Genetics and Pathogenicity of Natural Reassortant of Infectious Bursal Disease Virus Emerging in Latvia
Abstract
:1. Introduction
2. Results
2.1. Molecular and Phylogenetic Analysis
2.2. Animal Experimental Study
3. Discussion
4. Materials and Methods
4.1. Full-length Genome Sequencing
4.2. Phylogenetic Analysis
4.3. Animal Experimental Study
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobos, P.; Hill, B.J.; Hallett, R.; Kells, D.T.; Becht, H.; Teninges, D. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J. Virol. 1979, 32, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, F.; Chevalier, C.; Gutsche, I.; Pous, J.; Navaza, J.; Bressanelli, S.; Delmas, B.; Rey, F.A. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 2005, 120, 761–772. [Google Scholar] [CrossRef] [PubMed]
- von Einem, U.I.; Gorbalenya, A.E.; Schirrmeier, H.; Behrens, S.E.; Letzel, T.; Mundt, E. VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J. Gen. Virol. 2004, 85, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wang, Y.; Zhang, E.; Han, X.; Yu, Z.; Liu, H. VP1 and VP3 Are Required and Sufficient for Translation Initiation of Uncapped Infectious Bursal Disease Virus Genomic Double-Stranded RNA. J. Virol. 2018, 92, e01345-17. [Google Scholar] [CrossRef]
- Escaffre, O.; Le Nouen, C.; Amelot, M.; Ambroggio, X.; Ogden, K.M.; Guionie, O.; Toquin, D.; Muller, H.; Islam, M.R.; Eterradossi, N. Both Genome Segments Contribute to the Pathogenicity of Very Virulent Infectious Bursal Disease Virus. J. Virol. 2013, 87, 2767–2780. [Google Scholar] [CrossRef]
- Eterradossi, N.; Saif, Y.M. Infectious bursal disease. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 257–283. [Google Scholar] [CrossRef]
- Eterradossi, N.; Arnauld, C.; Toquin, D.; Rivallan, G. Critical amino acid changes in VP2 variable domain are associated with typical and atypical antigenicity in very virulent infectious bursal disease viruses. Arch. Virol. 1998, 143, 1627–1636. [Google Scholar] [CrossRef]
- Fan, L.J.; Wu, T.T.; Wang, Y.L.; Hussain, A.; Jiang, N.; Gao, L.; Li, K.; Gao, Y.L.; Liu, C.J.; Cui, H.Y.; et al. Novel variants of infectious bursal disease virus can severely damage the bursa of fabricius of immunized chickens. Vet. Microbiol. 2020, 240, 108507. [Google Scholar] [CrossRef] [PubMed]
- Myint, O.; Suwanruengsri, M.; Araki, K.; Izzati, U.Z.; Pornthummawat, A.; Nueangphuet, P.; Fuke, N.; Hirai, T.; Jackwood, D.J.; Yamaguchi, R. Bursa atrophy at 28 days old caused by variant infectious bursal disease virus has a negative economic impact on broiler farms in Japan. Avian Pathol. 2021, 50, 6–17. [Google Scholar] [CrossRef]
- Mato, T.; Tatar-Kis, T.; Felfoldi, B.; Jansson, D.S.; Homonnay, Z.; Banyai, K.; Palya, V. Occurrence and spread of a reassortant very virulent genotype of infectious bursal disease virus with altered VP2 amino acid profile and pathogenicity in some European countries. Vet. Microbiol. 2020, 245, 108663. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, N.; Fan, L.; Niu, X.; Zhang, W.; Huang, M.; Gao, L.; Li, K.; Gao, Y.; Liu, C.; et al. Identification and Pathogenicity Evaluation of a Novel Reassortant Infectious Bursal Disease Virus (Genotype A2dB3). Viruses 2021, 13, 1682. [Google Scholar] [CrossRef]
