Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
1.1. Natural Casings
1.2. Animal Viruses Selection
2. Results
2.1. Q1 Viral Load
2.1.1. African Swine Fever Virus (ASFV) Characteristics
2.1.2. ASFV Intestinal Viral Load
2.1.3. Bovine Viral Diarrhoea Virus (BVDV) Characteristics
2.1.4. BVDV Intestinal Viral Load
2.1.5. Classical Swine Fever Virus (CSFV) Characteristics
2.1.6. CSFV Intestinal Viral Loads
2.1.7. Foot and Mouth Disease Virus (FMDV)
2.1.8. FMDV Intestinal Viral Load
2.1.9. Hepatitis E Virus (HEV)
2.1.10. HEV Intestinal Viral Load
2.1.11. Porcine Epidemic Diarrhoea Virus (PEDV)
2.1.12. PEDV Intestinal Viral Load
2.1.13. Peste des Petits Ruminants Virus (PPRV)
2.1.14. PPRV Intestinal Viral Load
2.1.15. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)
2.1.16. PRRSV Intestinal Viral Load
2.1.17. Pseudorabies Virus (PrV)
2.1.18. PrV Intestinal Viral Load
2.1.19. Rinderpest Virus (RPV)
2.1.20. RPV Intestinal Viral Load
2.1.21. Swine Vesicular Disease Virus (SVDV)
2.1.22. SVDV Intestinal Viral Load
2.1.23. Transmissible Gastroenteritis Virus (TGEV)
2.1.24. TGEV Intestinal Viral Load
2.1.25. Vesicular Exanthema of Swine Virus (VESV)
2.1.26. VESV Intestinal Viral Load
2.1.27. Vesicular Stomatitis Virus (VSV)
2.1.28. VSV Intestinal Viral Load
2.2. Q2 Inactivation Kinetics
2.2.1. Inactivation of BVDV
2.2.2. Inactivation of PPRV
2.2.3. Inactivation of CSFV
2.2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Search Questions
4.2. Search Strategy and Methodology
4.3. Data Extraction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIE. 2020. Available online: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/ (accessed on 7 September 2020).
- Farez, S.; Morley, R.S. Potential animal health hazards of pork and pork products. Rev. Sci. Tech. Off. Int. Epizoot. 1997, 16, 65–78. [Google Scholar] [CrossRef]
- Reed, C. Supplementary Import Risk Analysis: Sausage Casings of Bovine and Porcine Origin; Ministery for Primary Industries: Wellington, New Zealand, 2015. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific opinion on animal health risk mitigation treatments as regards imports of animal casings. EFSA J. 2012, 10, 2820. [Google Scholar]
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J. ICTV virus taxonomy profile: Asfarviridae. J. Gen. Virol. 2018, 99. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.L.; Vosloo, W. Review of African swine fever: Transmission, spread and control: Review article. J. S. Afr. Vet. Assoc. 2009, 80. [Google Scholar] [CrossRef] [Green Version]
- OIE_WAHIS_Interface. Available online: https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/diseasehome (accessed on 5 September 2020).
- Schulz, K.; Conraths, F.J.; Blome, S.; Staubach, C.; Sauter-Louis, C. African Swine Fever: Fast and Furious or Slow and Steady? Viruses 2019, 11, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowright, W.; Parker, J.; Staple, R.F. The growth of a virulent strain of African swine fever virus in domestic pigs. J. Hyg. 1968, 66, 117–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKercher, P.D.; Morgan, D.O.; McVicar, J.W.; Shuot, N.J. Thermal processing to inactivate viruses in meat products. Proc. Annu. Meet. U. S. Anim. Health Assoc. 1980, 84, 320–328. [Google Scholar]
- Jelsma, T.; Wijnker, J.J.; Smid, B.; Verheij, E.; Poel, W.H.M.v.d.; Wisselink, H.J. Salt inactivation of classical swine fever virus and African swine fever virus in porcine intestines confirms the existing in vitro casings model. Vet. Microbiol. 2019, 238, 108424. [Google Scholar] [CrossRef] [PubMed]
- Souto, R.; Mutowembwa, P.; Heerden, J.v.; Fosgate, G.T.; Heath, L.; Vosloo, W. Vaccine potential of two previously uncharacterized African swine fever virus isolates from southern Africa and heterologous cross protection of an avirulent European isolate. Transbound. Emerg. Dis. 2016, 63, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microbes Infect. 2019, 8, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xia, H.; Wahlberg, N.; Belák, S.; Baule, C. Phylogeny, classification and evolutionary insights into pestiviruses. Virology 2009, 385, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Ridpath, J.F.; Bolin, S.R.; Dubovi, E.J. Segregation of Bovine Viral Diarrhea Virus into Genotypes. Virology 1994, 205, 66–74. [Google Scholar] [CrossRef]
