Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions
Abstract
:1. Introduction
2. Results
Phylogenetic Analysis
3. Discussion
4. Materials and Methods
4.1. Study 1—Area of the Province of Manabí
4.2. Study 2—Area of the Province of Pinchincha
4.3. Collection and Analysis of Blood Samples
4.4. Packed Cell Volume Determination
4.5. DNA Extraction
4.6. RFLP-PCR for the Detection of the 18s Fragment for Babesia spp.
4.7. Analysis of the Sequence Obtained
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-García, G.; Santamaría-Espinosa, R.M.; Lira-Amaya, J.J.; Figueroa, J.V. Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.; Jackson, L.; De Vos, A.; Jorgensen, W. Babesiosis of Cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Rojas, C.; Figueroa, J.V. Diagnostic Tools for the Identification of Babesia sp. in Persistently Infected Cattle. Pathogens 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Guglielmone, A.A. Epidemiology of Babesiosis and Anaplasmosis in South and Central America. Vet. Parasitol. 1995, 57, 109–119. [Google Scholar] [CrossRef]
- Amorim, L.S.; Wenceslau, A.A.; Carvalho, F.S.; Carneiro, P.L.S.; Albuquerque, G.R. Bovine Babesiosis and Anaplasmosis Complex: Diagnosis and Evaluation of the Risk Factors from Bahia, Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 328–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Assis Leite Souza, F.; de Siqueira Cajado Liarte, A.; de Carvalho Castro, K.N.; Beserra, E.E.A.; Bernardi, J.S.M.; de Sousa, G.V.; Costa-Júnior, L.M.; de Sousa Silva, S.M.M. Dynamics of Natural Infection by Babesia Bovis and Babesia Bigemina in Dairy Cattle from an Enzootic Instability Area in Northeastern Brazil. Rev. Bras. Parasitol. Vet. 2018, 27, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaimes-Dueñez, J.; Triana-Chávez, O.; Holguín-Rocha, A.; Tobon-Castaño, A.; Mejía-Jaramillo, A.M. Molecular Surveillance and Phylogenetic Traits of Babesia bigemina and Babesia bovis in Cattle (Bos taurus) and Water Buffaloes (Bubalus bubalis) from Colombia. Parasites Vectors 2018, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.L.; Canever, M.F.; Cardozo, L.L.; Cardoso, C.P.; Herkenhoff, M.E.; Neto, A.T.; Vogel, C.I.G.; Miletti, L.C. Prevalence of Anaplasma marginale, Babesia bovis and Babesia bigemina in Cattle in the Campos de Lages Region, Santa Catarina State, Brazil, Estimated by Multiplex-PCR. Parasite Epidemiol. Control 2019, 6, e00114. [Google Scholar] [CrossRef] [PubMed]
- Romero-Salas, D.; Mira, A.; Mosqueda, J.; García-Vázquez, Z.; Hidalgo-Ruiz, M.; Vela, N.A.O.; de León, A.A.P.; Florin-Christensen, M.; Schnittger, L. Molecular and Serological Detection of Babesia bovis- and Babesia bigemina-Infection in Bovines and Water Buffaloes Raised Jointly in an Endemic Field. Vet. Parasitol. 2016, 217, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, M.; Rashid, M.I.; Akbar, H.; Ahmad, L.; Hassan, M.A.; Ashraf, K.; Saeed, K.; Gharbi, M. A Systematic Review on Modelling Approaches for Economic Losses Studies Caused by Parasites and Their Associated Diseases in Cattle. Parasitology 2019, 146, 129–141. [Google Scholar] [CrossRef]