- Pikuła, A.; Lisowska, A.; Jasik, A.; Perez, L.J. The Novel Genetic Background of Infectious Bursal Disease Virus Strains Emerging from the Action of Positive Selection. Viruses 2021, 13, 396. [Google Scholar] [CrossRef]
- Abbas, A.H.; Al Saegh, H.A.; FS, A.L. Sequence diversity and evolution of infectious bursal disease virus in Iraq. F1000Research 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Drissi Touzani, C.; Fellahi, S.; Fihri, O.F.; Gaboun, F.; Khayi, S.; Mentag, R.; Lico, C.; Baschieri, S.; El Houadfi, M.; Ducatez, M. Complete genome analysis and time scale evolution of very virulent infectious bursal disease viruses isolated from recent outbreaks in Morocco. Infect. Genet. Evol. 2020, 77, 104097. [Google Scholar] [CrossRef]
- Tammiranta, N.; Ek-Kommonen, C.E.; Rossow, L.; Huovilainen, A. Circulation of very virulent avian infectious bursal disease virus in Finland. Avian Pathol. 2018, 47, 520–525. [Google Scholar] [CrossRef]
- Legnardi, M.; Franzo, G.; Tucciarone, C.M.; Koutoulis, K.; Duarte, I.; Silva, M.; Le Tallec, B.; Cecchinato, M. Detection and molecular characterization of a new genotype of infectious bursal disease virus in Portugal. Avian Pathol. 2022, 51, 97–105. [Google Scholar] [CrossRef]
- Pikula, A.; Domanska-Blicharz, K.; Cepulis, R.; Smietanka, K. Identification of infectious bursal disease virus with atypical VP2 amino acid profile in Latvia. J. Vet. Res. 2017, 61, 145–149. [Google Scholar] [CrossRef]
- Mato, T.; Medveczki, A.; Kiss, I. Research Note: "Hidden" infectious bursal disease virus infections in Central Europe. Poult. Sci. 2022, 101, 101958. [Google Scholar] [CrossRef]
- Islam, M.R.; Nooruzzaman, M.; Rahman, T.; Mumu, T.T.; Rahman, M.M.; Chowdhury, E.H.; Eterradossi, N.; Muller, H. A unified genotypic classification of infectious bursal disease virus based on both genome segments. Avian Pathol. 2021, 50, 190–206. [Google Scholar] [CrossRef]
- Gerrard, S.R.; Li, L.; Barrett, A.D.; Nichol, S.T. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J. Virol. 2004, 78, 8922–8926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.I.; Viboud, C.; Simonsen, L.; Bennett, R.T.; Griesemer, S.B.; George, K.S.; Taylor, J.; Spiro, D.J.; Sengamalay, N.A.; Ghedin, E.; et al. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 2008, 4, e1000012. [Google Scholar] [CrossRef]
- Hon, C.C.; Lam, T.Y.; Drummond, A.; Rambaut, A.; Lee, Y.F.; Yip, C.W.; Zeng, F.; Lam, P.Y.; Ng, P.T.; Leung, F.C. Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus and reassortment of its genome segment B. J. Virol. 2006, 80, 8503–8509. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Lu, P.; Yan, Y.X.; Hua, X.G.; Jiang, J.; Zhao, Y. Sequence and analysis of genomic segment A and B of very virulent infectious bursal disease virus isolated from China. J. Vet. Med. Ser. B 2003, 50, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.P.; Hong, L.L.; Ye, J.X.; Huang, Z.Y.; Zhou, J.Y. The VP5 protein of infectious bursal disease virus promotes virion release from infected cells and is not involved in cell death. Arch. Virol. 2009, 154, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Hou, L.; Zhu, S.; Wang, J.; Zhou, J.; Liu, J. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85alpha subunit of PI3K. Virology 2011, 417, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Xue, Y.; Li, X.; Cao, H.; Zheng, S.J. Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5. J. Virol. 2012, 86, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Mendez, F.; de Garay, T.; Rodriguez, D.; Rodriguez, J.F. Infectious bursal disease virus VP5 polypeptide: A phosphoinositide-binding protein required for efficient cell-to-cell virus dissemination. PLoS ONE 2015, 10, e0123470. [Google Scholar] [CrossRef] [PubMed]