- Zhang, G.; Aldridge, S.; Clarke, M.C.; McCauley, J.W. Cell death induced by cytopathic bovine viral diarrhoea virus is mediated by apoptosis. J. Gen. Virol. 1996, 77, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Weir, A.M.; Weston, J.F.; Heuer, C.; Gates, M.C. Elimination of bovine viral diarrhoea virus in New Zealand: A review of research progress and future directions. N. Z. Vet. J. 2018, 66, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Scharnböck, B.; Roch, F.-F.; Richter, V.; Funke, C.; Firth, C.L.; Obritzhauser, W.; Baumgartner, W.; Käsbohrer, A.; Pinior, B. A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci. Rep. 2018, 8, 14420. [Google Scholar] [CrossRef] [Green Version]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet. J. 2014, 199, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Ridpath, J.F. Bovine Viral Diarrhea Virus: Global Status. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 105–121. [Google Scholar] [CrossRef]
- Tao, J.; Liao, J.; Wang, Y.; Zhang, X.; Wang, J.; Zhu, G. Bovine viral diarrhea virus (BVDV) infections in pigs. Vet. Microbiol. 2013, 165, 185–189. [Google Scholar] [CrossRef]
- Terpstra, C.; Wensvoort, G. Natural infections of pigs with bovine viral diarrhoea virus associated with signs resembling swine fever. Res. Vet. Sci. 1988, 45, 137–142. [Google Scholar] [CrossRef]
- Wieringa-Jelsma, T.; Quak, S.; Loeffen, W.L.A. Limited BVDV transmission and full protection against CSFV transmission in pigs experimentally infected with BVDV type 1b. Vet. Microbiol. 2006, 118, 26–36. [Google Scholar] [CrossRef]
- Bruschke, C.J.M.; Weerdmeester, K.; Van Oirschot, J.T.; Van Rijn, P.A. Distribution of bovine virus diarrhoea virus in tissues and white blood cells of cattle during acute infection. Vet. Microbiol. 1998, 64, 23–32. [Google Scholar] [CrossRef]
- Marshall, D.J.; Moxley, R.A.; Kelling, C.L. Distribution of Virus and Viral Antigen in Specific Pathogen-free Calves Following Inoculation with Noncytopathic Bovine Viral Diarrhea Virus. Vet. Pathol. 1996, 33, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Pedrera, M.; Gómez-Villamandos, J.C.; Molina, V.; Risalde, M.A.; Rodríguez-Sánchez, B.; Sánchez-Cordón, P.J. Quantification and determination of spread mechanisms of bovine viral diarrhoea virus in blood and tissues from colostrum-deprived calves during an experimental acute infection induced by a non-cytopathic genotype 1 strain. Transbound. Emerg. Dis. 2012, 59, 377–384. [Google Scholar] [CrossRef]
- Moennig, V. Introduction to classical swine fever: Virus, disease and control policy. Vet. Microbiol. 2000, 73, 93–102. [Google Scholar] [CrossRef]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical swine fever—An updated review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.; Fukusho, A.; Lefèvre, P.-C.; Lipowski, A.; Pejsak, Z.; Roehe, P.; Westergaard, J. Classical swine fever: The global situation. Vet. Microbiol. 2000, 73, 103–119. [Google Scholar] [CrossRef]
- OIE-WAHIS. 2020. Available online: https://www.oie.int/wahis_2/public/wahid.php/countrymapinteractive/index/newlang/en (accessed on 7 September 2020).
- Brown, V.R.; Bevins, S.N. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front. Vet. Sci. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.; Brockman, S.; Harkness, J.; Edwards, S. Classical swine fever: Virulence and tissue distribution of a 1986 English isolate in pigs. Vet. Rec. 1988, 122, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Meng, X.; Li, L.; Li, Y.; Luo, Y.; Wang, W.; Yu, S.; Yin, C.; Li, S.; et al. Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs. Virus Res. 2018, 255, 68–76. [Google Scholar] [CrossRef]
- Liu, J.; Fan, X.; Wang, Q.; Xu, L.; Zhao, Q.; Huang, W.; Zhou, Y.; Tang, B.; Chen, L.; Zou, X.; et al. Dynamic distribution and tissue tropism of classical swine fever virus in experimentally infected pigs. Virol. J. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ophuis, R.J.A.O.; Morrissy, C.J.; Boyle, D.B. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J. Virol. Methods 2006, 131, 78–85. [Google Scholar] [CrossRef]
- Shannon, A.D.; Morrissy, C.; Mackintosh, S.G.; Westbury, H.A. Detection of hog cholera virus antigens in experimentally-infected pigs using an antigen-capture ELISA. Vet. Microbiol. 1993, 34, 233–248. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev. 2004, 17, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J.M. The Pathogenesis and Diagnosis of Foot-and-Mouth Disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Pereira, H.G. Subtyping of foot-and-mouth disease virus. Dev. Biol. Stand. 1977, 35, 167–174. [Google Scholar]