- Gray, J.S.; Estrada-Peña, A.; Zintl, A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Grisi, L.; Leite, R.C.; de Souza Martins, J.R.; de Barros, A.T.M.; Andreotti, R.; Cançado, P.H.D.; de León, A.A.P.; Pereira, J.B.; Villela, H.S. Reassessment of the Potential Economic Impact of Cattle Parasites in Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenza, J.C.; Suk, J.E. Vector-Borne Diseases and Climate Change: A European Perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef] [PubMed]
- Carrique Mas, J.J.; Widdowson, M.-A.; Cuéllar, A.M.; Ribera, H.; Walker, A.R. Risk of Babesiosis and Anaplasmosis in Different Ecological Zones of Santa Cruz Department, Bolivia. Vet. Parasitol. 2000, 93, 29–38. [Google Scholar] [CrossRef]
- Ministerio del Ambiente del Ecuador. Sistema de Clasificacion de Ecosistemas del Ecuador Continental; Subsecretaría de Patrimonio Natural Quito: Quito, Ecuador, 2013; Volume 1. [Google Scholar]
- Maya-Delgado, A.; Madder, M.; Benitez-Ortiz, W.; Saegerman, C.; Berkvens, D.; Ron-Garrido, L. Molecular Screening of Cattle Ticks, Tick-Borne Pathogens and Amitraz Resistance in Ticks of Santo Domingo de Los Tsáchilas Province in Ecuador. Ticks Tick-Borne Dis. 2020, 11, 8. [Google Scholar] [CrossRef]
- Vasco Aguas, K.A.; Vasco, L. Estandarización de la Técnica de Análisis de Fusión de Alta Resolución Para la Detección de Babesia en Garrapatas Utilizando Polimorfismos de Nucleótidos. Tesis para la Obtencion del Titulo en Medicina Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador, 2012. [Google Scholar]
- Gioia, G.V.; Vinueza, R.L.; Marsot, M.; Devillers, E.; Cruz, M.; Petit, E.; Boulouis, H.J.; Moutailler, S.; Monroy, F.; Coello, M.A.; et al. Bovine Anaplasmosis and Tick-Borne Pathogens in Cattle of the Galapagos Islands. Transbound Emerg. Dis. 2018, 65, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Carret, C.; Walas, F.; Carcy, B. Babesia Canis Canis, Babesia Canis Voaeli, Babesia canis Rossi. Society 1999, 46, 298–303. [Google Scholar]
- Medina-Naranjo, V.L.; Reyna-Bello, A.; Tavares-Marques, L.M.; Campos, A.M.; Ron-Román, J.W.; Moyano, J.C.; Jarrín-Porras, E.C.; Sandoval-Morejón, E.D.; Chávez-Larrea, M.A. Diagnóstico de Los Hemotrópicos Anaplasma Marginale, Trypanosoma spp. y Babesia spp. Mediante Las Técnicas de Elisai y PCR En Tres Fincas Ganaderas de La Provincia de Pastaza, Ecuador. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 2017, 27, 162–171. [Google Scholar]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The Current Status of Resistance to Alpha-Cypermethrin, Ivermectin, and Amitraz of the Cattle Tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G+C-Content Biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Peña, A.; Bouattour, A.; Camicas, J.-L.; Guglielmone, A.; Horak, I.; Jongejan, F.; Latif, A.; Pegram, R.; Walker, A.R. The Known Distribution and Ecological Preferences of the Tick Subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp. Appl. Acarol. 2006, 38, 219–235. [Google Scholar] [CrossRef]