- Jackwood, D.J.; Sommer-Wagner, S.E. Amino acids contributing to antigenic drift in the infectious bursal disease Birnavirus (IBDV). Virology 2011, 409, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Ogawa, M.; Inoshima, Y.; Miyoshi, M.; Fukushi, H.; Hirai, K. Identification of sequence changes responsible for the attenuation of highly virulent infectious bursal disease virus. Virology 1996, 223, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Mata, C.P.; Mertens, J.; Fontana, J.; Luque, D.; Allende-Ballestero, C.; Reguera, D.; Trus, B.L.; Steven, A.C.; Carrascosa, J.L.; Caston, J.R. The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J. Virol. 2018, 92, e00968-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacken, M.G.; Peeters, B.P.; Thomas, A.A.; Rottier, P.J.; Boot, H.J. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. J. Virol. 2002, 76, 11301–11311. [Google Scholar] [CrossRef]
- Boot, H.J.; ter Huurne, A.A.; Hoekman, A.J.; Pol, J.M.; Gielkens, A.L.; Peeters, B.P. Exchange of the C-terminal part of VP3 from very virulent infectious bursal disease virus results in an attenuated virus with a unique antigenic structure. J. Virol. 2002, 76, 10346–10355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Qi, X.L.; Kang, Z.H.; Yu, F.; Qin, L.T.; Gao, H.L.; Gao, Y.L.; Wang, X.M. A single amino acid in the C-terminus of VP3 protein influences the replication of attenuated infectious bursal disease virus in vitro and in vivo. Antivir. Res. 2010, 87, 223–229. [Google Scholar] [CrossRef]
- Trapp, J.; Rautenschlein, S. Infectious bursal disease virus’ interferences with host immune cells: What do we know? Avian Pathol. 2022, 51, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, L.; Wang, N.; Chen, Y.; Gao, L.; Wang, Y.; Gao, H.; Gao, Y.; Li, K.; Qi, X.; et al. Naturally occurring reassortant infectious bursal disease virus in northern China. Virus Res. 2015, 203, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Soubies, S.M.; Courtillon, C.; Briand, F.X.; Queguiner-Leroux, M.; Courtois, D.; Amelot, M.; Grousson, K.; Morillon, P.; Herin, J.B.; Eterradossi, N. Identification of a European interserotypic reassortant strain of infectious bursal disease virus. Avian Pathol. 2017, 46, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Le Nouen, C.; Rivallan, G.; Toquin, D.; Darlu, P.; Morin, Y.; Beven, V.; de Boisseson, C.; Cazaban, C.; Comte, S.; Gardin, Y.; et al. Very virulent infectious bursal disease virus: Reduced pathogenicity in a rare natural segment-B-reassorted isolate. J. Gen. Virol. 2006, 87, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Abed, M.; Soubies, S.; Courtillon, C.; Briand, F.X.; Allee, C.; Amelot, M.; De Boisseson, C.; Lucas, P.; Blanchard, Y.; Belahouel, A.; et al. Infectious bursal disease virus in Algeria: Detection of highly pathogenic reassortant viruses. Infect. Genet. Evol. 2018, 60, 48–57. [Google Scholar] [CrossRef]