- Brito, B.P.; Rodriguez, L.L.; Hammond, J.M.; Pinto, J.; Perez, A.M. Review of the Global Distribution of Foot-and-Mouth Disease Virus from 2007 to 2014. Transbound. Emerg. Dis. 2017, 64, 316–332. [Google Scholar] [CrossRef]
- Belsham, G.J.; Kristensen, T.; Jackson, T. Foot-and-mouth disease virus: Prospects for using knowledge of virus biology to improve control of this continuing global threat. Virus Res. 2020, 281, 197909. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, J.J.; Haas, B.; Berends, B.R. Removal of foot-and-mouth disease virus infectivity in salted natural casings by minor adaptation of standardized industrial procedures. Int. J. Food Microbiol. 2007, 115, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, J.J.; Haas, B.; Berends, B.R. Inactivation of foot-and-mouth disease virus in various bovine tissues used for the production of natural sausage casings. Int. J. Food Microbiol. 2012, 153, 237–240. [Google Scholar] [CrossRef]
- Ryan, E.; Horsington, J.; Durand, S.; Brooks, H.; Alexandersen, S.; Brownlie, J.; Zhang, Z. Foot-and-mouth disease virus infection in young lambs: Pathogenesis and tissue tropism. Vet. Microbiol. 2008, 127, 258–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenfeldt, C.; Pacheco, J.M.; Rodriguez, L.L.; Arzt, J. Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication. PLoS ONE 2014, 9, e106859. [Google Scholar] [CrossRef]
- Burrows, R. Studies on the Carrier State of Cattle Exposed to Foot-and-Mouth Disease Virus. J. Hyg. 1966, 64, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Purcell, R.H.; Halbur, P.G.; Lehman, J.R.; Webb, D.M.; Tsareva, T.S.; Haynes, J.S.; Thacker, B.J.; Emerson, S.U. A novel virus in swine is closely related to the human hepatitis E virus. Proc. Natl. Acad. Sci. USA 1997, 94, 9860–9865. [Google Scholar] [CrossRef] [Green Version]
- Sooryanarain, H.; Meng, X.-J. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res. 2020, 284, 197985. [Google Scholar] [CrossRef]
- Salines, M.; Andraud, M.; Rose, N. From the epidemiology of hepatitis E virus (HEV) within the swine reservoir to public health risk mitigation strategies: A comprehensive review. Vet. Res. 2017, 48, 31. [Google Scholar] [CrossRef] [Green Version]
- Himmelsbach, K.; Bender, D.; Hildt, E. Life cycle and morphogenesis of the hepatitis E virus. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, K.; Iwabu, Y.; Kanai, Y.; Miyasho, T.; Daidoji, T.; Yunoki, M.; Tsujikawa, M.; Ohkubo, Y.; Yasue, H.; Ikuta, K. Distribution and Propagation of Hepatitis E Virus in Experimentally Infected Swine. Open Vet. Sci. J. 2007, 1, 1–6. [Google Scholar] [CrossRef]
- Pasquale, S.d.; Santis, P.d.; Rosa, G.l.; Domenico, K.d.; Iaconelli, M.; Micarelli, G.; Martini, E.; Bilei, S.; Medici, D.d.; Suffredini, E. Quantification and genetic diversity of hepatitis E virus in wild boar (Sus scrofa) hunted for domestic consumption in Central Italy. Food Microbiol. 2019, 82, 194–201. [Google Scholar] [CrossRef]
- Cavanagh, D. Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 1997, 142, 629–633. [Google Scholar]
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE_PEDV. 2014. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/A_factsheet_PEDV.pdf (accessed on 2 January 2021).
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on porcine epidemic diarrhoea and emerging porcine deltacoronavirus. EFSA J. 2014, 12, 3877. [Google Scholar] [CrossRef]
- Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020, 286, 198045. [Google Scholar] [CrossRef]
- Chen, Q.; Li, G.; Stasko, J.; Thomas, J.T.; Stensland, W.R.; Pillatzki, A.E.; Gauger, P.C.; Schwartz, K.J.; Madson, D.; Yoon, K.-J.; et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J. Clin. Microbiol. 2014, 52, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, C.; Zhang, N.; Liu, G. Porcine endemic diarrhea virus infection regulates long noncoding RNA expression. Virology 2019, 527, 89–97. [Google Scholar] [CrossRef] [PubMed]
- OIE_PPR. 2020. Available online: https://www.oie.int/doc/ged/D13983.PDF (accessed on 8 September 2020).
- Banyard, A.C.; Parida, S.; Batten, C.; Oura, C.; Kwiatek, O.; Libeau, G. Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control. J. Gen. Virol. 2010, 91, 2885–2897. [Google Scholar] [CrossRef] [Green Version]
- OIE. 2020. Available online: https://www.oie.int/en/animal-health-in-the-world/official-disease-status/peste-des-petits-ruminants/en-ppr-carte/ (accessed on 9 September 2020).
- FAO_PPR_GEP. 2016. Available online: http://www.fao.org/3/a-i6316e.pdf (accessed on 8 September 2020).