- Enríquez, S.; Guerrero, R.; Arrivillaga-Henríquez, J.; Araujo, P.; Villacrés, E.; Enríquez, A.; Benítez-Ortíz, W. New Records of Ticks of Genus Amblyomma Koch, 1844 (Acari: Ixodidae) for Ecuador. Acta Parasit. 2020, 65, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Benavides Ortiz, E. Las Garrapatas del Ganado Bovino y los Agentes de Enfermedad que Transmiten en Escenarios Epidemiológicos de Cambio Climático: Guia Para el Manejo de Garrapatas Y Adaptación al Cambio Climático; Instituto Interamericano de Cooperación para la Agricultura (IICA), Universidad de La Salle: San José, Costa Rica, 2016; ISBN 978-92-9248-655-6. [Google Scholar]
- Léger, E.; Vourc’h, G.; Vial, L.; Chevillon, C.; McCoy, K.D. Changing Distributions of Ticks: Causes and Consequences. Exp. Appl. Acarol. 2013, 59, 219–244. [Google Scholar] [CrossRef]
- Ogden, N.H.; Ben Beard, C.; Ginsberg, H.S.; Tsao, J.I. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J. Med. Entomol. 2021, 58, 1536–1545. [Google Scholar] [CrossRef]
- Acevedo-Gutiérrez, L.Y.; Paternina, L.E.; Londoño, A.F.; Parra-Henao, G.; Rodas, J.D. Modelos potenciales de distribución geográfica y climática del complejo Amblyomma cajennense (Acari: Ixodidae), potencial vector de Rickettsia rickettsii en Colombia. Biomedica 2018, 38. [Google Scholar] [CrossRef]
- Durden, L.A.; Keirans, J.E. Description of the Larva, Diagnosis of the Nymph and Female Based on Scanning Electron Microscopy, Hosts, and Distribution of Ixodes (Ixodes) venezuelensis. Med. Vet. Entomol. 1994, 8, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, Z.; Wang, L.; Xiao, L.; Dong, N.; Wu, H.; Li, S. Projecting the Potential Distribution of Ticks in China under Climate and Land Use Change. Int. J. Parasitol. 2021, 51, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and Its Hosts: Adaptation to Long-Lasting Interactions as a Way to Achieve Efficient Transmission. Vet. Res. 2009, 40, 37. [Google Scholar] [CrossRef] [Green Version]
- Suarez, C.E.; Noh, S. Emerging Perspectives in the Research of Bovine Babesiosis and Anaplasmosis. Vet. Parasitol. 2011, 180, 109–125. [Google Scholar] [CrossRef]
- da Silva, J.B.; André, M.R.; da Fonseca, A.H.; de Albuquerque Lopes, C.T.; da Silva Lima, D.H.; de Andrade, S.J.T.; Oliveira, C.M.C.; Barbosa, J.D. Molecular and Serological Prevalence of Babesia bovis and Babesia bigemina in Water Buffaloes in the North Region of Brazil. Vet. Parasitol. 2013, 197, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Dueñez, J.; Triana-Chávez, O.; Mejía-Jaramillo, A.M. Parasitological and Molecular Surveys Reveal High Rates of Infection with Vector-Borne Pathogens and Clinical Anemia Signs Associated with Infection in Cattle from Two Important Livestock Areas in Colombia. Ticks Tick-Borne Dis. 2017, 8, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.S.; de Souza Ramos, I.A.; Herrera, H.M.; Campos, J.B.V.; de Almeida Alves, J.V.; de Macedo, G.C.; Machado, R.Z.; André, M.R. Genetic Diversity of Babesia bovis in Beef Cattle in a Large Wetland in Brazil. Parasitol. Res. 2019, 118, 2027–2040. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.A.; Minichiello, Y.; Araujo, F.R.; Shkap, V.; Benítez, D.; Echaide, I.; Rolls, P.; Mosqueda, J.; Pacheco, G.M.; Petterson, M.; et al. Evidence for Extensive Genetic Diversity and Substructuring of the Babesia Bovis Metapopulation. Transbound. Emerg. Dis. 2013, 60, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Nacional de Estadística y Censo. Agricultura, Silvicultura y Pesca; ES: Quito, Ecuador, 2020. [Google Scholar]
