Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics of the Patients
2.2. Patients Follow-Ups
2.3. Serological Evidence of Previous Exposure and Molecular Detection
2.4. Tick Data
2.5. Molecular Phylogenetic Analysis of 16s rRNA Sequences of the Coxiella Genus
2.6. Factors Associated with C. burnetii Detected in Patients with AFI
3. Discussion
4. Materials and Methods
4.1. Area of Study, Patients, and Data Collection
4.1.1. Blood Sample Collection
4.1.2. Molecular Detection and Serological Antibody IgG Analysis
4.2. Field Collection of Ticks and Species Identification
Molecular Detection of Natural TBD Infection in Ticks
4.3. Data Analysis
4.3.1. Molecular Phylogenetic Analysis for Coxiella Genus
4.3.2. Tick Data
4.3.3. Descriptive and Inferential Statistical Analysis of Associated Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés, J.A.; Romero-Moreno, L.F.; Aguirre-León, C.A.; Pinzón-Lozano, L.; Cuervo, S.I. Enfoque Clínico Del Síndrome Febril Agudo En Colombia. Infectio 2017, 21, 39–50. [Google Scholar] [CrossRef]
- Moreira, J.; Bressan, C.S.; Brasil, P.; Siqueira, A.M. Epidemiology of Acute Febrile Illness in Latin America. Clin. Microbiol. Infect. 2018, 24, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Kasper, M.R.; Blair, P.J.; Touch, S.; Sokhal, B.; Yasuda, C.Y.; Williams, M.; Richards, A.L.; Burgess, T.H.; Wierzba, T.F.; Putnam, S.D. Infectious Etiologies of Acute Febrile Illness among Patients Seeking Health Care in South-Central Cambodia. Am. J. Trop. Med. Hyg. 2012, 86, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zoonotic Diseases|One Health|CDC. Available online: https://www.cdc.gov/onehealth/basics/zoonotic-diseases.html (accessed on 28 April 2021).
- Wikel, S.K. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet. Sci. 2018, 5, 60. [Google Scholar] [CrossRef]
- Colwell, D.D.; Dantas-Torres, F.; Otranto, D. Vector-Borne Parasitic Zoonoses: Emerging Scenarios and New Perspectives. Vet. Parasitol. 2011, 182, 14–21. [Google Scholar] [CrossRef]
- McDaniel, C.J.; Cardwell, D.M.; Moeller, R.B.; Gray, G.C. Humans and Cattle: A Review of Bovine Zoonoses. Vector Borne Zoonotic Dis. 2014, 14, 1–19. [Google Scholar] [CrossRef]
- Boulanger, N.; Boyer, P.; Talagrand-Reboul, E.; Hansmann, Y. Ticks and Tick-Borne Diseases. Med. Mal. Infect. 2019, 49, 87–97. [Google Scholar] [CrossRef]
- Randolph, S.E.; Gern, L.; Nuttall, P.A. Co-Feeding Ticks: Epidemiological Significance for Tick-Borne Pathogen Transmission. Parasitol. Today 1996, 12, 472–479. [Google Scholar] [CrossRef]
- Del Cerro, A.; Oleaga, A.; Somoano, A.; Barandika, J.F.; García-Pérez, A.L.; Espí, A. Molecular Identification of Tick-Borne Pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and Piroplasms) in Questing and Feeding Hard Ticks from North-Western Spain. Ticks Tick-borne Dis. 2022, 13, 101961. [Google Scholar] [CrossRef]
- Jahfari, S.; Hofhuis, A.; Fonville, M.; van der Giessen, J.; van Pelt, W.; Sprong, H. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands. PLoS Negl. Trop. Dis. 2016, 10, e0005042. [Google Scholar] [CrossRef] [Green Version]
- FIND Acute Febrile Syndrome Strategy. Available online: https://www.gov.uk/research-for-development-outputs/find-acute-febrile-syndrome-strategy (accessed on 25 May 2021).
