A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae
Abstract
:1. Introduction
2. Results
2.1. Tick Identification and Status of Infection with R. africae
2.2. Microbial Community Structure
2.3. Taxonomic Differences
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Tick Collection
4.3. Processing of Ticks for Analysis
4.4. DNA Extraction
4.5. PCR Amplification of Bacterial Taxa in A. hebraeum Ticks
4.6. Informatic and Statistical Analysis
4.7. Ethical Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Sample ID | Year | Site | Sample Area | Life Stage | Sex (M/F) | Engorged (Y/N) | Rickettsia Status |
---|---|---|---|---|---|---|---|---|
Amblyomma hebraeum | 18N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | 110N | 2018 | Caquba | Environment | Nymph | F | N | Positive |
Amblyomma hebraeum | 19N | 2018 | Caquba | Environment | Nymph | F | N | Positive |
Amblyomma hebraeum | 112N | 2019 | Caquba | Environment | Nymph | M | N | Positive |
Amblyomma hebraeum | 111N | 2019 | Caquba | Environment | Nymph | F | N | Negative |
Amblyomma hebraeum | 201N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | 21N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | 53N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | 204N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | 18N | 2019 | Caquba | Environment | Nymph | F | N | Positive |
Amblyomma hebraeum | 168A | 2019 | Caquba | Cattle | Adult | F | N | Negative |
Amblyomma hebraeum | 165A | 2019 | Caquba | Cattle | Adult | M | N | Positive |
Amblyomma hebraeum | 91A | 2019 | Caquba | Cattle | Adult | F | Y | Negative |
Amblyomma hebraeum | 51A | 2019 | Caquba | Cattle | Adult | F | N | Negative |
Amblyomma hebraeum | 161A | 2019 | Caquba | Cattle | Adult | F | N | Negative |
Amblyomma hebraeum | 1A | 2019 | Caquba | Cattle | Adult | M | N | Positive |
Amblyomma hebraeum | 166A | 2019 | Caquba | Cattle | Adult | F | N | Positive |
Amblyomma hebraeum | 310A | 2019 | Caquba | Cattle | Adult | M | N | Positive |
Amblyomma hebraeum | 173A | 2019 | Caquba | Cattle | Adult | F | Y | Positive |
Amblyomma hebraeum | C51N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | C52N | 2018 | Caquba | Environment | Nymph | M | N | Positive |
Amblyomma hebraeum | C532A | 2018 | Caquba | Cattle | Adult | F | N | Positive |
Amblyomma hebraeum | C132N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
Amblyomma hebraeum | C133A | 2018 | Caquba | Cattle | Adult | F | N | Negative |
Amblyomma hebraeum | C141A | 2018 | Caquba | Cattle | Adult | M | N | Positive |
Amblyomma hebraeum | C152A | 2018 | Caquba | Cattle | Adult | M | N | Negative |
Amblyomma hebraeum | C222A | 2018 | Caquba | Cattle | Adult | F | N | Positive |
Amblyomma hebraeum | C232N | 2018 | Caquba | Environment | Nymph | M | N | Negative |
References
- Toledo, Á.; Olmeda, A.; Jado, I.; Gil, H.; Valcárcel, F.; Anda, P.; Escudero, R.; Casado-Nistal, M.; Rodríguez-Vargas, M. Tick-borne zoonotic bacteria in ticks collected from central Spain. Am. J. Trop. Med. Hyg. 2009, 81, 67–74. [Google Scholar] [CrossRef]
- Greay, T.; Gofton, A.; Paparini, A.; Ryan, U.; Oskam, C.; Irwin, P. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit. Vectors 2018, 11, 12. [Google Scholar] [CrossRef]
- Bonnet, S.; Binetruy, F.; Hernández-Jarguín, A.; Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell. Infect. Microbiol. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Horak, I.G.; Fourie, L.; Heyne, H.; Walker, J.; Needham, G. Ixodid ticks feeding on humans in South Africa: With notes on preferred hosts, geographic distribution, seasonal occurrence, and transmission of pathogens. Exp. Appl. Acarol. 2002, 27, 113–136. [Google Scholar] [CrossRef]
- Walker, A.R.; Bouattour, A.; Camicas, J.; Estrada-Peña, A.; Horak, I.G.; Latif, A.; Pegram, R.; Preston, P. Ticks of Domestic Animals in Africa; Bioscience Reports: Edinburgh, UK, 2003; pp. 2–221. [Google Scholar]
