Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products
Abstract
:1. Introduction
2. Results
2.1. 2009 Colorado Ground Beef Outbreak DT104 Strains
2.2. SNP Analysis between S. typhimurium DT104 and Non-DT104 Strains
2.3. Gene Content Analysis of S. typhimurium DT104 and Non-DT104 Strains
2.4. Prophage and Antibiotic Resistance Analysis
2.5. Global Genomic Epidemiology of DT104 Strains
2.6. Genomic Epidemiology of Cattle-Associated S. typhimurium Strains
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. DNA Extraction
4.3. Genome Sequencing
4.4. Assembly and Annotation
4.5. Single Nucleotide Polymorphism (SNP) Analysis
4.6. Prophage and Antibiotic Resistance Genes
4.7. Allele-Based Core Genome Multilocus Sequence Typing (cgMLST) Analysis
4.8. Genes Unique to DT104 and Cattle DT104 Strains Analysis
4.9. Pangenome Analysis and Visualization with Anvi’o Software
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voetsch, A.C.; Van Gilder, T.J.; Angulo, F.J.; Farley, M.M.; Shallow, S.; Marcus, R.; Cieslak, P.R.; Deneen, V.C.; Tauxe, R.V.; Emerging Infections Program FoodNet Working Group. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin. Infect. Dis. 2004, 38 (Suppl. S3), S127–S134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M.; International Collaboration on Enteric Disease ‘Burden of Illness Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. National Enteric Disease Surveillance: Salmonella Annual Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016. Available online: http://www.cdc.gov/nationalsurveillance/PDFs/NationalSalmSurveillOverview_508.pdf (accessed on 28 February 2021).
- Laufer, A.S.; Grass, J.; Holt, K.; Whichard, J.M.; Griffin, P.M.; Gould, L.H. Outbreaks of Salmonella infections attributed to beef—United States, 1973–2011. Epidemiol. Infect. 2015, 143, 2003–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD.org. Meat Consumption (Indicator). Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 12 July 2019).
- Trujillo, S.; Keys, C.E.; Brown, E.W. Evaluation of the taxonomic utility of six-enzyme pulsed-field gel electrophoresis in reconstructing Salmonella subspecies phylogeny. Infect. Genet. Evol. 2011, 11, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.C.; Fitzgerald, S.F.; DePaulo, R.; Kitzul, R.; Daku, D.; Levett, P.N.; Cameron, A.D. Laboratory-Acquired Infection with Salmonella enterica Serovar Typhimurium Exposed by Whole-Genome Sequencing. J. Clin. Microbiol. 2016, 54, 190–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gymoese, P.; Sorensen, G.; Litrup, E.; Olsen, J.E.; Nielsen, E.M.; Torpdahl, M. Investigation of Outbreaks of Salmonella enterica Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark. Emerg. Infect. Dis. 2017, 23, 1631–1639. [Google Scholar] [CrossRef]
- Octavia, S.; Wang, Q.; Tanaka, M.M.; Kaur, S.; Sintchenko, V.; Lan, R. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: Insights into genomic variability within an outbreak. J. Clin. Microbiol. 2015, 53, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.; Sotomayor, C.; Wang, Q.; Holmes, N.; Furlong, C.; Ward, K.; Howard, P.; Octavia, S.; Lan, R.; Sintchenko, V. Whole genome sequencing of Salmonella typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014. BMC Microbiol. 2016, 16, 211. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.M.; Peters, T.; Ameh, L.; McAleer, R.; Petrie, S.; Nair, S.; Muscat, I.; de Pinna, E.; Dallman, T. Whole Genome Sequencing for the Retrospective Investigation of an Outbreak of Salmonella typhimurium DT 8. PLoS Curr. 2015, 7. [Google Scholar] [CrossRef]
