levels. Tuberculosis 2013, 93, 291–295. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Announces Updated Definitions of Extensively Drug-Resistant Tuberculosis; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Chang, K.C.; Yew, W.W. Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Update 2012. Respirology 2013, 18, 8–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daley, C.L.; Caminero, J.A. Management of multidrug-resistant tuberculosis. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers: New York, NY, USA, 2018. [Google Scholar]
- Jeong, B.-H.; Jeon, K.; Park, H.Y.; Kwon, O.J.; Lee, K.S.; Kim, H.K.; Choi, Y.S.; Kim, J.; Huh, H.J.; Lee, N.Y. Outcomes of pulmonary MDR-TB: Impacts of fluoroquinolone resistance and linezolid treatment. J. Antimicrob. Chemother. 2015, 70, 3127–3133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, D.C. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis. 2001, 7, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruri, F.; Sterling, T.R.; Kaiga, A.W.; Blackman, A.; van der Heijden, Y.F.; Mayer, C.; Cambau, E.; Aubry, A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother. 2012, 67, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, B.; Lucke, K.; Calligaris-Maibach, R.; Ritter, C.; Bottger, E.C. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation. J. Clin. Microbiol. 2009, 47, 1773–1780. [Google Scholar] [CrossRef] [Green Version]
- Kambli, P.; Ajbani, K.; Sadani, M.; Nikam, C.; Shetty, A.; Udwadia, Z.; Rodwell, T.C.; Catanzaro, A.; Rodrigues, C. Correlating minimum inhibitory concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis 2015, 95, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Tagliani, E.; Cabibbe, A.M.; Miotto, P.; Borroni, E.; Toro, J.C.; Mansjö, M.; Hoffner, S.; Hillemann, D.; Zalutskaya, A.; Skrahina, A. Diagnostic performance of the new version (v2.0) of GenoType MTBDR sl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: A multicenter study. J. Clin. Microbiol. 2015, 53, 2961–2969. [Google Scholar] [CrossRef] [Green Version]
- LifeScience, H. GenoType MTBDRsl VER 2.0 Instructions for Use; Document IFU-317A-01; HAIN LifeScience: Nehren, Germany, 2015. [Google Scholar]
- Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis. 2003, 3, 432–442. [Google Scholar] [CrossRef]
- Nosova, E.Y.; Bukatina, A.A.; Isaeva, Y.D.; Makarova, M.V.; Galkina, K.Y.; Moroz, A.M. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J. Med. Microbiol. 2013, 62, 108–113. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Malik, S.; Willby, M.; Sikes, D.; Tsodikov, O.V.; Posey, J.E. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: Functional genetic analysis of gyrA and gyrB mutations. PLoS ONE 2012, 7, e39754. [Google Scholar] [CrossRef]
- Kabir, S.; Tahir, Z.; Mukhtar, N.; Sohail, M.; Saqalein, M.; Rehman, A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm. Med. 2020, 20, 1–6. [Google Scholar] [CrossRef]