- Lee, H.J.; Jang, I.; Shin, S.H.; Lee, H.S.; Choi, K.S. Genome Sequence of a Novel Reassortant and Very Virulent Strain of Infectious Bursal Disease Virus. Genome Announc. 2017, 5, e00730-17. [Google Scholar] [CrossRef]
- Pikuła, A.; Śmietanka, K.; Perez, L.J. Emergence and expansion of novel pathogenic reassortant strains of infectious bursal disease virus causing acute outbreaks of the disease in Europe. Transbound. Emerg. Dis. 2020, 67, 1739–1744. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, Y.; Zhang, W.; Niu, X.; Huang, M.; Gao, Y.; Liu, A.; Gao, L.; Li, K.; Pan, Q.; et al. Genotyping and Molecular Characterization of Infectious Bursal Disease Virus Identified in Important Poultry-Raising Areas of China During 2019 and 2020. Front. Vet. Sci. 2021, 8, 759861. [Google Scholar] [CrossRef]
- Arowolo, O.A.; George, U.E.; Luka, P.D.; Maurice, N.A.; Atuman, Y.J.; Shallmizhili, J.J.; Shittu, I.; Oluwayelu, D.O. Infectious bursal disease in Nigeria: Continuous circulation of reassortant viruses. Trop. Anim. Health Prod. 2021, 53, 271. [Google Scholar] [CrossRef] [PubMed]
- Pikuła, A.; Lisowska, A.; Jasik, A.; Śmietanka, K. Identification and assessment of virulence of a natural reassortant of infectious bursal disease virus. Vet. Res. 2018, 49, 89. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Jackwood, D.J.; Sommer-Wagner, S.E.; Crossley, B.M.; Stoute, S.T.; Woolcock, P.R.; Charlton, B.R. Identification and pathogenicity of a natural reassortant between a very virulent serotype 1 infectious bursal disease virus (IBDV) and a serotype 2 IBDV. Virology 2011, 420, 98–105. [Google Scholar] [CrossRef] [Green Version]
Segment A | |||||||||||||||||||||||||||
VP5 | VP2 | VP4 | VP3 | ||||||||||||||||||||||||
IBDV Strain | Genogroup | 9 | 14 | 19 | 45 | 47 | 74 | 112 | 134 | 219 | 220 | 222 | 242 | 254 | 256 | 279 | 280 | 284 | 545 | 553 | 570 | 680 | 905 | 935 | 960 | 990 | |
D6948 | A3 | vv | D | E | N | R | A | F | A | H | Q | Y | A | I | G | I | D | N | A | A | R | M | Y | L | A | E | A |
25/11 | A3 | vv | A | K | . | . | T | L | V | N | L | F | . | . | D | . | N | T | . | T | . | V | F | P | V | D | V |
D3976 | A3 | vv | - | K | D | . | . | L | V | . | L | . | . | . | D | . | N | T | . | . | . | . | . | . | . | . | V |
D4320 | A3 | vv | - | K | D | . | . | L | V | . | L | . | . | . | D | . | N | T | . | . | K | . | . | . | . | . | V |
Bpop/03 | A3 | vv | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
SH95 | A3 | vv | - | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | V |
GA/1479/2004 | A1 | cv | . | K | . | G | . | I | . | . | . | . | P | V | . | V | . | . | . | . | . | . | C | . | . | . | . |
Variant E | A2 | av | . | K | . | G | . | I | . | . | . | . | T | V | S | V | N | . | . | . | . | . | C | . | . | . | . |
117/04 | A3 | vv | . | K | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | V |
02015.1 | A3 | vv | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | V |
HLJ-0504 | A3 | vv | . | K | . | . | . | . | . | N | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
100056 | A3 | vv | . | K | . | . | . | L | . | . | . | . | . | . | S | . | . | . | . | . | . | . | . | P | . | . | V |