- Duron, O.; Noël, V.; McCoy, K.D.; Bonazzi, M.; Sidi-Boumedine, K.; Morel, O.; Vavre, F.; Zenner, L.; Jourdain, E.; Durand, P.; et al. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathog. 2015, 11, e1004892. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Orrego, R.; Ríos-Osorio, L.A.; Keynan, Y.; Rueda, Z.V.; Gutiérrez, L.A. Molecular Detection of Coxiella burnetii in Livestock Farmers and Cattle from Magdalena Medio in Antioquia, Colombia. PLoS ONE 2020, 15, e0234360. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Malania, L.; Bani Salman, A.E.; Arner, R.J.; Roess, A.A. Seroepidemiology, Spatial Distribution, and Risk Factors of Francisella tularensis in Jordan. Am. J. Trop Med. Hyg. 2020, 103, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Salyer, S.J.; Silver, R.; Simone, K.; Barton Behravesh, C. Prioritizing Zoonoses for Global Health Capacity Building-Themes from One Health Zoonotic Disease Workshops in 7 Countries, 2014–2016. Emerg. Infect. Dis. 2017, 23. [Google Scholar] [CrossRef]
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella burnetii Infection: A Paradigm Change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef]
- Cooper, A.; Stephens, J.; Ketheesan, N.; Govan, B. Detection of Coxiella burnetii DNA in Wildlife and Ticks in Northern Queensland, Australia. Vector Borne Zoonotic Dis. 2013, 13, 12–16. [Google Scholar] [CrossRef]
- González-Barrio, D.; Hagen, F.; Tilburg, J.J.H.C.; Ruiz-Fons, F. Coxiella burnetii Genotypes in Iberian Wildlife. Microb. Ecol. 2016, 72, 890–897. [Google Scholar] [CrossRef]
- Guatteo, R.; Beaudeau, F.; Joly, A.; Seegers, H. Coxiella burnetii Shedding by Dairy Cows. Vet. Res. 2007, 38, 849–860. [Google Scholar] [CrossRef]
- Roest, H.-J.; van Gelderen, B.; Dinkla, A.; Frangoulidis, D.; van Zijderveld, F.; Rebel, J.; van Keulen, L. Q Fever in Pregnant Goats: Pathogenesis and Excretion of Coxiella burnetii. PLoS ONE 2012, 7, e48949. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Souriau, A.; Lechopier, P.; Rodolakis, A. Excretion of Coxiella burnetii during an Experimental Infection of Pregnant Goats with an Abortive Goat Strain CbC1. Ann. N. Y. Acad. Sci. 2003, 990, 524–526. [Google Scholar] [CrossRef]
- Brooke, R.J.; Kretzschmar, M.E.E.; Mutters, N.T.; Teunis, P.F. Human Dose Response Relation for Airborne Exposure to Coxiella burnetii. BMC Infect. Dis. 2013, 13, 488. [Google Scholar] [CrossRef]
- Georgiev, M.; Afonso, A.; Neubauer, H.; Needham, H.; Thiery, R.; Rodolakis, A.; Roest, H.; Stark, K.; Stegeman, J.; Vellema, P.; et al. Q Fever in Humans and Farm Animals in Four European Countries, 1982 to 2010. Euro. Surveill 2013, 18, 20407. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Bijlmer, H.; Fournier, P.-E.; Graves, S.; Hartzell, J.; Kersh, G.J.; Limonard, G.; Marrie, T.J.; Massung, R.F.; McQuiston, J.H.; et al. Diagnosis and Management of Q Fever--United States, 2013: Recommendations from CDC and the Q Fever Working Group. MMWR Recomm Rep 2013, 62, 1–30. [Google Scholar] [PubMed]
- Million, M.; Roblot, F.; Carles, D.; D’Amato, F.; Protopopescu, C.; Carrieri, M.P.; Raoult, D. Reevaluation of the Risk of Fetal Death and Malformation after Q Fever. Clin. Infect. Dis. 2014, 59, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, P.M.; Wintenberger, C.; van der Hoek, W.; Stahl, J.P. Q Fever in the Netherlands - 2007-2010: What We Learned from the Largest Outbreak Ever. Med. Mal. Infect. 2014, 44, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Limonard, G.J.M.; Nabuurs-Franssen, M.H.; Weers-Pothoff, G.; Wijkmans, C.; Besselink, R.; Horrevorts, A.M.; Schneeberger, P.M.; Groot, C.A.R. One-Year Follow-up of Patients of the Ongoing Dutch Q Fever Outbreak: Clinical, Serological and Echocardiographic Findings. Infection 2010, 38, 471–477. [Google Scholar] [CrossRef]
- Hatchette, T.F.; Hudson, R.C.; Schlech, W.F.; Campbell, N.A.; Hatchette, J.E.; Ratnam, S.; Raoult, D.; Donovan, C.; Marrie, T.J. Goat-Associated Q Fever: A New Disease in Newfoundland. Emerg. Infect. Dis. 2001, 7, 413–419. [Google Scholar] [CrossRef]
- Lennette, E.H.; Clark, W.H.; Dean, B.H. Sheep and Goats in the Epidemiology of Q Fever in Northern California. Am. J. Trop Med. Hyg. 1949, 29, 527–541. [Google Scholar] [CrossRef]