- Truong, T.; Boshra, H.; Embury-Hyatt, C.; Nfon, C.; Gerdts, V.; Tikoo, S.; Babiuk, L.A.; Kara, P.; Chetty, T.; Mather, A.; et al. Peste des petits ruminants virus tissue tropism and pathogenesis in sheep and goats following experimental infection. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Wani, S.A.; Sahu, A.R.; Shikha, S.; Rajak, K.K.; Saminathan, M.; Sahoo, A.P.; Sonam, K.; Aruna, P.; Bina, M.; Muthuchelvan, D.; et al. Expression kinetics of ISG15, IRF3, IFN gamma, IL10, IL2 and IL4 genes vis-a-vis virus shedding, tissue tropism and antibody dynamics in PPRV vaccinated, challenged, infected sheep and goats. Microb. Pathog. 2018, 117, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Dou, Y.; Zhai, J.; Shi, X.; Yan, F.; Zhang, H.; Luo, X.; Cai, X. Tissue Distribution and Relative Quantitation of Experimental Infection with Peste Des Petits Ruminant Virus in Goats Using Real-Time PCR (TaqMan®). J. Anim. Vet. Adv. 2012, 11, 3011–3018. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Lauck, M.; Bailey, A.L.; Shchetinin, A.M.; Vishnevskaya, T.V.; Bào, Y.; Ng, T.F.F.; LeBreton, M.; Schneider, B.S.; Gillis, A.; et al. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2016, 161, 755–768. [Google Scholar] [CrossRef] [PubMed]
- OIE_PRRSV. 2008. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/PRRS_guide_web_bulletin.pdf (accessed on 10 September 2020).
- Renukaradhya, G.J.; Meng, X.-J.; Calvert, J.G.; Roof, M.; Lager, K.M. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction. Vaccine 2015, 33, 4069–4080. [Google Scholar] [CrossRef]
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu. Rev. Anim. Biosci. 2016, 4, 129–154. [Google Scholar] [CrossRef]
- Cheon, D.S.; Chae, C. Distribution of a Korean strain of porcine reproductive and respiratory syndrome virus in experimentally infected pigs, as demonstrated immunohistochemically and by in-situ hybridization. J. Comp. Pathol. 1999, 120, 79–88. [Google Scholar] [CrossRef]
- Do, T.D.; Park, C.; Choi, K.; Jeong, J.; Nguyen, T.T.; Nguyen, D.Q.; Le, T.H.; Chae, C. Comparison of experimental infection with northern and southern Vietnamese strains of highly pathogenic porcine reproductive and respiratory syndrome virus. J. Comp. Pathol. 2015, 152, 227–237. [Google Scholar] [CrossRef]
- Do, T.D.; Park, C.; Choi, K.; Jeong, J.; Vo, M.K.; Nguyen, T.T.; Chae, C. Comparison of pathogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus between wild and domestic pigs. Vet. Res. Commun. 2015, 39, 79–85. [Google Scholar] [CrossRef]
- Han, K.; Seo, H.W.; Park, C.; Oh, Y.; Kang, I.; Han, H.J.; Kim, S.H.; Chae, C. Comparative pathogenicity of three Korean and one Lelystad type 1 porcine reproductive and respiratory syndrome virus (Pan-European subtype 1) isolates in experimentally infected pigs. J. Comp. Pathol. 2013, 149, 331–340. [Google Scholar] [CrossRef]
- Lawson, S.R.; Rossow, K.D.; Collins, J.E.; Benfield, D.A.; Rowland, R.R.R. Porcine reproductive and respiratory syndrome virus infection of gnotobiotic pigs: Sites of virus replication and co-localization with MAC-387 staining at 21 days post-infection. Virus Res. 1997, 51, 105–113. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Q.; Ge, X.; Teng, K.; Kuang, Y.; Chen, Y.; Guo, X.; Yang, H. Chinese highly pathogenic porcine reproductive and respiratory syndrome virus exhibits more extensive tissue tropism for pigs. Virol. J. 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Yaeger, M.; Funk, N.; Hoffman, L. A survey of agents associated with neonatal diarrhea in Iowa swine including Clostridium difficile and porcine reproductive and respiratory syndrome virus. J. Vet. Diagn. Investig. 2002, 14, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laval, K.; Enquist, L.W. The Neuropathic Itch Caused by Pseudorabies Virus. Pathogens 2020, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- OIE_PrV. 1986. Available online: https://www.oie.int/doc/ged/D8544.PDF (accessed on 2 January 2021).
- EFSA Panel on Animal Health and Welfare (AHAW). Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Aujeszky’s disease. EFSA J. 2017, 15, e04888. [Google Scholar] [CrossRef]
- Mettenleiter, T.C. Aujeszky’s Disease and the Development of the Marker/DIVA Vaccination Concept. Pathogens 2020, 9, 563. [Google Scholar] [CrossRef]
- Sabo, A.; Rajacni, J.; Blaskovic, D. Studies on the pathogenesis of Aujeszky’s disease. I. Distribution of the virulent virus in piglets after peroral infection. Acta Virol. 1968, 12, 214–221. [Google Scholar] [PubMed]
- Zhang, C.; Liu, Y.; Chen, S.; Qiao, Y.; Zheng, Y.; Xu, M.; Wang, Z.; Hou, J.; Wang, J.; Fan, H. Effects of Intranasal Pseudorabies Virus AH02LA Infection on Microbial Community and Immune Status in the Ileum and Colon of Piglets. Viruses 2019, 11, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE_RPV. 2011. Available online: https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/RESO_18_EN.pdf (accessed on 1 September 2020).