- Cazorla, C.; Socolovschi, C.; Jensenius, M.; Parola, P. Tick-borne diseases: Tick-borne spotted fever rickettsioses in Africa. Infect. Dis. Clin. N. Am. 2008, 22, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D. Vector-borne diseases. Rev. Sci. Tech. Off. Int. Épizoot. 2009, 28, 583–588. [Google Scholar] [CrossRef]
- Chitanga, S.; Gaff, H.; Mukaratirwa, S. Tick-borne pathogens of potential zoonotic importance in the southern African Region. J. S. Afr. Vet. Assoc. 2014, 85, 1–3. [Google Scholar] [CrossRef]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.S.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and management of tick-borne rickettsial diseases: Rocky Mountain Spotted Fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States: A practical guide for health care and public health professionals. Morb. Mortal. Wkly. Rep. 2016, 65, 1–44. [Google Scholar]
- Tomassone, L.; Portillo, A.; Nováková, M.; De Sousa, R.; Oteo, J.A. Neglected aspects of tick-borne rickettsioses. Parasit. Vectors 2018, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.; Fikrig, E. Tick microbiome: The force within. Trends Parasitol. 2015, 31, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Hawlena, H.; Rynkiewicz, E.; Toh, E.; Alfred, A.; Durden, L.A.; Hastriter, M.W.; Nelson, D.E.; Rong, R.; Munro, D.; Dong, Q.; et al. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME J. 2013, 7, 221–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Treuren, W.; Ponnusamy, L.; Brinkerhoff, R.J.; Gonzalez, A.; Parobek, C.M.; Juliano, J.J.; Andreadis, T.G.; Falco, R.C.; Ziegler, L.B.; Hathaway, N.; et al. Variation in the microbiota of Ixodes ticks with regard to geography, species and sex. Appl. Environ. Microbiol. 2015, 81, 6200–6209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Peña, A.; Gray, J.; Kahl, O.; Lane, R.; Nijhof, A. Research on the ecology of ticks and tick-borne pathogens—Methodological principles and caveats. Front. Cell Infect. Microbiol. 2013, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Ahantarig, A.; Trinachartvanit, W.; Baimai, V.; Grubhoffer, L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013, 58, 419–428. [Google Scholar] [CrossRef]
- Murrell, A.; Dobson, S.; Lacey, E.; Barker, S. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol. Res. 2002, 89, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Torabpour, S.; Soltani, A.; Sadeghi, S.; Dabaghmanesh, T.; Kalantari, M.; Azizi, K. The first detection of Amblyomma hebraeum (Acarina: Ixodidae) in Iran. Vet. Parasitol. Reg. Stud. 2019, 16, e100276. [Google Scholar] [CrossRef] [PubMed]
- Jongejan, F.; Berger, L.; Busser, S.; Deetman, I.; Jochems, M.; Leenders, T.; De Sitter, B.; Van der Steen, F.; Wentzel, J.; Stoltsz, H. Amblyomma hebraeum is the predominant tick species on goats in the Mnisi community area of Mpumalanga province South Africa and is co-infected with Ehrlichia ruminantium and Rickettsia africae. Parasit. Vectors 2020, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Brinkerhoff, R.J.; Clark, C.; Ocasio, K.; Gauthier, D.; Hynes, W. Factors affecting the microbiome of Ixodes scapularis and Amblyomma americanum. PLoS ONE 2020, 15, e0232398. [Google Scholar] [CrossRef]
- Trout-Fryxell, R.; DeBruyn, J. Correction: The microbiome of Ehrlichia-infected and uninfected Lone star ticks (Amblyomma americanum). PLoS ONE 2016, 11, e0155559. [Google Scholar]
- Weinert, L.; Werren, J.; Aebi, A.; Stone, G.; Jiggins, F. Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009, 7, 1–15. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.M.; Calus, S.T.; Cookson, W.O.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rynkiewicz, E.C.; Hemmerich, C.; Rusch, D.B.; Fuqua, C.; Clay, K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol. Ecol. 2015, 24, 2566–2579. [Google Scholar] [CrossRef]