- Böttger, E. The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clin. Microbiol. Infect. 2011, 17, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Al-Shaer, M.H.; Alghamdi, W.A.; Alsultan, A.; An, G.; Ahmed, S.; Alkabab, Y.; Banu, S.; Barbakadze, K.; Houpt, E.; Kipiani, M. Fluoroquinolones in drug-resistant tuberculosis: Culture conversion and pharmacokinetic/pharmacodynamic target attainment to guide dose selection. Antimicrob. Agents Chemother. 2019, 63, e00279–e00291. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.W.-C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; Behera, D.; et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet 2018, 392, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Niward, K.; Ängeby, K.; Chryssanthou, E.; Paues, J.; Bruchfeld, J.; Jureen, P.; Giske, C.G.; Kahlmeter, G.; Schön, T. Susceptibility testing breakpoints for Mycobacterium tuberculosis categorize isolates with resistance mutations in gyrA as susceptible to fluoroquinolones: Implications for MDR-TB treatment and the definition of XDR-TB. J. Antimicrob. Chemother. 2016, 71, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Couvin, D.; David, A.; Zozio, T.; Rastogi, N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect. Genet. Evol. 2019, 72, 31–43. [Google Scholar] [CrossRef]
- Yin, X.; Yu, Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China. J. Infect. 2010, 61, 150–154. [Google Scholar] [CrossRef]
- Brossier, F.; Veziris, N.; Aubry, A.; Jarlier, V.; Sougakoff, W. Detection by GenoType MTBDR sl Test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex Isolates. J. Clin. Microbiol. 2010, 48, 1683–1689. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-Y.; Lee, L.-N.; Lai, H.-C.; Wang, S.-K.; Jan, I.-S.; Yu, C.-J.; Hsueh, P.-R.; Yang, P.-C. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: Associated genetic mutations and relationship to antimicrobial exposure. J. Antimicrob. Chemother. 2007, 59, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Sirgel, F.A.; Warren, R.M.; Streicher, E.M.; Victor, T.C.; van Helden, P.D.; Böttger, E.C. gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012, 67, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Hameed, H.A.; Tan, Y.; Islam, M.M.; Guo, L.; Chhotaray, C.; Wang, S.; Liu, Z.; Gao, Y.; Tan, S.; Yew, W.W. Phenotypic and genotypic characterization of levofloxacin-and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in southern China. J. Thorac. Dis. 2019, 11, 4613. [Google Scholar] [CrossRef]
- Canetti, G.; Fox, W.; Khomenko, A.a.; Mahler, H.; Menon, N.; Mitchison, D.; Rist, N.; Šmelev, N. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull. World Health Organ. 1969, 41, 21. [Google Scholar]
- Kamerbeek, J.; Schouls, L.; Kolk, A.; Van Agterveld, M.; Van Soolingen, D.; Kuijper, S.; Bunschoten, A.; Molhuizen, H.; Shaw, R.; Goyal, M. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997, 35, 907–914. [Google Scholar] [CrossRef] [Green Version]
Drugs | No. of Resistant Isolates (n = 50) | Frequency (%) |
---|---|---|
MOX | 44 | 88% |
LEV | 49 | 98% |
OFL | 49 | 98% |
MOX + LEV | 44 | 88% |
MOX + OFL | 44 | 88% |
LEV + OFL | 49 | 98% |
MOX + LEV + OFL | 44 | 88% |
Drugs | Concentration Evaluated in L-J (μg/mL) | Critical Concentration (μg/mL) |
---|---|---|
Moxifloxacin | 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 | 1.0 |
Levofloxacin | 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 | 2.0 |
Ofloxacin | 1.0, 2.0, 4.0, 8.0, 16.0, 32.0 | 4.0 |
Mutations | Amino Acid Substitutions | Total No. (%) | MIC (μg/mL) | No. of Isolates | MIC Ranges (μg/mL) | ||||
---|---|---|---|---|---|---|---|---|---|
MOX | LEV | OFL | MOX | LEV | OFL | ||||
gyrA MUT1 | A90V | 19 (38%) | 1 | 2 | 4 | 1 | 1.0–4.0 | 2.0–8.0 | 4.0–32.0 |
1 | 4 | 8 | 4 | ||||||
1 | 4 | 16 | 1 | ||||||
2 | 4 | 8 | 3 | ||||||
2 | 4 | 16 | 2 | ||||||