160021 | A3 | vv | . | K | . | . | . | . | . | . | . | F | . | . | S | . | . | . | . | . | . | . | . | . | . | . | . |
Segment B | |||||||||||||||||||||||||||
VP1 | |||||||||||||||||||||||||||
IBDV Strain | Genogroup | 4 | 13 | 61 | 71 | 145 | 146 | 147 | 157 | 242 | 275 | 287 | 390 | 393 | 455 | 508 | 511 | 515 | 562 | 646 | 682 | 685 | 687 | 695 | 759 | 859 | |
GA/1479/2004 | B1 | cl | I | K | V | E | N | E | D | Q | D | I | T | L | E | T | R | R | D | S | G | R | V | S | K | K | T |
25/11 | B1 | cl | . | . | . | D | . | . | . | L | . | . | . | . | . | S | . | . | . | . | . | . | I | P | . | R | . |
D3976 | B1 | cl | . | T | . | . | . | . | G | . | . | L | . | . | . | . | . | K | . | . | . | K | . | . | . | . | V |
D4320 | B1 | cl | . | T | . | . | . | . | G | . | . | L | . | . | . | . | . | K | . | . | . | K | . | . | . | . | V |
Bpop/03 | B1 | cl | . | T | . | . | . | . | G | . | . | . | . | . | . | . | . | . | E | . | . | K | . | . | . | . | . |
SH95 | B1 | cl | . | T | . | . | . | . | . | . | . | . | . | . | . | . | K | . | . | . | . | K | . | . | . | . | I |
Variant E | B1 | cl | . | . | . | . | . | . | G | . | . | . | . | . | . | . | . | . | . | . | . | . | I | . | . | . | . |
117/04 | B4 | trans | V | . | I | . | S | . | G | . | . | . | A | M | . | . | K | S | E | . | S | K | . | . | . | . | I |
02015.1 | B3 | eA | V | . | . | . | T | . | S | . | . | . | A | . | D | . | K | S | E | . | S | K | . | P | . | . | I |
HLJ-0504 | B3 | eA | V | . | I | . | T | . | G | . | . | . | A | . | . | . | K | S | E | . | S | K | . | P | . | . | . |
100056 | B1 | cl | . | . | . | . | . | . | G | . | . | . | . | . | . | . | K | S | E | A | . | K | . | . | . | . | . |
160021 | B2 | vv | . | . | I | . | T | D | N | . | E | . | A | M | D | . | K | S | E | P | S | K | . | P | R | . | . |
D6948 | B2 | vv | V | . | I | . | T | D | N | . | E | . | A | M | D | . | K | S | E | P | S | K | . | P | R | . | . |
No. | IBDV Strain | Genotype | Origin | Segment A | Segment B | |
---|---|---|---|---|---|---|
Country | Date | |||||
1 | 002-73 | A8B3 | Australia | 1973 | X03993 | M19336 |
2 | 02015.1 | A3B3 | Venezuela | 2002 | AJ879932 | AJ880090 |
3 | 1/chicken/ARG/P33/15 | A4B1 | Argentina | 2015 | MN313610 | MN313616 |
4 | 1/chicken/URY/1302/16 | A4B1 | Uruguay | 2016 | MN313615 | MN313621 |
5 | 1/chicken/URY/2701/12 | A4B1 | Uruguay | 2012 | MN313614 | MN313620 |
6 | 100056 | A3B1 | France | 2010 | KU234528 | KU234529 |
7 | 117/14/Poland/2014 | A3B4 | Poland | 2014 | MT629831 | MT629834 |
8 | 160023 | A3B2 | Egypt | 2015 | KY610531 | KY597861 |
9 | 23/82 | A0B1 | UK | 1985 | AF362773 | AF362774 |
10 | 64 | A3B2 | Morocco | 2018 | MK580163 | MK580167 |
11 | 75/11/Poland/2011 | A3B2 | Poland | 2011 | MT629832 | MT629835 |
12 | 8 | A3B2 | Morocco | 2017 | MK580162 | MK580165 |
13 | 89163 | A3B2 | France | 1989 | HG974563 | HG974564 |
14 | 903/78 | A1bB1 | Hungary | 1978 | JQ411012 | JQ411013 |
15 | 9109 | A2B1 | USA | 2003 | AY462027 | AY459321 |
16 | 94432 | A3B2 | France | 1994 | AM167550 | AM167551 |
17 | BD3/99 | A3B2 | Bangladesh | 1999 | AF362776 | AF362770 |
18 | Bpop/03/Poland/2003 | A3B1 | Poland | 2003 | MH545934 | MH545935 |
19 | Bug/03/Poland/2003 | A3B4 | Poland | 2003 | MT629830 | MT629833 |
20 | CA-D495 | A3B1 | USA | 2009 | JF907703 | JF907704 |