- Mtshali, K.; Khumalo, Z.; Nakao, R.; Grab, D.; Sugimoto, C.; Thekisoe, O. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces. J. Vet. Med. Sci. 2015, 77, 1573–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela-Stokes, A.S.; Park, S.H.; Stokes, J.V.; Gavron, N.A.; Lee, S.I.; Moraru, G.M.; Ricke, S.C. Tick microbial communities within enriched extracts of Amblyomma maculatum. Ticks Tick Borne Dis. 2018, 9, 798–805. [Google Scholar] [CrossRef]
- Clow, K.; Weese, J.; Rousseau, J.; Jardine, C. Microbiota of field collected Ixodes scapularis and Dermacentor variabilis from eastern and southern Ontario, Canada. Ticks Tick Borne Dis. 2018, 9, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Adamson, S.; Dowd, S.E.; Apanskevich, D.; Arijo, A.; et al. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [Google Scholar] [CrossRef] [PubMed]
- Magaia, V.; Taviani, E.; Cangi, N.; Neves, L. Molecular detection of Rickettsia africae in Amblyomma ticks collected in cattle from southern and central Mozambique. J. Infect. Dev. Ctries. 2020, 14, 614–622. [Google Scholar] [CrossRef]
- Zolnik, C.P.; Prill, R.J.; Falco, R.C.; Daniels, T.J.; Kolokotronis, S.O. Microbiome changes through ontogeny of a tick pathogen vector. Mol. Ecol. 2016, 25, 4963–4977. [Google Scholar] [CrossRef]
- Menchaca, A.; Visi, D.; Strey, O.; Teel, P.; Kalinowski, K.; Allen, M.; Williamson, P. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 2013, 8, e67129. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, A.M.; Birtles, R.J. Rickettsia aeschlimannii: A new pathogenic spotted fever group Rickettsia, South Africa. Emerg. Infect. Dis. 2002, 8, 874. [Google Scholar] [CrossRef]
- Subramanian, G.; Sekeyova, Z.; Raoult, D.; Mediannikov, O. Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis. 2012, 3, 406–410. [Google Scholar] [CrossRef]
- Simpson, G.J.; Quan, V.; Frean, J.; Knobel, D.L.; Rossouw, J.; Weyer, J.; Marcotty, T.; Godfroid, J.; Blumberg, L.H. Prevalence of selected zoonotic diseases and risk factors at a human-wildlife-livestock interface in Mpumalanga province, South Africa. Vector Borne Zoonotic Dis. 2018, 18, 303–310. [Google Scholar] [CrossRef]
- Pillay, A.D.; Mukaratirwa, S. Genetic diversity of Rickettsia africae isolates from Amblyomma hebraeum and blood from cattle in the Eastern Cape province of South Africa. Exp. Appl. Acarol. 2020, 82, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Beard, D.; Stannard, H.J.; Old, J.M. Morphological identifcation of ticks and molecular detection of tick-borne pathogens from bare-nosed wombats (Vombatus ursinus). Parasit. Vectors 2021, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M.A.S.S. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Lahti, L.; Shetty, S.; Blake, T.; Salojarvi, J. Tools for Microbiome Analysis in R, Version 1.5.28. 2017. Avaliable online: https://microbiome.github.io/tutorials/ (accessed on 4 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisten, D.; Brinkerhoff, J.; Tshilwane, S.I.; Mukaratirwa, S. A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae. Pathogens 2021, 10, 941. https://doi.org/10.3390/pathogens10080941
Kisten D, Brinkerhoff J, Tshilwane SI, Mukaratirwa S. A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae. Pathogens. 2021; 10(8):941. https://doi.org/10.3390/pathogens10080941
Chicago/Turabian StyleKisten, Dalicia, Jory Brinkerhoff, Selaelo Ivy Tshilwane, and Samson Mukaratirwa. 2021. "A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae" Pathogens 10, no. 8: 941. https://doi.org/10.3390/pathogens10080941
APA StyleKisten, D., Brinkerhoff, J., Tshilwane, S. I., & Mukaratirwa, S. (2021). A Pilot Study on the Microbiome of Amblyomma hebraeum Tick Stages Infected and Non-Infected with Rickettsia africae. Pathogens, 10(8), 941. https://doi.org/10.3390/pathogens10080941