- Helms, M.; Ethelberg, S.; Molbak, K.; Group, D.T.S. International Salmonella typhimurium DT104 infections, 1992–2001. Emerg. Infect. Dis. 2005, 11, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Ethelberg, S.; Sorensen, G.; Kristensen, B.; Christensen, K.; Krusell, L.; Hempel-Jorgensen, A.; Perge, A.; Nielsen, E.M. Outbreak with multi-resistant Salmonella typhimurium DT104 linked to carpaccio, Denmark, 2005. Epidemiol. Infect. 2007, 135, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Kivi, M.; Hofhuis, A.; Notermans, D.W.; Wannet, W.J.; Heck, M.E.; Van De Giessen, A.W.; Van Duynhoven, Y.T.; Stenvers, O.F.; Bosman, A.; Van Pelt, W. A beef-associated outbreak of Salmonella typhimurium DT104 in The Netherlands with implications for national and international policy. Epidemiol. Infect. 2007, 135, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Mindlin, M.J.; Lang, N.; Maguire, H.; Walsh, B.; Verlander, N.Q.; Lane, C.; Taylor, C.; Bishop, L.A.; Crook, P.D. Outbreak investigation and case-control study: Penta-resistant Salmonella typhimurium DT104 associated with biltong in London in 2008. Epidemiol. Infect. 2013, 141, 1920–1927. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Colorado firm recalls ground beef products due to possible Salmonella contamination. In FSIS-RC-039-2009; United States Department of Agriculture: Washington, DC, USA, 2009. [Google Scholar]
- Dechet, A.M.; Scallan, E.; Gensheimer, K.; Hoekstra, R.; Gunderman-King, J.; Lockett, J.; Wrigley, D.; Chege, W.; Sobel, J.; Multistate Working, G. Outbreak of multidrug-resistant Salmonella enterica serotype Typhimurium Definitive Type 104 infection linked to commercial ground beef, northeastern United States, 2003–2004. Clin. Infect. Dis. 2006, 42, 747–752. [Google Scholar] [CrossRef]
- Threlfall, E.J. Epidemic Salmonella typhimurium DT 104—A truly international multiresistant clone. J. Antimicrob. Chemother. 2000, 46, 7–10. [Google Scholar] [CrossRef]
- Boyd, D.A.; Peters, G.A.; Ng, L.; Mulvey, M.R. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol. Lett. 2000, 189, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ribot, E.M.; Wierzba, R.K.; Angulo, F.J.; Barrett, T.J. Salmonella enterica serotype Typhimurium DT104 isolated from humans, United States, 1985, 1990, and 1995. Emerg. Infect. Dis. 2002, 8, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Prendergast, D.M.; O’Grady, D.; Fanning, S.; Cormican, M.; Delappe, N.; Egan, J.; Mannion, C.; Fanning, J.; Gutierrez, M. Application of multiple locus variable number of tandem repeat analysis (MLVA), phage typing and antimicrobial susceptibility testing to subtype Salmonella enterica serovar Typhimurium isolated from pig farms, pork slaughterhouses and meat producing plants in Ireland. Food Microbiol. 2011, 28, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Mather, A.E.; Reid, S.W.; Maskell, D.J.; Parkhill, J.; Fookes, M.C.; Harris, S.R.; Brown, D.J.; Coia, J.E.; Mulvey, M.R.; Gilmour, M.W.; et al. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science 2013, 341, 1514–1517. [Google Scholar] [CrossRef] [Green Version]
- Leekitcharoenphon, P.; Hendriksen, R.S.; Le Hello, S.; Weill, F.X.; Baggesen, D.L.; Jun, S.R.; Ussery, D.W.; Lund, O.; Crook, D.W.; Wilson, D.J.; et al. Global Genomic Epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol. 2016, 82, 2516–2526. [Google Scholar] [CrossRef] [Green Version]
- Briggs, C.E.; Fratamico, P.M. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 1999, 43, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.; Peters, G.A.; Cloeckaert, A.; Boumedine, K.S.; Chaslus-Dancla, E.; Imberechts, H.; Mulvey, M.R. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 2001, 183, 5725–5732. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.V.; Harhay, D.M.; Bono, J.L.; Smith, T.P.; Fields, P.I.; Dinsmore, B.A.; Santovenia, M.; Kelley, C.M.; Wang, R.; Bosilevac, J.M.; et al. Complete, Closed Genome Sequences of 10 Salmonella enterica subsp. enterica Serovar Typhimurium Strains Isolated from Human and Bovine Sources. Genome Announc. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhao, E.Y.; Bao, H.X.; Tang, L.; Zou, Q.H.; Liu, W.Q.; Zhu, D.L.; Chin, J.; Dong, Y.Y.; Li, Y.G.; Cao, F.L.; et al. Genomic comparison of Salmonella typhimurium DT104 with non-DT104 strains. Mol. Genet. Genom. 2013, 288, 549–557. [Google Scholar] [CrossRef]