- Dijkstra, F.; van der Hoek, W.; Wijers, N.; Schimmer, B.; Rietveld, A.; Wijkmans, C.J.; Vellema, P.; Schneeberger, P.M. The 2007–2010 Q Fever Epidemic in The Netherlands: Characteristics of Notified Acute Q Fever Patients and the Association with Dairy Goat Farming. FEMS Immunol. Med. Microbiol. 2012, 64, 3–12. [Google Scholar] [CrossRef]
- Arricau Bouvery, N.; Souriau, A.; Lechopier, P.; Rodolakis, A. Experimental Coxiella burnetii Infection in Pregnant Goats: Excretion Routes. Vet. Res. 2003, 34, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Rodolakis, A.; Berri, M.; Héchard, C.; Caudron, C.; Souriau, A.; Bodier, C.C.; Blanchard, B.; Camuset, P.; Devillechaise, P.; Natorp, J.C.; et al. Comparison of Coxiella burnetii Shedding in Milk of Dairy Bovine, Caprine, and Ovine Herds. J. Dairy Sci. 2007, 90, 5352–5360. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-C.; Hwang, S.; Kim, E.-M.; Park, Y.-J.; Shin, S.-U.; Jang, D.-H.; Chae, J.-S.; Choi, K.-S. Prevalence and Molecular Characterization of Coxiella burnetii in Cattle, Goats, and Horses in the Republic of Korea. Vector-Borne Zoonotic Dis. 2021, 21, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Meurer, I.R.; Silva, M.R.; Silva, M.V.F.; de Lima Duré, A.Í.; Adelino, T.É.R.; da Costa, A.V.B.; Vanelli, C.P.; de Paula Souza e Guimarães, R.J.; Rozental, T.; de Lemos, E.R.S.; et al. Seroprevalence Estimate and Risk Factors for Coxiella burnetii Infections among Humans in a Highly Urbanised Brazilian State. Trans. R. Soc. Trop. Med. Hyg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Paternina, L.E.; Verbel-Vergara, D.; Bejarano, E.E. Comparison of 16S and COX1 Genes Mitochondrial Regions and Their Usefulness for Genetic Analysis of Ticks (Acari: Ixodidae). Biomedica 2016, 36, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wu, S.; Zhang, Y.; Chen, Y.; Feng, C.; Yuan, X.; Jia, G.; Deng, J.; Wang, C.; Wang, Q.; et al. Assessment of Four DNA Fragments (COI, 16S RDNA, ITS2, 12S RDNA) for Species Identification of the Ixodida (Acari: Ixodida). Parasites Vectors 2014, 7, 93. [Google Scholar] [CrossRef]
- Sheth, B.P.; Thaker, V.S. DNA Barcoding and Traditional Taxonomy: An Integrated Approach for Biodiversity Conservation. Genome 2017, 60, 618–628. [Google Scholar] [CrossRef]
- Adjou Moumouni, P.F.; Aplogan, G.L.; Katahira, H.; Gao, Y.; Guo, H.; Efstratiou, A.; Jirapattharasate, C.; Wang, G.; Liu, M.; Ringo, A.E.; et al. Prevalence, Risk Factors, and Genetic Diversity of Veterinary Important Tick-Borne Pathogens in Cattle from Rhipicephalus microplus-Invaded and Non-Invaded Areas of Benin. Ticks Tick-borne Dis. 2018, 9, 450–464. [Google Scholar] [CrossRef]
- Guo, H.; Adjou Moumouni, P.F.; Thekisoe, O.; Gao, Y.; Liu, M.; Li, J.; Galon, E.M.; Efstratiou, A.; Wang, G.; Jirapattharasate, C.; et al. Genetic Characterization of Tick-Borne Pathogens in Ticks Infesting Cattle and Sheep from Three South African Provinces. Ticks Tick Borne Dis 2019, 10, 875–882. [Google Scholar] [CrossRef]
- Labruna, M.B.; V, S.M. Rickettsioses in Latin America, Caribbean, Spain and Portugal. Revista MVZ Córdoba 2011, 16, 2435–2457. [Google Scholar] [CrossRef]
- Venzal, J.M.; Estrada Pena, A.; Castro, O.; De Souza, C.G.; Portillo, A.; Oteo, J.A. Study on Seasonal Activity in Dogs and Ehrlichial Infection in Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) from Southern Uruguay. Parasitol. Latinoam. 2007, 62, 23–26. [Google Scholar] [CrossRef]
- Arroyave, E.; Cornwell, E.R.; McBride, J.W.; Díaz, C.A.; Labruna, M.B.; Rodas, J.D. Detection of Tick-Borne Rickettsial Pathogens in Naturally Infected Dogs and Dog-Associated Ticks in Medellin, Colombia. Rev. Bras. Parasitol. Vet. 2020, 29. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Chaligiannis, I.; Xanthopoulou, K.; Papaioakim, M.; Papanastasiou, S.; Sotiraki, S. Ticks Parasitizing Humans in Greece. Vector Borne Zoonotic Dis 2011, 11, 539–542. [Google Scholar] [CrossRef] [PubMed]
- E.S.E Hospital César Uribe de Piedrahita. Available online: https://www.hcup.gov.co/quienes-somos/nuestro-hospital (accessed on 25 May 2021).