- Roeder, P.; Mariner, J.; Kock, R. Rinderpest: The veterinary perspective on eradication. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120139. [Google Scholar] [CrossRef] [PubMed]
- Fournié, G.; Jones, B.A.; Beauvais, W.; Lubroth, J.; Njeumi, F.; Cameron, A.; Pfeiffer, D.U. The risk of rinderpest re-introduction in post-eradication era. Prev. Vet. Med. 2014, 113, 175–184. [Google Scholar] [CrossRef]
- Plowright, W. Studies on the pathogenesis of Rinderpest in experimental cattle. II. Proliferation of the virus in different tissues following intranasal infection. J. Hyg. 1964, 62, 257–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, W.P.; Plowright, W. Studies on the pathogenesis of Rinderpest in experimental cattle. 3. Proliferation of an attenuated strain in various tissues following subcutaneous inoculation. J. Hyg. 1965, 63, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Escribano-Romero, E.; Jiménez-Clavero, M.A.; Ley, V. Swine vesicular disease virus. Pathology of the disease and molecular characteristics of the virion. Anim. Health Res. Rev. 2000, 1, 119–126. [Google Scholar] [CrossRef] [PubMed]
- OIE_SVDV. 2020. Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/SWINE_VESICULAR_DISEASE.pdf (accessed on 1 September 2020).
- cfsph_SVDV. 2017. Available online: http://www.cfsph.iastate.edu/Factsheets/pdfs/swine_vesicular_disease.pdf (accessed on 1 September 2020).
- EFSA_SVDV_VSV. 2012. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2012.2631 (accessed on 1 September 2020).
- Lin, F.; Kitching, R.P. Swine Vesicular Disease: An Overview. Vet. J. 2000, 160, 192–201. [Google Scholar] [CrossRef]
- Chu, R.M.; Moore, D.M.; Conroy, J.D. Experimental swine vesicular disease, pathology and immunofluorescence studies. Can. J. Comp. Med. 1979, 43, 29–38. [Google Scholar]
- Burrows, R.; Mann, J.A.; Goodridge, D. Swine vesicular disease: Virological studies of experimental infections produced by the England-72 virus. J. Hyg. 1974, 72, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, A. Swine vesicular disease, studies on pathogenesis, diagnosis, and epizootiology: A review. Vet. Q. 2000, 22, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Pensaert, M.; Haelterman, E.O.; Burnstein, T. Transmissible gastroenteritis of swine: Virus-intestinal cell interactions I. Immunofluorescence, histopathology and virus production in the small intestine through the course of infection. Arch. Gesamte Virusforsch. 1970, 31, 321–334. [Google Scholar] [CrossRef]
- Chen, F.; Knutson, T.P.; Rossow, S.; Saif, L.J.; Marthaler, D.G. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Sci. Rep. 2019, 9, 3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, A.; Martín-Valls, G.E.; Tello, M.; Mateu, E.; Martín, M.; Darwich, L. Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain. Vet. Microbiol. 2019, 237, 108419. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Fan, B.; Chang, X.; Zhou, J.; Zhao, Y.; Shi, D.; Yu, Z.; He, K.; Li, B. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China. Virology 2020, 545, 24–32. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.M.; Izeta, A.; Sánchez-Morgado, J.M.; Alonso, S.; Sola, I.; Balasch, M.; Plana-Durán, J.; Enjuanes, L. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 1999, 73, 7607–7618. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhu, Y.; Zhu, X.; Shi, H.; Chen, J.; Shi, D.; Yuan, J.; Cao, L.; Liu, J.; Dong, H.; et al. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerg. Microbes Infect. 2017, 6, e74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortego, J.; Sola, I.; Almazán, F.; Ceriani, J.E.; Riquelme, C.; Balasch, M.; Plana, J.; Enjuanes, L. Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 2003, 308, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Green, K.Y.; Ando, T.; Balayan, M.S.; Berke, T.; Clarke, I.N.; Estes, M.K.; Matson, D.O.; Nakata, S.; Neill, J.D.; Studdert, M.J.; et al. Taxonomy of the Caliciviruses. J. Infect. Dis. 2000, 181, S322–S330. [Google Scholar] [CrossRef] [Green Version]
- Cfsph_VESV. 2015. Available online: https://www.swinehealth.org/wp-content/uploads/2016/03/Vesicular-exanthema-of-swine-virus-VESV.pdf (accessed on 1 September 2020).