- Instituto Nacional de Metereología e Hidrología INAMHI. Boletin Climatológico Semestral 2016; ES: Quito, Ecuador, 2016; p. 22. [Google Scholar]
- Instituto Nacional de Meteorología e Hidrología INAMHI. Boletín Climático Mensual; ES: Quito, Ecuador, 2021; p. 6. [Google Scholar]
- Rockett, J.; Bosted, S. Veterinary Clinical Procedures in Large Animal Practice. Bosted, S., Ed.; Thompson-Delmar Learning: Boston, MA, USA, 2007; ISBN 978-1-4018-5787-5. [Google Scholar]
- Tana-Hernández, L.; Navarrete-Arroyo, K.; Ron-Román, J.; Reyna-Bello, A.; Chávez-Larrea, M.A. PCR-Diagnosis of Anaplasma marginale in Cattle Populations of Ecuador and Its Molecular Identification through Sequencing of Ribosomal 16S Fragments. BMC Vet. Res. 2017, 13, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carret, C.; Delbecq, S.; Labesse, G.; Carcy, B.; Precigout, E.; Moubri, K.; Schetters, T.P.M.; Gorenflot, A. Characterization and Molecular Cloning of an Adenosine Kinase from Babesia canis rossi: Molecular Cloning of a B. canis rossi Adenosine Kinase. Eur. J. Biochem. 2001, 265, 1015–1021. [Google Scholar] [CrossRef]
- Figueroa, J.V. Optimización de una prueba de pcr-rflp para detección y diferenciación de Babesia sp. en garrapatas Rhipicephalus microplus. Entomol. Vet. 2014, 1, 978–983. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
Farm Code | Total Animals Present on the Farm | Sample | Positive Babesia spp. | Positive B. bovis | Positive B. bigemina | ||||
---|---|---|---|---|---|---|---|---|---|
PCR 18s | Restriction Enzymes | Restriction Enzymes | |||||||
No | % by Farm | No | % | No | % | No | % | ||
El Carmen-Manabí Zone | |||||||||
F-1 | 8 | 8 | 100 | 1 | 12.5 | 1 | 12.5 | 0 | 0 |
F-2 | 21 | 5 | 23.8 | 0 | 0 | 0 | 0 | 0 | 0 |
F-3 | 16 | 7 | 43.8 | 0 | 0 | 0 | 0 | 0 | 0 |
F-4 | 194 | 39 | 20.1 | 0 | 0 | 0 | 0 | 0 | 0 |
F-5 | 43 | 6 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
F-6 | 152 | 17 | 11.2 | 0 | 0 | 0 | 0 | 0 | 0 |
F-7 | 6 | 4 | 66.7 | 2 | 50 | 2 | 50 | 0 | 0 |
F-8 | 60 | 20 | 33.3 | 7 | 35 | 4 | 20 | 3 | 15 |
F-9 | 112 | 36 | 32.1 | 8 | 22.2 | 6 | 16.7 | 2 | 5.6 |
F-10 | 38 | 8 | 21.1 | 0 | 0 | 0 | 0 | 0 | 0 |
F-11 | 16 | 16 | 100 | 7 | 43.8 | 6 | 37.5 | 1 | 6.3 |
F-12 | 165 | 28 | 17 | 2 | 7.1 | 2 | 7.1 | 0 | 0 |
F-13 | 17 | 9 | 52.9 | 0 | 0 | 0 | 0 | 0 | 0 |
F-14 | 27 | 25 | 92.6 | 6 | 24 | 3 | 12 | 3 | 12 |
F-15 | 8 | 4 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
F-16 | 5 | 5 | 100 | 1 | 20 | 0 | 0 | 1 | 20 |
F-17 | 2 | 2 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
F-18 | 17 | 6 | 35.3 | 3 | 50 | 3 | 50 | 0 | 0 |
F-19 | 27 | 12 | 44.4 | 9 | 75 | 8 | 66.7 | 1 | 8.3 |
F-20 | 9 | 7 | 77.8 | 4 | 57.1 | 4 | 57.1 | 0 | 0 |
All farms | 943 | 264 | 28 | 50 | 18.93 | 39 | 14.77 | 11 | 4.17 |
Quito-Pichincha Zone | |||||||||
F-1 | 164 | 143 | 87, 20 | 29 | 20, 28 | 21 | 14, 69 | 8 | 5, 59 |
Variables | Sample | Positive | Fisher’s Exact Test (p-Value) | ||
---|---|---|---|---|---|
Number | % | Number | % | ||
El Carmen-Manabí Zone (n = 264) | |||||
Sex | 0.38 | ||||