- Tanaka, K.; Nishimori, K.; Makino, S.; Nishimori, T.; Kanno, T.; Ishihara, R.; Sameshima, T.; Akiba, M.; Nakazawa, M.; Yokomizo, Y.; et al. Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 2004, 42, 1807–1812. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study, G.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Lawson, A.J.; Desai, M.; O’Brien, S.J.; Davies, R.H.; Ward, L.R.; Threlfall, E.J. Molecular characterisation of an outbreak strain of multiresistant Salmonella enterica serovar Typhimurium DT104 in the UK. Clin. Microbiol. Infect. 2004, 10, 143–147. [Google Scholar] [CrossRef]
- Jackson, B.R.; Tarr, C.; Strain, E.; Jackson, K.A.; Conrad, A.; Carleton, H.; Katz, L.S.; Stroika, S.; Gould, L.H.; Mody, R.K.; et al. Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. Clin. Infect. Dis. 2016, 63, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, R.A.; Kay, S.; Connor, T.; Barquist, L.; Sait, L.; Holt, K.E.; Sivaraman, K.; Wileman, T.; Goulding, D.; Clare, S.; et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. MBio 2013, 4, e00565-13. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Filetici, E.; Villa, L.; Dionisi, A.M.; Ricci, A.; Luzzi, I. Antibiotic resistance genes and Salmonella genomic island 1 in Salmonella enterica serovar Typhimurium isolated in Italy. Antimicrob. Agents Chemother. 2002, 46, 2821–2828. [Google Scholar] [CrossRef] [Green Version]
- Baggesen, D.L.; Sandvang, D.; Aarestrup, F.M. Characterization of Salmonella enterica serovar typhimurium DT104 isolated from Denmark and comparison with isolates from Europe and the United States. J. Clin. Microbiol. 2000, 38, 1581–1586. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.K.; Mulvey, M.R.; Martin, I.; Peters, G.A.; Johnson, W. Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob. Agents Chemother. 1999, 43, 3018–3021. [Google Scholar] [CrossRef] [Green Version]
- Matiasovicova, J.; Adams, P.; Barrow, P.A.; Hradecka, H.; Malcova, M.; Karpiskova, R.; Budinska, E.; Pilousova, L.; Rychlik, I. Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch. Microbiol. 2007, 187, 415–424. [Google Scholar] [CrossRef]
- Matiasovicova, J.; Havlickova, H.; Sisak, F.; Pilousova, L.; Rychlik, I. allB, allantoin utilisation and Salmonella enterica serovar Enteritidis and Typhimurium colonisation of poultry and mice. Folia Microbiol. 2011, 56, 264–269. [Google Scholar] [CrossRef]
- Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.F.; Zhou, Z.; Sergeant, M.J.; Achtman, M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018, 14, e1007261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, C.T.; Huynh, S.; Gorski, L.; Cooper, K.K.; Miller, W.G. Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica Serovar Thompson Associated with Cilantro. Genome Announc. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merga, J.Y.; Winstanley, C.; Williams, N.J.; Yee, E.; Miller, W.G. Complete Genome Sequence of the Arcobacter butzleri Cattle Isolate 7h1h. Genome Announc. 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carrico, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Eren, A.M.; Esen, O.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An advanced analysis and visualization platform for ‘omics data. PeerJ 2015, 3, e1319. [Google Scholar] [CrossRef] [PubMed]
- Delmont, T.O.; Eren, A.M. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018, 6, e4320. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, S.; Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. 2012, 804, 281–295. [Google Scholar] [CrossRef]
Strain | Chromosome Size (bp) | Number of Plasmids | Prophage * | DT104 | Collection Year | Country of Isolation | Isolation Source | Accession Number | Reference |
---|---|---|---|---|---|---|---|---|---|
RM9437 | 4,936,499 | 1 | 8 (6) | Yes | 2009 | USA: Colorado | Ground Beef | CP012985 | This study |
RM9436 | 4,936,499 | 1 | 8 (6) | Yes | 2009 | USA: Colorado | Human Stool | SRR8660931 | This study |
RM9435 | 4,936,499 | 1 | 8 (6) | Yes | 2009 | USA: Colorado | Human Stool | SRR8660930 | This study |
CDC H2662 | 4,891,165 | 1 | 6 (4) | Yes | 1997 | USA | Human Stool | CP014979 | [26] |
