MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology
Abstract
:1. Introduction
2. Results
2.1. Effect of miR-378b on Chlamydia Infectivity
2.2. Effects of miR-378b on the Female Genital Tract Pathology after Chlamydia Infection
2.3. Effect of miR-378b on Cytokine and Chemokine Secretion
2.4. Effect of miR-378b on Female Mouse Fertility after Chlamydia Infection
3. Discussion
4. Materials and Methods
4.1. Animal Protocol Approval Statement
4.2. Animals
4.2.1. Generation of C57BL/6J miR-378b−/− mice
4.2.2. Light Conditions
4.3. Chlamydia muridarum Stock
4.4. C. muridarum Infectivity Assay
4.5. C. muridarum Isolation from Vaginal Swabs
4.6. C. muridarum Staining
4.7. Pathology
4.8. Vaginal Lavage
4.9. Cytokine Assay
4.10. Fertility Assay
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connell, C.M.; Ferone, M.E. Chlamydia trachomatis Genital Infections. Microb. Cell 2016, 3, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Eggert-Kruse, W. Chlamydia trachomatis: Impact on human reproduction. Hum. Reprod. Update 1999, 5, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Sexually Transmitted Infections (STIs) Are Very Common and Costly to the Nation’s Health and Economy. 2021. Available online: https://www.cdc.gov/std/statistics/prevalence-2020-at-a-glance.htm (accessed on 6 May 2021).
- Smolarczyk, K.; Mlynarczyk-Bonikowska, B.; Rudnicka, E.; Szukiewicz, D.; Meczekalski, B.; Smolarczyk, R.; Pieta, W. The Impact of Selected Bacterial Sexually Transmitted Diseases on Pregnancy and Female Fertility. Int. J. Mol. Sci. 2021, 22, 2170. [Google Scholar] [CrossRef] [PubMed]
- Benyeogor, I.; Simoneaux, T.; Wu, Y.; Lundy, S.; George, Z.; Ryans, K.; McKeithen, D.; Pais, R.; Ellerson, D.; Lorenz, W.W.; et al. A unique insight into the MiRNA profile during genital chlamydial infection. BMC Genom. 2019, 20, 143. [Google Scholar] [CrossRef]
- Igietseme, J.U.; Omosun, Y.; Partin, J.; Goldstein, J.; He, Q.; Joseph, K.; Ellerson, D.; Ansari, U.; Eko, F.O.; Bandea, C.; et al. Prevention of Chlamydia-Induced Infertility by Inhibition of Local Caspase Activity. J. Infect. Dis. 2013, 207, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Igietseme, J.U.; Omosun, Y.; Stuchlik, O.; Reed, M.S.; Partin, J.; He, Q.; Joseph, K.; Ellerson, D.; Bollweg, B.; George, Z.; et al. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis. PLoS ONE 2015, 10, e0145198. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, L.; Myers, G.S.; Spencer, N.; Creasy, H.H.; Adams, N.E.; Maurelli, A.T.; McChesney, G.R.; Cleves, M.A.; Ravel, J.; Bowlin, A.; et al. Early microRNA expression profile as a prognostic biomarker for the development of pelvic inflammatory disease in a mouse model of chlamydial genital infection. mBio 2014, 5, e01241-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Arkatkar, T.; Yu, J.-J.; Wali, S.; Haskins, W.E.; Chambers, J.P.; Murthy, A.K.; Abu Bakar, S.; Guentzel, M.N.; Arulanandam, B.P. Chlamydia muridarumInfection Associated Host MicroRNAs in the Murine Genital Tract and Contribution to Generation of Host Immune Response. Am. J. Reprod. Immunol. 2015, 73, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12, 99–110. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Yeruva, L.; Pouncey, D.L.; Eledge, M.R.; Bhattacharya, S.; Luo, C.; Weatherford, E.W.; Ojcius, D.M.; Rank, R.G. MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice. Infect. Immun. 2016, 85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-Y.; Zhu, B.; Zhao, X.-W.; Zhan, Y.-B.; Bao, J.-J.; Zhou, J.-Q.; Zhang, F.-J.; Yu, B.; Liu, J.; Wang, Y.-M.; et al. Regulation of UHRF1 by microRNA-378 modulates medulloblastoma cell proliferation and apoptosis. Oncol. Rep. 2017, 38, 3078–3084. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-L.; Zhang, T.; Wang, J.; Zhang, D.-B.; Zhao, F.; Lin, X.-W.; Wang, Z.; Shi, P.; Pang, X.-N. miR-378b Promotes Differentiation of Keratinocytes through NKX3.1. PLoS ONE 2015, 10, e0136049. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, J.; Wang, X.; Zhao, X.; Li, Z.; Niu, J.; Steer, C.J.; Zheng, G.; Song, G. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway. J. Hepatol. 2019, 70, 87–96. [Google Scholar] [CrossRef]