- Atlas Interactivo - Climatológico - IDEAM. Available online: http://atlas.ideam.gov.co/visorAtlasClimatologico.html (accessed on 26 May 2021).
- Sobotta, K.; Hillarius, K.; Jiménez, P.H.; Kerner, K.; Heydel, C.; Menge, C. Interaction of Coxiella burnetii Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages. Front. Cell Infect. Microbiol. 2017, 7, 543. [Google Scholar] [CrossRef] [PubMed]
- Seong, G.; Han, Y.-J.; Chae, J.-B.; Chae, J.-S.; Yu, D.-H.; Lee, Y.-S.; Park, J.; Park, B.-K.; Yoo, J.-G.; Choi, K.-S. Detection of Anaplasma sp. in Korean Native Goats (Capra Aegagrus Hircus) on Jeju Island, Korea. Korean J. Parasitol. 2015, 53, 765–769. [Google Scholar] [CrossRef]
- Doyle, C.K.; Labruna, M.B.; Breitschwerdt, E.B.; Tang, Y.-W.; Corstvet, R.E.; Hegarty, B.C.; Bloch, K.C.; Li, P.; Walker, D.H.; McBride, J.W. Detection of Medically Important Ehrlichia by Quantitative Multicolor TaqMan Real-Time Polymerase Chain Reaction of the Dsb Gene. J. Mol. Diagn. 2005, 7, 504–510. [Google Scholar] [CrossRef]
- Madeddu, G.; Mancini, F.; Caddeo, A.; Ciervo, A.; Babudieri, S.; Maida, I.; Fiori, M.L.; Rezza, G.; Mura, M.S. Rickettsia monacensis as Cause of Mediterranean Spotted Fever–like Illness, Italy. Emerg. Infect. Dis. 2012, 18, 702–704. [Google Scholar] [CrossRef]
- Howe, G.B.; Loveless, B.M.; Norwood, D.; Craw, P.; Waag, D.; England, M.; Lowe, J.R.; Courtney, B.C.; Pitt, M.L.; Kulesh, D.A. Real-Time PCR for the Early Detection and Quantification of Coxiella burnetii as an Alternative to the Murine Bioassay. Mol. Cell Probes. 2009, 23, 127–131. [Google Scholar] [CrossRef]
- Lee, S.H.; Vigliotti, V.S.; Vigliotti, J.S.; Jones, W.; Pappu, S. Increased Sensitivity and Specificity of Borrelia burgdorferi 16S Ribosomal DNA Detection. Am. J. Clin. Pathol. 2010, 133, 569–576. [Google Scholar] [CrossRef]
- Dergousoff, S.J.; Chilton, N.B. Association of Different Genetic Types of Francisella-like Organisms with the Rocky Mountain Wood Tick (Dermacentor andersoni) and the American Dog Tick (Dermacentor variabilis) in Localities near Their Northern Distributional Limits. Appl. Environ. Microbiol. 2012, 78, 965–971. [Google Scholar] [CrossRef]
- Biggs, H.M. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis — United States. MMWR Recomm. Rep. 2016, 65. [Google Scholar] [CrossRef] [Green Version]
- Mead, P. Updated CDC Recommendation for Serologic Diagnosis of Lyme Disease. MMWR Morb. Mortal. Wkly Rep. 2019, 68. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC) Tularemia - United States, 2001–2010. MMWR Morb. Mortal. Wkly Rep. 2013, 62, 963–966.
- Manual de Campo Para la Vigilancia Entomológica; Ministerio de Salud, Dirección General de Salud Ambiental: Lima, Perú, 2002.