21 | CA-K785 | A3B1 | USA | 2009 | JF907702 | JF907705 |
22 | CEF94 | A1bB1 | - | - | AF194428 | AF194429 |
23 | Cro-Pa/98 | A1bB1 | Croatia | 1998 | EU184689 | EU184690 |
24 | Cu-1 | A1bB1 | vaccine | - | D00867 | AF362775 |
25 | Cu-1wt | A1aB1 | Germany | 1975 | AF362747 | AF362748 |
26 | D3976/1 | A3B1 | Germany | 2017 | MN786767 | MN786769 |
27 | D4320/6 | A3B1 | Denmark | 2018 | MN786768 | MN786770 |
28 | D6948 | A3B2 | Netherlands | 1989 | AF240686 | AF240687 |
29 | D78 | A1bB1 | Netherlands | 1978 | AF499929 | AF499930 |
30 | DD1 | A3B2 | Russia | 2016 | MH644846 | MH644847 |
31 | Faragher 52/70 | A1aB1 | UK | 1970 | HG974565 | HG974566 |
32 | GA/1479/2004 | A1aB1 | USA | 2004 | MN814843 | MN814844 |
33 | GLS | A2B1 | USA | 1987 | AY368653 | AY368654 |
34 | Gx | A3B3 | China | 1996 | AY444873 | AY705393 |
35 | GXB02 | A1aB1 | China | 2020 | MZ740264 | MZ740265 |
36 | GX-NN-L | A3B3 | China | 2011 | JX134485 | JX134486 |
37 | GX-NNZ-11 | A2B1 | China | 2011 | JX134483 | JX134484 |
38 | HLJ-0504 | A3B3 | China | 2005 | GQ451330 | GQ451331 |
39 | IBD13HeB01 | A3B1 | China | 2013 | KP676467 | KP676468 |
40 | IBD16HeN01 | A2B1 | China | 2016 | MT179710 | MT179711 |
41 | IBDV/Italy/1829/2011 | A6B1 | Italy | 2011 | KY930929 | KX520665 |
42 | IBDV-HeN20-7103 | A1bB1 | China | 2020 | MW682877 | MW682878 |
43 | Irwin Moulthrop | A1aB1 | USA | 1967 | AY029164 | AY029165 |
44 | ks | A3B2 | Israel | 1990 | DQ927042 | DQ927043 |
45 | li4129/2014 | A3B4 | Finland | 2014 | MG739298 | MG739299 |
46 | Lukert | A1aB1 | USA | 1973 | AY918948 | AY918947 |
47 | OH | A0B1 | USA | 1981 | U30818 | U30819 |
48 | OKYM | A3B2 | Japan | 1991 | D49706 | D49707 |
49 | P2 | A1bB1 | Germany | 1977 | X84034 | X84035 |
50 | P3009 | A1aB1 | Taiwan | 1988 | MH816964 | MK040596 |
51 | QZ191002 | A2B1 | China | 2019 | MZ066613 | MZ066615 |
52 | SH95 | A3B1 | China | 1995 | AY134874 | AY134875 |
53 | SHG19 | A2B1 | China | 2018 | MN393076 | MN393077 |
54 | SHG352 | A2B1 | China | 2018 | MT179720 | MT179722 |
55 | STC | A1a | USA | 1967 | D00499 | - |
56 | TASIK | A3B2 | Indonesia | 1994 | AF322444 | AF322445 |
57 | TL2004 | A1bB2 | China | 2004 | DQ088175 | DQ118374 |
58 | UK661 | A3B2 | UK | 1994 | NC004178 | NC004179 |
59 | UPM1432/2019 | A2B1 | Malaysia | 2019 | MT505343 | MT505348 |
60 | variant E | A2B1 | USA | 1985 | AF133904 | AF133905 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikuła, A.; Lisowska, A. Genetics and Pathogenicity of Natural Reassortant of Infectious Bursal Disease Virus Emerging in Latvia. Pathogens 2022, 11, 1081. https://doi.org/10.3390/pathogens11101081
Pikuła A, Lisowska A. Genetics and Pathogenicity of Natural Reassortant of Infectious Bursal Disease Virus Emerging in Latvia. Pathogens. 2022; 11(10):1081. https://doi.org/10.3390/pathogens11101081
Chicago/Turabian StylePikuła, Anna, and Anna Lisowska. 2022. "Genetics and Pathogenicity of Natural Reassortant of Infectious Bursal Disease Virus Emerging in Latvia" Pathogens 11, no. 10: 1081. https://doi.org/10.3390/pathogens11101081
APA StylePikuła, A., & Lisowska, A. (2022). Genetics and Pathogenicity of Natural Reassortant of Infectious Bursal Disease Virus Emerging in Latvia. Pathogens, 11(10), 1081. https://doi.org/10.3390/pathogens11101081