CDC 2009K-1640 | 4,933,707 | 1 | 8 (5) | Yes | 2009 | USA: BIFSCo Region 2 | Human Stool | CP014975 | [26] |
SA972816 | 4,891,923 | 2 | 8 (5) | Yes | 2002 | China | Bovine Stool | CP007484 | [27] |
CDC 2011K-1702 | 4,906,321 | 1 | 10 (5) | Yes | 2011 | USA: BIFSCo Region 7 | Human Urine | CP014967 | [26] |
USMARC-1808 | 4,936,894 | 1 | 7 (5) | Yes | 2005 | USA: BIFSCo Region 8 | Bovine Post-evisceration | CP014969 | [26] |
DT104 | 4,933,631 | 1 | 9 (5) | Yes | 1988 | England | Human stool | HF937208.1 | [22] |
CDC 2009K-2059 | 4,823,793 | 0 | 6 (3) | No | 2009 | USA: BIFSCo Region 2 | Human Stool | CP014983 | [26] |
CDC 2010K-1587 | 4,799,398 | 4 | 6 (2) | No | 2010 | USA: BIFSCo Region 8 | Human Stool | CP014965 | [26] |
USMARC-1810 | 4,927,145 | 0 | 9 (6) | No | 2005 | USA: BIFSCo Region 5 | Bovine Pre-evisceration | CP014982 | [26] |
USMARC-1880 | 4,815,208 | 0 | 6 (3) | No | 2003 | USA: BIFSCo Region 5 | Bovine Pre-evisceration | CP014981 | [26] |
USMARC-1896 | 4,856,440 | 1 | 7 (4) | No | 2011 | USA: BIFSCo Region 2 | Bovine fat trim | CP014977 | [26] |
USMARC-1898 | 4,784,385 | 3 | 5 (2) | No | 2007 | USA: BIFSCo Region 3 | Ground Beef | CP014971 | [26] |
RM9437 | CDC 2009K-1640 | CDC 2011K-1702 | CDC H2662 | SA972816 | USMARC-1808 | DT104 | USMARC-1810 | USMARC-1880 | USMARC-1896 | USMARC-1898 | CDC 2009K-2059 | CDC 2010K-1587 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RM9437 | 54 | 85 | 60 | 30 | 67 | 61 | 694 | 593 | 627 | 584 | 617 | 650 | |
CDC 2009K-1640 | 54 | 71 | 48 | 36 | 53 | 47 | 682 | 579 | 615 | 570 | 605 | 638 | |
CDC 2011K-1702 | 85 | 71 | 51 | 67 | 68 | 72 | 709 | 606 | 642 | 599 | 632 | 665 | |
CDC H2662 | 60 | 48 | 51 | 44 | 45 | 49 | 686 | 583 | 619 | 576 | 609 | 642 | |
SA972816 | 30 | 36 | 67 | 44 | 49 | 43 | 678 | 575 | 611 | 566 | 601 | 634 | |
USMARC-1808 | 67 | 53 | 68 | 45 | 49 | 54 | 691 | 588 | 624 | 581 | 614 | 647 | |
DT104 | 61 | 47 | 72 | 49 | 43 | 54 | 681 | 578 | 614 | 571 | 604 | 637 | |
USMARC-1810 | 694 | 682 | 709 | 686 | 678 | 691 | 681 | 591 | 631 | 584 | 621 | 646 | |
USMARC-1880 | 593 | 579 | 606 | 583 | 575 | 588 | 578 | 591 | 512 | 367 | 502 | 529 | |
USMARC-1896 | 627 | 615 | 642 | 619 | 611 | 624 | 614 | 631 | 512 | 505 | 10 | 305 | |
USMARC-1898 | 584 | 570 | 599 | 576 | 566 | 581 | 571 | 584 | 367 | 505 | 495 | 524 | |
CDC 2009K-2059 | 617 | 605 | 632 | 609 | 601 | 614 | 604 | 621 | 502 | 10 | 495 | 295 | |
CDC 2010K-1587 | 650 | 638 | 665 | 642 | 634 | 647 | 637 | 646 | 529 | 305 | 524 | 295 |
Prokka Annotation | % of Bovine-Associated DT104 Genomes with Gene | % of Non-Bovine-Associated DT104 Genomes # with Gene | p-Value |
---|---|---|---|
Hypothetical protein | 0% | 33.3% | 0.0003 |
Beta-lactamase PSE-1 (pse1) | 100% | 75.0% | 0.0026 |
Regulatory protein Rop | 3.8% | 33.3% | 0.0031 |
Hypothetical protein | 3.8% | 33.3% | 0.0031 |
Hypothetical protein | 3.8% | 31.9% | 0.0032 |
Hypothetical protein | 3.8% | 31.9% | 0.0032 |
tRNA-Ala(tgc) | 19.2% | 1.4% | 0.0047 |
Hypothetical protein | 3.8% | 30.5% | 0.0059 |
Mobilization protein MbeC | 3.8% | 30.5% | 0.0059 |
Endoribonuclease ToxN | 3.8% | 30.5% | 0.0059 |
Dihydropteroate synthase | 3.8% | 29.2% | 0.0062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, C.T.; Huynh, S.; Alexander, A.; Oliver, A.S.; Cooper, K.K. Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens 2021, 10, 529. https://doi.org/10.3390/pathogens10050529
Parker CT, Huynh S, Alexander A, Oliver AS, Cooper KK. Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens. 2021; 10(5):529. https://doi.org/10.3390/pathogens10050529
Chicago/Turabian StyleParker, Craig T., Steven Huynh, Aaron Alexander, Andrew S. Oliver, and Kerry K. Cooper. 2021. "Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products" Pathogens 10, no. 5: 529. https://doi.org/10.3390/pathogens10050529
APA StyleParker, C. T., Huynh, S., Alexander, A., Oliver, A. S., & Cooper, K. K. (2021). Genomic Characterization of Salmonella typhimurium DT104 Strains Associated with Cattle and Beef Products. Pathogens, 10(5), 529. https://doi.org/10.3390/pathogens10050529