- López, V. Bioecología y Distribución de Garrapatas en Colombia; Instituto Colombiano Agropecuario: Medellín, Colombia, 1980; pp. 33–43. [Google Scholar]
- Okello-Onen, J.; Hassan, S.M.; Essuman, S. Taxonomy of African Ticks an Identification Manual; ICIPE: Nairobi, Kenya, 1999. [Google Scholar]
- Rodríguez-Vivas, R.I.; Apanaskevich, D.A.; Ojeda-Chi, M.M.; Trinidad-Martínez, I.; Reyes-Novelo, E.; Esteve-Gassent, M.D.; Pérez de León, A.A. Ticks Collected from Humans, Domestic Animals, and Wildlife in Yucatan, Mexico. Vet. Parasitol. 2016, 215, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Manual de Vigilancia Entomológica de Dengue, Leishmaniasis, Chagas, Malaria y Fiebre Amarilla; Laboratorio Departamental de Salud Pública, Secretaría de Salud de Santander: Bucaramanga, Colombia, 2007.
- Walker, A.R.; Bouattour, A.; Camicas, J.-L.; Estrada-Pena, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Edinburgh (Scotland) Bioscience Reports; The University of Edinburgh: Edinburgh, UK, 2003. [Google Scholar]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The Species That Infest Domestic Animals and Humans. Zootaxa 2014, 1–144. [Google Scholar] [CrossRef]
- Nava, S.; Venzal, J.M.; González-Acuña, D.; Martins, T.F.; Guglielmone, A.A. (Eds.) Front-Matter. In Ticks of the Southern Cone of America; Academic Press: Cambridge, MA, USA, 2017; pp. i–iii. ISBN 978-0-12-811075-1. [Google Scholar]
- Ríos-Tobón, S.; Gutiérrez-Builes, L.A.; Ríos-Osorio, L.A. Assessing Bovine Babesiosis in Rhipicephalus (Boophilus) Microplus Ticks and 3 to 9-Month-Old Cattle in the Middle Magdalena Region, Colombia. Pesq. Vet. Bras. 2014, 34, 313–319. [Google Scholar] [CrossRef]
- Binetruy, F.; Chevillon, C.; de Thoisy, B.; Garnier, S.; Duron, O. Survey of Ticks in French Guiana. Ticks Tick-borne Dis. 2019, 10, 77–85. [Google Scholar] [CrossRef]
- Rulison, E.L.; Kuczaj, I.; Pang, G.; Hickling, G.J.; Tsao, J.I.; Ginsberg, H.S. Flagging versus Dragging as Sampling Methods for Nymphal Ixodes scapularis (Acari: Ixodidae). J. Vector Ecol. 2013, 38, 163–167. [Google Scholar] [CrossRef]
- Duron, O.; Jourdain, E.; McCoy, K.D. Diversity and Global Distribution of the Coxiella Intracellular Bacterium in Seabird Ticks. Ticks Tick Borne Dis. 2014, 5, 557–563. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
Demographic/Epidemiological Characteristics | n/N (%) 1 | p-Value |
---|---|---|
Sex | ||
Male | 71/176 (40.3) | 0.694 |
Female | 36/95 (37.9) | |
Municipality of residence | ||
Puerto Berrio | 82/222 (36.9) | 0.437 |
Cimitarra | 8/16 (50.0) | |
Maceo | 8/14 (57.1) | |
Puerto Nare | 4/7 (57.1) | |
Others | 5/12 (41.7) | |
Place of enrollment | ||
Consultation | 11/21 (52.4) | 0.29 |
Emergency | 68/186 (36.6) | |
Hospitalization | 28/64 (43.8) | |
Place of residence | ||
Rural | 56/148 (37.8) | 0.543 |
Urban | 51/123 (41.5) | |
Workplace | ||
No work | 8/15 (53.3) | 0.415 |
Rural | 44/121 (36.4) | |
Urban | 55/135 (40.7) | |
Type of health insurance | ||
Contributory | 24/95 (25.3) | 0.002 |
Subsidized | 62/128 (48.4) | |
Special or exception | 21/48 (43.8) | |
Occupation | ||
Veterinarian/farmer | 11/22 (50.0) | 0.082 |
Agriculturist | 4/9 (44.4) | |