- Gelberg, H.B.; Lewis, R.M. The Pathogenesis of Vesicular Exanthema of Swine Virus and San Miguel Sea Lion Virus in Swine. Vet. Pathol. 1982, 19, 424–443. [Google Scholar] [CrossRef]
- Letchworth, G.J.; Rodriguez, L.L.; Del Cbarrera, J. Vesicular Stomatitis. Vet. J. 1999, 157, 239–260. [Google Scholar] [CrossRef]
- Lichty, B.D.; Power, A.T.; Stojdl, D.F.; Bell, J.C. Vesicular stomatitis virus: Re-inventing the bullet. Trends Mol. Med. 2004, 10, 210–216. [Google Scholar] [CrossRef] [PubMed]
- OIE_VSV. 2013. Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/VESICULAR_STOMATITIS.pdf (accessed on 1 September 2020).
- Scherer, C.F.; O’Donnell, V.; Golde, W.T.; Gregg, D.; Estes, D.M.; Rodriguez, L.L. Vesicular stomatitis New Jersey virus (VSNJV) infects keratinocytes and is restricted to lesion sites and local lymph nodes in the bovine, a natural host. Vet. Res. 2007, 38, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Wieringa-Jelsma, T.; Wijnker, J.J.; Zijlstra-Willems, E.M.; Dekker, A.; Stockhofe-Zurwieden, N.; Maas, R.; Wisselink, H.J. Virus inactivation by salt (NaCl) and phosphate supplemented salt in a 3D collagen matrix model for natural sausage casings. Int. J. Food Microbiol. 2011, 148, 128–134. [Google Scholar] [CrossRef]
- Rae, A.G.; Sinclair, J.A.; Nettleton, P.F. Survival of bovine virus diarrhoea virus in blood from persistently infected cattle. Vet. Rec. 1987, 120, 504. [Google Scholar] [CrossRef]
- Bratcher, C.L.; Wilborn, B.S.; Finegan, H.M.; Rodning, S.P.; Galik, P.K.; Riddell, K.P.; Marley, M.S.; Zhang, Y.; Bell, L.N.; Givens, M.D. Inactivation at various temperatures of bovine viral diarrhea virus in beef derived from persistently infected cattle1. J. Anim. Sci. 2012, 90, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Depner, K.; Bauer, T.; Liess, B. Thermal and pH stability of pestiviruses. Rev. Sci. Tech. 1992, 11, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Bøtner, A.; Belsham, G.J. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses. Vet. Microbiol. 2012, 157, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, F.G.; van den Blink, A.E.; Bos, L.M.; Boots, A.G.; Brinkhuis, F.H.; Gijsen, E.; van Remmerden, Y.; Schuitemaker, H.; van ’t Wout, A.B. Resistance of surface-dried virus to common disinfection procedures. J. Hosp. Infect. 2007, 66, 332–338. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Wutzler, P. Testing thermal resistance of viruses. Arch. Virol. 2009, 154, 115–119. [Google Scholar] [CrossRef]
- Poelsler, G.; Berting, A.; Kindermann, J.; Spruth, M.; Hämmerle, T.; Teschner, W.; Schwarz, H.P.; Kreil, T.R. A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: Virus and prion reduction capacity. Vox Sang. 2008, 94, 184–192. [Google Scholar] [CrossRef]
- Dee, S.A.; Bauermann, F.V.; Niederwerder, M.C.; Singrey, A.; Clement, T.; Lima, M.d.; Long, C.; Patterson, G.; Sheahan, M.A.; Stoian, A.M.M.; et al. Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE 2018, 13, e0194509. [Google Scholar] [CrossRef] [Green Version]
- Helwig, D.M.; Keast, J.C. Viability of virulent swine fever virus in cooked and uncooked ham and sausage casings. Aust. Vet. J. 1966, 42, 131–135. [Google Scholar] [CrossRef]
- Wijnker, J.J.; Depner, K.R.; Berends, B.R. Inactivation of classical swine fever virus in porcine casing preserved in salt. Int. J. Food Microbiol. 2008, 128, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Cowan, L.; Haines, F.J.; Everett, H.E.; Crudgington, B.; Johns, H.L.; Clifford, D.; Drew, T.W.; Crooke, H.R. Factors affecting the infectivity of tissues from pigs with classical swine fever: Thermal inactivation rates and oral infectious dose. Vet. Microbiol. 2015, 176, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrey, J.P.; Prather, J.K. Heat Inactivation of Hog Cholera Virus. I. Studies with Defibrinated Blood and Serum; Proceedings; United States Live Stock Sanitary Association: Santa Fe, NM, USA, 1964; pp. 414–418. [Google Scholar]