2 | 8 | 16 | 1 | ||||||
4 | 4 | 8 | 2 | ||||||
4 | 4 | 16 | 1 | ||||||
4 | 8 | 16 | 3 | ||||||
4 | 8 | 32 | 1 | ||||||
gyrA MUT2 | S91P | 1 (2%) | 4 | 4 | 8 | 1 | 4.00 | 4.00 | 8.00 |
gyrA MUT3A | D94A | 4 (8%) | 2 | 4 | 8 | 2 | 2.0–4.0 | 4.0–8.0 | 8.0–16.0 |
4 | 4 | 8 | 1 | ||||||
4 | 8 | 16 | 1 # | ||||||
gyrA MUT3B | D94N/D94Y | 4 (8%) | 4 | 4 | 16 | 1 | 4.0–8.0 | 4.0–8.0 | 16.0–32.0 |
4 | 8 | 16 | 1 | ||||||
8 | 8 | 16 | 1 | ||||||
8 | 8 | 32 | 1 | ||||||
gyrA MUT3C | D94G | 16 (32%) | 4 | 4 | 8 | 1 | 4.0–8.0 | 4.0–16.0 | 8.0–32.0 |
4 | 4 | 16 | 3 | ||||||
4 | 8 | 16 | 8 | ||||||
4 | 8 | 32 | 1 | ||||||
8 | 8 | 16 | 1 | ||||||
8 | 8 | 32 | 1 | ||||||
8 | 16 | 32 | 1 # | ||||||
gyrB MUT1 | N538D | 1 (2%) | 4 | 8 | 16 | 1 | 4.00 | 8.00 | 16.00 |
- | Unidentified | 5 (10%) | 4 | 8 | 16 | 2 | 4.0–8.0 | 8.00 | 16.00 |
8 | 8 | 16 | 3 | ||||||
WT | No mutation | 12 | 0.5 | 1.0 | 2.0 | 8 | 0.5–1.0 | 1.0–2.0 | 2.0–4.0 |
1.0 | 2.0 | 4.0 | 4 |
Mutations (n = 50) | MOX | LEV | OFL | ||||||
---|---|---|---|---|---|---|---|---|---|
MIC ≤ 2 μg/mL (n = 14, 28%) | MIC > 2 μg/mL (n = 36, 72%) | p-Value | MIC ≤ 4 μg/mL (n = 23, 46%) | MIC > 4 μg/mL (n = 27, 54%) | p-Value | MIC ≤ 8 μg/mL (n = 15, 30%) | MIC > 8 μg/mL (n = 35, 70%) | p-Value | |
A90V | 12 | 7 | 0.001 | 14 | 5 | 0.009 | 10 | 9 | 0.004 |
S91P | 0 | 1 | 1 | 0 | 1 | 0 | |||
D94A | 2 | 2 | 3 | 1 | 3 | 1 | |||
D94N/D94Y | 0 | 4 | 1 | 3 | 0 | 4 | |||
D94G | 0 | 16 | 4 | 12 | 1 | 15 | |||
N538D | 0 | 1 | 0 | 1 | 0 | 1 | |||
Unidentified | 0 | 5 | 0 | 5 | 0 | 5 |
Spoligotypes | Mutations | Overall MIC Ranges (μg/mL) | No. of Isolates | p-Value | |||
---|---|---|---|---|---|---|---|
MOX | LEV | OFL | |||||
Beijing (17) | A90V | 4.0–8.0 | 4.0–8.0 | 8.0–32.0 | 2 | 0.179 | |
S91P | 1 | ||||||
D94A | 2 | ||||||
D94N/D94Y | 4 | ||||||
D94G | 8 | ||||||
Non-Beijing (33) | LAM (13) | A90V | 2.0–8.0 | 4.0–16.0 | 8.0–32.0 | 7 | |
D94G | 4 | ||||||
Unidentified | 2 | ||||||
T1 (10) | A90V | 1.0–8.0 | 4.0–8.0 | 8.0–32.0 | 3 | ||
D94A | 2 | ||||||
D94G | 3 | ||||||
N538D | 1 | ||||||
Unidentified | 1 | ||||||
Orphan (6) | A90V | 1.0–8.0 | 4.0–8.0 | 8.0–32.0 | 3 | ||
D94G | 1 | ||||||
Unidentified | 2 | ||||||
CAS (2) | A90V | 1.0–4.0 | 4.0 | 8.0 | 2 | ||
EAI (2) | A90V | 1.0–4.0 | 2.0–8.0 | 4.0–32.0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, M.K.M.; Ather, M.F.; Nasrin, R.; Rahman, T.; Islam, A.S.M.I.; Rahman, S.M.M.; Ahmed, S.; Banu, S. Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Pathogens 2021, 10, 1422. https://doi.org/10.3390/pathogens10111422
Uddin MKM, Ather MF, Nasrin R, Rahman T, Islam ASMI, Rahman SMM, Ahmed S, Banu S. Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Pathogens. 2021; 10(11):1422. https://doi.org/10.3390/pathogens10111422
Chicago/Turabian StyleUddin, Mohammad Khaja Mafij, Md. Fahim Ather, Rumana Nasrin, Tanjina Rahman, A. S. M. Iftekhairul Islam, S. M. Mazidur Rahman, Shahriar Ahmed, and Sayera Banu. 2021. "Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh" Pathogens 10, no. 11: 1422. https://doi.org/10.3390/pathogens10111422
APA StyleUddin, M. K. M., Ather, M. F., Nasrin, R., Rahman, T., Islam, A. S. M. I., Rahman, S. M. M., Ahmed, S., & Banu, S. (2021). Correlation of gyr Mutations with the Minimum Inhibitory Concentrations of Fluoroquinolones among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Bangladesh. Pathogens, 10(11), 1422. https://doi.org/10.3390/pathogens10111422