Health personnel | 0/6 (.0) | |
Military or police | 20/41 (48.8) | |
Other | 72/193 (37.3) | |
Cats in residence and at work | ||
Yes | 65/156 (41.7) | 0.392 |
No | 42/115 (36.5) | |
Dogs in residence and at work | ||
Yes | 67/162 (41.4) | 0.442 |
No | 40/109 (36.7) | |
Cows in residence and at work | ||
Yes | 28/64 (43.8) | 0.400 |
No | 78/206 (37.9) | |
Pigs in residence and at work | ||
Yes | 17/35 (48.6) | 0.239 |
No | 90/236 (38.1) | |
Goats in residence and at work | ||
Yes | 3/9 (33.3) | 1.000 |
No | 104/262 (39.7) | |
Sheep in residence and at work | ||
Yes | 2/8 (25.0) | 0.487 |
No | 104/262 (39.7) | |
Chickens in residence and at work | ||
Yes | 38/86 (44.2) | 0.280 |
No | 69/185 (37.3) | |
Horses in residence and at work | ||
Yes | 26/65 (40.0) | 0.922 |
No | 81/206 (39.3) | |
Do pets sleep indoors? | ||
Yes | 49/111 (44.1) | 0.191 |
No | 58/160 (36.3) | |
Has any animal had an abortion at the residence? | ||
Yes | 7/19 (36.8) | 0.807 |
No | 100/252 (39.7) | |
Has any animal had an abortion at work? | ||
Yes | 13/21 (61.9) | 0.029 |
No | 94/250 (37.6) | |
Exposed to animal births in the last six months | ||
Yes | 18/43 (41.9) | 0.728 |
No | 89/228 (39.0) | |
Consume boiled or potable water | ||
Yes | 47/128 (36.7) | 0.353 |
No | 60/142 (42.3) | |
Hand washing before eating or preparing food | ||
Yes | 92/219 (42.0) | 0.081 |
No | 15/52 (28.8) | |
Raw milk consumption | ||
Yes | 17/42 (40.5) | 0.886 |
No | 90/229 (39.3) | |
Raw meat consumption or three quarters | ||
Yes | 16/40 (40.0) | 0.942 |
No | 91/231 (39.4) | |
Preparation of products derived from raw milk | ||
Yes | 21/60 (35.0) | 0.421 |
No | 86/211 (40.8) | |
Consumption of raw milk derivatives | ||
Yes | 98/249 (39.4) | 0.887 |
No | 9/22 (40.9) | |
Has a history of visiting farms with animals in the last two months? | ||
Yes | 42/118 (35.6) | 0.250 |
No | 65/153 (42.5) | |
Another family member is presenting AFI | ||
Yes | 28/83 (33.7) | 0.198 |
No | 79/188 (42.0) | |
Has a tick-bitten history of ever? | ||
Yes | 94/238 (39.5) | 0.991 |
No | 13/33 (39.4) | |
Ticks or immature forms of ticks in residence or at work | ||
Yes | 94/238 (39.5) | 0.991 |
No | 13/33 (39.4) | |
Blood transfusion | ||
Yes | 6/15 (40.0) | 0.952 |
No | 100/255 (39.2) | |
Travel in the last six months | ||
Yes | 54/142 (38.0) | 0.607 |
No | 53/129 (41.1) | |
Direct contact with animals at work | ||
Yes | 26/59 (44.1) | 0.415 |
No | 81/212 (38.2) |
Clinical Features | Results of Tests for the Detection of C. burnetii | ||||
---|---|---|---|---|---|
Negative N = 164 | PCR+ Serology+ N = 18 | PCR+ Serology− N = 36 | PCR- Serology+ N = 53 | p-Value | |
n % | n % | n % | n % | ||
Shaking chills | 155 (94.5) | 16 (88.9) | 33 (91.7) | 47 (88.7) | 0.555 |
Profuse sweating | 110 (67.1) | 11 (61.1) | 22 (62.9) | 27 (50.9) | 0.212 |
Sickness | 116 (70.7) | 10 (55.6) | 25 (69.4) | 37 (71.2) | 0.607 |
Fatigue | 148 (90.2) | 17 (94.4) | 31 (86.1) | 44 (83.0) | 0.325 |
Anorexia | 142 (86.6) | 16 (88.9) | 32 (88.9) | 41 (77.4) | 0.331 |
Myalgia | 140 (85.4) | 16 (88.9) | 30 (83.3) | 45 (84.9) | 0.960 |
Arthralgia | 128 (78.0) | 14 (77.8) | 27 (75.0) | 35 (66.0) | 0.366 |
Headache | 149 (90.9) | 18 (100.0) | 33 (91.7) | 46 (86.8) | 0.271 |