- Weesendorp, E.; Willems, E.M.; Loeffen, W.L.A. The effect of tissue degradation on detection of infectious virus and viral RNA to diagnose classical swine fever virus. Vet. Microbiol. 2010, 141, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Downing, D.R.; Carbrey, E.A.; Stewart, W.C. Preliminary findings on a thermal inactivation curve for hog cholera virus. In Proceedings of the Agricultural Research Seminar on Hog Cholera/Classical Swine Fever and African Swine Fever, Hannover, Germany, 6–11 September 1976; pp. 94–98. [Google Scholar]
- McKercher, P.D.; Yedloutschnig, R.J.; Callis, J.J.; Murphy, R.; Panina, G.F.; Civardi, A.; Bugnetti, M.; Foni, E.; Laddomada, A.; Scarano, C.; et al. Survival of viruses in Prosciutto di Parma (Parma ham). Food Res. Int. 1987, 20, 267–272. [Google Scholar] [CrossRef]
- Mebus, C.; Arias, M.; Pineda, J.M.; Taiador, J.; House, C.; Sanchez-Vizcaino, J.M. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem. 1997, 59, 555–559. [Google Scholar] [CrossRef]
- Rajbongshi, G.; Barman, N.; Das, S.K. Survival and inactivation of classical swine fever virus isolated from pigs of Asom, India. Indian J. Anim. Sci. 2011, 81, 330–333. [Google Scholar]
- Turner, C.; Williams, S.M.; Cumby, T.R. The inactivation of foot and mouth disease, Aujeszky’s disease and classical swine fever viruses in pig slurry. J. Appl. Microbiol. 2000, 89, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Krug, P.W.; Lee, L.J.; Eslami, A.C.; Larson, C.R.; Rodriguez, L. Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces. Biologicals 2011, 39, 231–235. [Google Scholar] [CrossRef]
- Kunu, W.; Jiwakanon, J.; Porntrakulpipat, S. A bread-based lyophilized C-strain CSF virus vaccine as an oral vaccine in pigs. Transbound. Emerg. Dis. 2019, 66, 1597–1601. [Google Scholar] [CrossRef]
- Weesendorp, E.; Stegeman, A.; Loeffen, W.L. Survival of classical swine fever virus at various temperatures in faeces and urine derived from experimentally infected pigs. Vet. Microbiol. 2008, 132, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Worrall, E.E.; Litamoi, J.K.; Seck, B.M.; Ayelet, G. Xerovac: An ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine 2000, 19, 834–839. [Google Scholar] [CrossRef]
- Sarkar, J.; Sreenivasa, B.P.; Singh, R.P.; Dhar, P.; Bandyopadhyay, S.K. Comparative efficacy of various chemical stabilizers on the thermostability of a live-attenuated peste des petits ruminants (PPR) vaccine. Vaccine 2003, 21, 4728–4735. [Google Scholar] [CrossRef]
- Silva, A.C.; Carrondo, M.J.; Alves, P.M. Strategies for improved stability of Peste des Petits Ruminants Vaccine. Vaccine 2011, 29, 4983–4991. [Google Scholar] [CrossRef] [PubMed]
- McKercher, P.D.; Blackwell, J.H.; Murphy, R.; Callis, J.J.; Panina, G.F.; Civardi, A.; Bugnetti, M.; De Simone, F.; Scatozza, F. Survival of Swine Vesicular Disease Virus in “Prosciutto di Parma” (Parma Ham). Food Res. Int. 1985, 18, 163–167. [Google Scholar] [CrossRef]
- Koolmees, P.A.; Tersteeg, M.H.G.; Keizer, G.; Van Den Broek, J.; Bradley, R. Comparative histological studies of mechanically versus manually processed sheep intestines used to make natural sausage casings. J. Food Prot. 2004, 67, 2747–2755. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, J.; Tersteeg, M.; Berends, B.; Vernooij, J.; Koolmees, P. Quantitative Histological Analysis of Bovine Small Intestines before and after Processing into Natural Sausage Casings. J. Food Prot. 2008, 71, 1199–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PAHO. 2020. Available online: https://www.paho.org/en/search/r?keys=Informative+Note+SARS-CoV-2+infections+in+animals (accessed on 18 August 2020).
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Beer, M. Experimental infection of cattle with SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virus_Quantification. 2020. Available online: Shttps://en.wikipedia.org/wiki/Virus_quantification (accessed on 31 December 2020).