- Wang, B.; Yao, K.; Wise, A.F.; Lau, R.; Shen, H.-H.; Tesch, G.H.; Ricardo, S.D. miR-378 reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signalling. Clin. Sci. 2017, 131, 411–423. [Google Scholar] [CrossRef]
- Jiang, X.-P.; Ai, W.-B.; Wan, L.-Y.; Zhang, Y.-Q.; Wu, J.-F. The roles of microRNA families in hepatic fibrosis. Cell Biosci. 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Hyun, J.; Wang, S.; Kim, J.; Rao, K.M.; Park, S.Y.; Chung, I.; Ha, C.-S.; Kim, S.-W.; Yun, Y.H.; Jung, Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun. 2016, 7, 10993. [Google Scholar] [CrossRef] [Green Version]
- Howard, S.; Richardson, S.; Benyeogor, I.; Omosun, Y.; Dye, K.; Medhavi, F.; Lundy, S.; Adebayo, O.; Igietseme, J.U.; Eko, F.O. Differential miRNA Profiles Correlate With Disparate Immunity Outcomes Associated With Vaccine Immunization and Chlamydial Infection. Front. Immunol. 2021, 12, 625318. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, B.; Ji, X.; Deng, Y.; Zhang, T.; Zhang, X.; Gao, H.; Sun, H.; Wu, H.; Chen, X.; et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015, 15, 40. [Google Scholar] [CrossRef] [Green Version]
- Darville, T.; Hiltke, T.J. Pathogenesis of Genital Tract Disease Due toChlamydia trachomatis. J. Infect. Dis. 2010, 201 (Suppl. 2), S114–S125. [Google Scholar] [CrossRef] [Green Version]
- Frazer, L.C.; O’Connell, C.M.; Andrews, C.W.; Zurenski, M.A.; Darville, T. Enhanced Neutrophil Longevity and Recruitment Contribute to the Severity of Oviduct Pathology during Chlamydia muridarum Infection. Infect. Immun. 2011, 79, 4029–4041. [Google Scholar] [CrossRef] [Green Version]
- Ritzman, A.M.; Hughes-Hanks, J.M.; Blaho, V.A.; Wax, L.E.; Mitchell, W.J.; Brown, C.R. The Chemokine Receptor CXCR2 Ligand KC (CXCL1) Mediates Neutrophil Recruitment and Is Critical for Development of Experimental Lyme Arthritis and Carditis. Infect. Immun. 2010, 78, 4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippo, K.; Dudeck, A.; Hasenberg, M.; Nye, E.; van Rooijen, N.; Hartmann, K.; Gunzer, M.; Roers, A.; Hogg, N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 2013, 121, 4930–4937. [Google Scholar] [CrossRef] [Green Version]
- Barr, E.L.; Ouburg, S.; Igietseme, J.U.; Morré, S.A.; Okwandu, E.; Eko, F.O.; Ifere, G.; Belay, T.; He, Q.; Lyn, D.; et al. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion. J. Microbiol. Immunol. Infect. 2005, 38, 244–254. [Google Scholar] [PubMed]
- Katoh, Y.; Katoh, M. Hedgehog target genes: Mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr. Mol. Med. 2009, 9, 873–886. [Google Scholar] [CrossRef]
- Katoh, Y.; Katoh, M. Integrative genomic analyses on GLI1: Positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int. J. Oncol. 2009, 35, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundy, S.R.; Ahmad, T.; Simoneaux, T.; Benyeogor, I.; Robinson, Y.; George, Z.; Ellerson, D.; Kirlin, W.; Omosun, T.; Eko, F.O.; et al. Effect of Time of Day of Infection on Chlamydia Infectivity and Pathogenesis. Sci. Rep. 2019, 9, 11405. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundy, S.R.; Abney, K.; Ellerson, D.; Igietseme, J.U.; Carroll, D.; Eko, F.O.; Omosun, Y.O. MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology. Pathogens 2021, 10, 566. https://doi.org/10.3390/pathogens10050566
Lundy SR, Abney K, Ellerson D, Igietseme JU, Carroll D, Eko FO, Omosun YO. MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology. Pathogens. 2021; 10(5):566. https://doi.org/10.3390/pathogens10050566
Chicago/Turabian StyleLundy, Stephanie R., Kobe Abney, Debra Ellerson, Joseph U. Igietseme, Darin Carroll, Francis O. Eko, and Yusuf O. Omosun. 2021. "MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology" Pathogens 10, no. 5: 566. https://doi.org/10.3390/pathogens10050566
APA StyleLundy, S. R., Abney, K., Ellerson, D., Igietseme, J. U., Carroll, D., Eko, F. O., & Omosun, Y. O. (2021). MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology. Pathogens, 10(5), 566. https://doi.org/10.3390/pathogens10050566