Diarrhea | 55 (33.5) | 4 (22.2) | 12 (33.3) | 23 (43.4) | 0.371 |
Nauseous | 75 (45.7) | 12 (66.7) | 19 (52.8) | 23 (43.4) | 0.306 |
Conjunctivitis | 98 (59.8) | 12 (66.7) | 19 (52.8) | 27 (50.9) | 0.528 |
Maculopapular rash | 43 (26.4) | 3 (16.7) | 14 (38.9) | 15 (28.8) | 0.321 |
Lymphadenopathy: cervical | 10 (6.1) | 0 (.0) | 0 (.0) | 1 (1.9) | 0.105 |
Lymphadenopathy: axillary | 5 (3.0) | 1 (5.6) | 2 (5.6) | 4 (7.5) | 0.685 |
Lymphadenopathy: inguinal | 10 (6.1) | 0 (.0) | 3 (8.3) | 5 (9.4) | 0.428 |
Lymphadenopathy: epitrochlear | 2 (1.2) | 0 (.0) | 0 (.0) | 0 (.0) | 0.762 |
Facial paralysis | 5 (3.0) | 0 (.0) | 0 (.0) | 0 (.0) | 0.200 |
Cough | 57 (34.8) | 2 (11.1) | 11 (30.6) | 15 (28.3) | 0.208 |
Expectoration | 15 (9.1) | 2 (11.1) | 4 (11.1) | 6 (11.3) | 0.959 |
Dyspnea | 26 (15.9) | 4 (22.2) | 7 (19.4) | 7 (13.2) | 0.772 |
Nasal congestion | 15 (9.1) | 5 (27.8) | 5 (13.9) | 6 (11.3) | 0.252 |
Rhinorrhea | 13 (7.9) | 3 (16.7) | 2 (5.6) | 4 (7.5) | 0.677 |
Physical exam | |||||
Choluria | 63 (38.4) | 4 (22.2) | 13 (36.1) | 15 (28.3) | 0.363 |
Jaundice | 7 (4.3) | 2 (11.1) | 2 (5.6) | 3 (5.7) | 0.784 |
Right-upper-quadrant pain | 60 (36.6) | 8 (44.4) | 13 (36.1) | 9 (17.0) | 0.040 |
Pruritus | 22 (13.4) | 2 (11.1) | 8 (22.2) | 2 (3.8) | 0.065 |
Retro eye pain | 41 (25.2) | 9 (50.0) | 9 (25.0) | 13 (24.5) | 0.146 |
Hepatomegaly | 2 (1.2) | 0 (.0) | 0 (.0) | 1 (1.9) | 1.000 |
Splenomegaly | 2 (1.2) | 0 (.0) | 0 (.0) | 2 (3.8) | 0.508 |
Exanthema | 28 (17.1) | 2 (11.1) | 11 (30.6) | 10 (18.9) | 0.233 |
Petechiae | 12 (7.3) | 2 (11.1) | 3 (8.6) | 4 (7.5) | 0.979 |
Ecchymosis | 3 (1.8) | 0 (.0) | 0 (.0) | 1 (1.9) | 0.884 |
Bleeding | 7 (4.3) | 0 (.0) | 3 (8.3) | 0 (.0) | 0.073 |
Conjunctivitis | 51 (31.1) | 9 (50.0) | 10 (27.8) | 14 (26.4) | 0.292 |
Clinical examination | |||||
Jaundice | 3 (1.8) | 0 (.0) | 0 (.0) | 3 (5.7) | 0.230 |
Choluria | 29 (17.7) | 0 (.0) | 5 (13.9) | 7 (13.2) | 0.237 |
Right-upper-quadrant pain | 52 (31.7) | 4 (22.2) | 11 (30.6) | 8 (15.1) | 0.115 |
Altered consciousness | 1 (.6) | 0 (.0) | 0 (.0) | 2 (3.8) | 0.201 |
Site of Sampling | Sampled Animals 1/Sampling of Immature Stages 2 | Immature Stages Obtained 3 N = 95 n (%) | Sampled Animals N = 138 n/N (%) | Infested Animals N = 16 n (%) | Tick Identification 4 | Detected Microorganisms | ||||
---|---|---|---|---|---|---|---|---|---|---|
R. sanguineus s.l. N = 173 n (%) | R. microplus N = 18 n (%) | Ehrlichia n (%) | Anaplasma n (%) | Coxiella n (%) | ||||||
10015 | CFFW/Not | 0 (0.0) | 47 (34.1) | Canines | 2 (12.5) | 23 (13.3) | 0 (0.0) | 9 (39.1) | 0 (0.0) | 0 (0.0) |
10027 | CFFW/Not | 0 (0.0) | 5 (3.6) | Canines | 2 (12.5) | 41 (23.7) | 0 (0.0) | 1 (2.4) | 0 (0.0) | 5 (12.2) |
10027 5 | C/Yes | 0 (0.0) | 2 (1.4) | Canines | 1 (6.3) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
10020 | CF/Not | 0 (0.0) | 8 (5.8) | Canines | 3 (18.6) | 52 (30.1) | 0 (0.0) | 15 (28.9) | 1 (1.9) | 9 (17.3) |
10001 | CBEFFW/Yes | 95 (100) | 10 (7.2) | Canines | 1 (6.3) | 26 (15.0) | 0 (0.0) | 4 (15.4) | 1 (3.8) | 3 (11.5) |
10083 | C/Not | 0 (0.0) | 2 (1.4) | Canines | 1 (6.3) | 4 (2.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