String Keywords | Results String | Virus Keywords | Results Virus | Results Step 1 | Step 1 Excl. | Results Step 2 | Step 2 Excl. | Final |
---|---|---|---|---|---|---|---|---|
Pathogenes * | 98403 | African swine fever or ASFV or Warthog virus | 3032 | 82 | 38 | 44 | 39 | 5 |
Intestin * or Gastrointestin * or digestive tract | 272212 | Bovine diarrhoea virus or Bovine viral diarrhea virus or Bovine viral diarrhoea virus or mucosal disease | 7899 | 375 | 315 | 60 | 57 | 3 |
Ileum or Jejunum or duodenum or colon | 65647 | Classical swine fever virus or CSFV or HCV Hog cholera virus or swine fever virus | 10533 | 392 | 342 | 50 | 44 | 6 |
Tissue tropism or tissue distribution | 10937 | Foot-and-mouth disease virus or FMD virus or FMDV or Foot and mouth disease virus | 12449 | 184 | 170 | 14 | 9 | 5 |
Bladder or urinary bladder | 18134 | Hepatitis E virus or Hepatitis E | 1961 | 74 | 64 | 10 | 8 | 2 |
Viraemia or Tit * or Viral load | 202550 | Porcine epidemic diarrhea virus or PEDV | 1465 | 326 | 241 | 85 | 83 | 2 |
Porcine respiratory and reproductive syndrome virus or PRRSV or SIRS or swine infertility and respiratory syndrome virus or Porcine Epidemic Abortion and Respiratory Syndrome or PEARS | 36928 | 234 | 210 | 24 | 24 | 0 | ||
Peste-des-petits-ruminants virus or pest of small ruminants virus or Peste des petits ruminants virus or PPRV | 1571 | 68 | 49 | 19 | 16 | 3 | ||
Pseudorabies virus or PRV or Aujeszky virus or Aujeszky’s disease virus or Aujeszky’s virus SuHV-1 | 7445 | 172 | 156 | 16 | 14 | 2 | ||
Rinderpest virus or Rinderpest | 4396 | 150 | 143 | 7 | 5 | 2 | ||
Swine vesicular disease or SVD | 1067 | 34 | 26 | 8 | 5 | 3 | ||
Transmissible gastroenteritis virus or Porcine transmissible gastroenteritis virus or TGEV | 2207 | 394 | 370 | 24 | 21 | 3 | ||
Vesicular exanthema of swine virus or Swine vesicular exanthema virus or vesicular exanthema virus or VESV | 141 | 6 | 4 | 2 | 1 | 1 | ||
Vesicular stomatitis virus or VSV | 2849 | 62 | 57 | 5 | 4 | 1 |
Virus | Intestines | Duodenum | Jejunum | Ileum | Caecum | Colon | Bladder | Blood | Source |
---|---|---|---|---|---|---|---|---|---|
ASFV | ++++ | ++++ | ++++ | ++++ | +++ | ++++ | nd | +++++ | [9,10,11,12,13] |
BVDV | ++++ | nd | +++ | ++++ | +++ | +++ | nd | + | [24,25,26] |
CSFV | ++++ | (+++) | ++++ | ++++ | nd | +++ | (++) | ++++ | [11,32,33,34,35,36] |
FMDV | + | (+) | nd | nd | nd | + | - | ++ | [42,43,44,45,46] |
HEV | (++) | nd | nd | nd | nd | nd | nd | nd | [51,52] |
PEDV | +++ | nd | nd | nd | nd | nd | nd | nd | [58,59] |
PPRV | (++++) | (++++) | nd | (++++) | (++++) | (++++) | nd | (++) | [64,65,66] |
PRRSV | nd | nd | nd | nd | nd | nd | nd | nd | - |
PrV | - | nd | nd | - | nd | - | nd | nd | [82,83] |
RPV | ++++ | nd | nd | ++++ | ++++ | +++ | nd | ++ | [87,88] |
SVDV | +++ | +++ | +++ | +++ | ++ | ++ | nd | +++ | [94,95,96] |
TGEV | ++++ | nd | ++++ | ++++ | nd | nd | nd | nd | [102,103,104] |
VESV | + | nd | nd | nd | nd | + | nd | + | [107] |
VSV | - | - | nd | - | nd | - | nd | - | [111] |
String Keywords | Results String | Virus Keywords | Results Virus | Results Step 1 | Step 1 Excl. | Results Step 2 | Step 2 Excl. | Final | Source |
---|---|---|---|---|---|---|---|---|---|
Inactivat * | 60748 | Bovine viral diarrhea virus or Bovine diarrhea virus or Bovine diarrhoea virus or BVDV or BDV or mucosal disease | 8524 | 2580 | 2553 | 27 | 19 | 8 | [113,114,115,116,117,118,119,120] |
surviv * | 311829 | classical swine fever virus or Hog cholera virus or CSFV or CSF | 16667 | 8205 | 8136 | 69 | 51 | 18 | [10,11,112,115,116,121,122,123,124,125,126,127,128,129,130,131,132,133] |
decimal reduction valu * or D-valu * | 2862 | Peste des petits ruminants or PPRV | 1626 | 453 | 438 | 15 | 12 | 3 | [134,135,136] |
therm * inactivat * | 2515 | ||||||||
pH or pH stabil * | 404282 | ||||||||
salin* or saline stabil * | 161523 | ||||||||
Brine | 9430 | ||||||||
Half-life | 18643 | ||||||||
therm * stabil * or temperature | 640766 | ||||||||
casing or sausage | 8101 | ||||||||
Intestin * | 209983 | ||||||||
meat or food | 2259753 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelsma, T.; Wijnker, J.J.; van der Poel, W.H.M.; Wisselink, H.J. Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis. Pathogens 2021, 10, 173. https://doi.org/10.3390/pathogens10020173
Jelsma T, Wijnker JJ, van der Poel WHM, Wisselink HJ. Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis. Pathogens. 2021; 10(2):173. https://doi.org/10.3390/pathogens10020173
Chicago/Turabian StyleJelsma, Tinka, Joris J. Wijnker, Wim H. M. van der Poel, and Henk J. Wisselink. 2021. "Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis" Pathogens 10, no. 2: 173. https://doi.org/10.3390/pathogens10020173
APA StyleJelsma, T., Wijnker, J. J., van der Poel, W. H. M., & Wisselink, H. J. (2021). Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis. Pathogens, 10(2), 173. https://doi.org/10.3390/pathogens10020173