Male | 38 | 14.39 | 5 | 13.16 | |
Female | 226 | 85.61 | 45 | 19.91 | |
Age group | 0.48 | ||||
0 to 9 | 21 | 7.95 | 6 | 28.57 | |
10 to 18 | 7 | 2.65 | 3 | 42.86 | |
19 to 36 | 18 | 6.82 | 4 | 22.22 | |
>36 months | 137 | 5189 | 29 | 21.17 | |
ND | 81 | 30.68 | 8 | 9.88 | |
Quito-Pichincha Zone (n = 143) | |||||
Sex | 0.35 | ||||
Male | 7 | 4.9 | 0 | 0 | |
Female | 136 | 95.1 | 29 | 21.32 | |
Age group | 0.004 | ||||
0 to 9 | 26 | 18.18 | 0 | 0 | |
10 to 18 | 27 | 18.88 | 4 | 13.79 | |
19 to 36 | 70 | 48.95 | 21 | 72.41 | |
>36 months | 20 | 13.99 | 4 | 13.79 |
No | Farm Code | Age | Weight | T | PCV | Heart Rate | Respiratory Rate | Other Clinical Findings | Positive B. bovis by PCR |
---|---|---|---|---|---|---|---|---|---|
1 | 425 | 12 | 232 | 39.5 | 19 | 84 | 47 | Pale mucous membranes, swollen cervical glands | − |
2 | 433 | 15 | 199 | 39 | 16 | 85 | 64 | Salivation, pale mucous membranes, jaundice | + |
3 | 38 | 15 | 202 | 40 | 29 | 100 | 57 | Swollen groin glands | + |
Study Areas | Ecuadorian Code | Isolated | Species | Total Score | Identity Percentage | Query Coverage | No. Access Gen Bank |
---|---|---|---|---|---|---|---|
El Carmen (province of Manabi) | M5 | EcuBbo 1 | B. bovis | 684 | 100% | 98% | OL583933 |
M92 | OL583936 | ||||||
M100 | OL583938 | ||||||
M149 | OL583940 | ||||||
M154 | OL583941 | ||||||
M187 | OL583942 | ||||||
M245 | OL583943 | ||||||
M279 | OL583944 | ||||||
M97 | EcuBbo 2 | B. bovis | 684 | 100% | 98% | OL583937 | |
M103 | EcuBbo 3 | B. bovis | 678 | 99.73% | 98% | OL583939 | |
M232 | EcuBbi 1 | B. bigemina | 717 | 99.74% | 99% | OL583950 | |
M260 | EcuBbi 2 | B. bigemina | 721 | 99.75% | 100% | OL583949 | |
Quito (province of Pinchincha) | 85 | EcuBbo 2 | B. bovis | 684 | 100% | 98% | OL583934 |
86 | OL583935 | ||||||
310 | EcuBbo 4 | B. bovis | 678 | 99.73% | 98% | OL583946 | |
300 | OL583945 | ||||||
314 | OL583947 | ||||||
315 | OL583948 | ||||||
260 | EcuBbi 3 | B. bigemina | 701 | 98.98% | 99% | OL583951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Larrea, M.A.; Cholota-Iza, C.; Medina-Naranjo, V.; Yugcha-Díaz, M.; Ron-Román, J.; Martin-Solano, S.; Gómez-Mendoza, G.; Saegerman, C.; Reyna-Bello, A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens 2021, 10, 1593. https://doi.org/10.3390/pathogens10121593
Chávez-Larrea MA, Cholota-Iza C, Medina-Naranjo V, Yugcha-Díaz M, Ron-Román J, Martin-Solano S, Gómez-Mendoza G, Saegerman C, Reyna-Bello A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens. 2021; 10(12):1593. https://doi.org/10.3390/pathogens10121593
Chicago/Turabian StyleChávez-Larrea, María A., Cristina Cholota-Iza, Viviana Medina-Naranjo, Michelle Yugcha-Díaz, Jorge Ron-Román, Sarah Martin-Solano, Gelacio Gómez-Mendoza, Claude Saegerman, and Armando Reyna-Bello. 2021. "Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions" Pathogens 10, no. 12: 1593. https://doi.org/10.3390/pathogens10121593
APA StyleChávez-Larrea, M. A., Cholota-Iza, C., Medina-Naranjo, V., Yugcha-Díaz, M., Ron-Román, J., Martin-Solano, S., Gómez-Mendoza, G., Saegerman, C., & Reyna-Bello, A. (2021). Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens, 10(12), 1593. https://doi.org/10.3390/pathogens10121593