10198 | CEFFW/Not | 0 (0.0) | 10 (7.2) | Canines | 2 (12.5) | 8 (4.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (25.0) |
10227 | CBFW/Yes | 0 (0.0) | 18 (13) | Canines | 2 (12.5) | 18 (10.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (5.6) |
0 (0.0) | Bovines | 2 (12.5) | 0 (0.0) | 18 (100) | 7 (38.9) | 6 (33.3) | 0 (0.0) | |||
10094 | /Not | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10082 | C/Not | 0 (0.0) | 2 (1.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10131 | C/Not | 0 (0.0) | 1 (0.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10163 | /Not | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10205 | FW/Not | 0 (0.0) | 16 (11.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10242 | CF/Not | 0 (0.0) | 3 (2.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10243 | CFW/Not | 0 (0.0) | 12 (8.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10263 | CF/Not | 0 (0.0) | 2 (1.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Features | cPR 1 (95% CI) | p-value | aPR 2 (95% CI) | p-value |
---|---|---|---|---|
Demographic | ||||
Social security | ||||
Contributory | Reference | - | Reference | - |
Subsidized | 1.91 (1.57–2.32) | 0.000 | 2.08 (1.67–2.59) | 0.000 |
Special or exception | 1.73 (1.39–2.14) | 0.000 | 2.06 (1.61–2.63) | 0.000 |
Epidemiological | ||||
Abortions at work | 1.64 (1.35–1.99) | 0.000 | 1.81 (1.44–2.28) | 0.000 |
Pets sleep in the house | 1.21 (1.02–1.44) | 0.022 | 1.45 (1.24–1.71) | 0.000 |
Symptoms in family members | 0.80 (0.70–0.92) | 0.022 | 0.78 (0.65–0.94) | 0.010 |
Clinical | ||||
Sweating | 0.76 (0.72–0.80) | 0.000 | 0.79 (0.69–0.91) | 0.001 |
Chill | 0.69 (0.51–0.94) | 0.018 | 0.75 (0.63–0.89) | 0.001 |
Congestion | 1.36 (0.96–1.91) | 0.078 | 1.66 (1.24–2.23) | 0.001 |
Arthralgia | 0.80 (0.67–0.95) | 0.013 | 0.75 (0.63–0.91) | 0.003 |
Jaundice | 1.28 (0.99–1.66) | 0.058 | 1.58 (1.02–2.44) | 0.037 |
Petechiae | 1.10 (0.78–1.53) | 0.575 | 1.32 (0.98–1.77) | 0.061 |
Choluria (physical exam) | 0.70 (0.57–0.86) | 0.001 | 0.70 (0.29–0.38) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, R.; Mendoza, W.; López-Mosquera, L.; Cano, M.A.; Ortiz, N.; Campo, V.; Keynan, Y.; López, L.; Rueda, Z.V.; Gutiérrez, L.A. Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia. Pathogens 2022, 11, 1090. https://doi.org/10.3390/pathogens11101090
Cabrera R, Mendoza W, López-Mosquera L, Cano MA, Ortiz N, Campo V, Keynan Y, López L, Rueda ZV, Gutiérrez LA. Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia. Pathogens. 2022; 11(10):1090. https://doi.org/10.3390/pathogens11101090
Chicago/Turabian StyleCabrera, Ruth, Willington Mendoza, Loreth López-Mosquera, Miguel Angel Cano, Nicolas Ortiz, Valentina Campo, Yoav Keynan, Lucelly López, Zulma Vanessa Rueda, and Lina Andrea Gutiérrez. 2022. "Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia" Pathogens 11, no. 10: 1090. https://doi.org/10.3390/pathogens11101090
APA StyleCabrera, R., Mendoza, W., López-Mosquera, L., Cano, M. A., Ortiz, N., Campo, V., Keynan, Y., López, L., Rueda, Z. V., & Gutiérrez, L. A. (2022). Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia. Pathogens, 11(10), 1090. https://doi.org/10.3390/pathogens11101090