Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Serotyping
2.3. In Vitro Biofilm Production Analysis
2.3.1. Detection of the Ability to Slime Production with Congo Red Agar (CRA) Method
2.3.2. Biofilm Production Assay by the Microtiter Plate (MTP) Method
2.4. The Presence of the Virulence-Associated Genes
2.5. Phenotypic Antibiotic-Resistance Analysis
Antibiotic Susceptibility Testing and Minimal Inhibitory Concentration (MIC) Determination
2.6. Detection of Antimicrobial Resistance Genes
2.7. Statistical Analysis
3. Results
3.1. Presence of Serotypes and Virulence Factors of L. monocytogenes Isolates
3.2. Antimicrobial Susceptibility Testing and Minimal Inhibitory Concentration (MIC) Determination
3.3. Antimicrobial Resistance Gene Profiling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef] [PubMed]
- Tabit, F.T. Contamination, Prevention and Control of Listeria monocytogenes in Food Processing and Food Service Environments. In Listeria Monocytogenes; Nyila, M.A., Ed.; IntechOpen: London, UK, 2018; Volume 1, pp. 71–85. [Google Scholar] [CrossRef]
- Andritsos, N.D.; Paramithiotis, S.; Mataragas, M.; Drosinos, E.H. Listeria monocytogenes Serogroup 1/2 Strains Have a Competitive Growth Advantage over Serotype 4b during Refrigerated Storage of an Artificially Contaminated Ready-To-Eat Pork Meat Product. Appl. Sci. 2021, 11, 6096. [Google Scholar] [CrossRef]
- EFSA-ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, 6406. [Google Scholar] [CrossRef]
- Bouymajane, A.; Rhazi Filali, F.; Oulghazi, S.; Lafkih, N.; Ed-Dra, A.; Aboulkacem, A.; El Allaoui, A.; Ouhmidou, B.; Moumni, M. Occurrence, antimicrobial resistance, serotyping and virulence genes of Listeria monocytogenes isolated from foods. Heliyon 2021, 7, e06169. [Google Scholar] [CrossRef] [PubMed]
- Raschle, S.; Stephan, R.; Stevens, M.J.A.; Cernela, N.; Zurfluh, K.; Muchaamba, F.; Nüesch-Inderbinen, M. Environmental dissemination of pathogenic Listeria monocytogenes in flowing surface waters in Switzerland. Sci. Rep. 2021, 11, 9066. [Google Scholar] [CrossRef] [PubMed]
- Hadjilouka, A.; Paramithiotis, S.; Drosinos, E.H. Genetic Analysis of the Listeria Pathogenicity Island 1 of Listeria monocytogenes 1/2a and 4b Isolates. Curr. Microbiol. 2018, 75, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Matereke, L.T.; Okoh, A.I. Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: A review. Pathogens 2020, 9, 528. [Google Scholar] [CrossRef]
- Société Française de Microbiologie (Ed.) Resistances Naturelles Aux Antibiotiques Des Principales Especes Bacteriennes D’interet Medical. In CASFM/EUCAST; Institut Pasteur: Paris, France, 2020; Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2020/04/CASFM2020_Avril2020_V1.1.pdf (accessed on 29 June 2022).
- Lecuit, M.; Leclercq, A. Rapport Annuel D’activite Du Centre ‘National de Reference Des’ Listeria e Annee; Institut Pasteur: Paris, France, 2009; Available online: https://www.pasteur.fr/sites/default/files/rubrique_pro_sante_publique/les_cnr/listeria/cnr-listeria-rapport-2009-site-web.pdf (accessed on 29 June 2022).
- Teuber, M. Spread of Antibiotic Resistance with Food-Borne Pathogens. Cell. Mol. Life Sci. 1999, 56, 755–763. [Google Scholar] [CrossRef]
- Zakrzewski, A.J.; Zarzecka, U.; Chajęcka-Wierzchowska, W.; Zadernowska, A. A Comparison of Methods for Identifying Enterobacterales Isolates from Fish and Prawns. Pathogens 2022, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Hong, S.; Seok, Y.; Shrivastav, A.; Lee, S.; Kim, Y.; Kim, H. Simultaneous Detection of Listeria Species Isolated from Meat Processed Foods Using Multiplex PCR. Food Control 2013, 32, 659–664. [Google Scholar] [CrossRef]
- Nho, S.W.; Abdelhamed, H.; Reddy, S.; Karsi, A.; Lawrence, M.L. Identification of High-Risk Listeria monocytogenes Serotypes in Lineage I (Serotype 1/2a, 1/2c, 3a and 3c) Using Multiplex PCR. J. Appl. Microbiol. 2015, 119, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Effects of Osmotic and High Pressure Stress on Expression of Virulence Factors among Enterococcus spp. Isolated from Food of Animal Origin. Food Microbiol. 2022, 102, 103900. [Google Scholar] [CrossRef]
- Stepanović, S.; Vukovic, D.; Hola, V.; Di Bonaventura, G.; Djukic, S.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–900. [Google Scholar] [CrossRef]
- Chajecka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence Factors, Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Retail Shrimps. LWT Food Sci. Technol. 2016, 69, 117–122. [Google Scholar] [CrossRef]
- Zakrzewski, A.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Virulence Characterization of Listeria monocytogenes, Listeria Innocua, and Listeria Welshimeri Isolated from Fish and Shrimp Using In Vivo Early Zebrafish Larvae Models and Molecular Study. Pathogens 2020, 9, 1028. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M100Ed30: Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2020; ISBN 1-56-23883-8X. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 29 June 2022).
- Feng, Y.; Yao, H.; Chen, S.; Sun, X.; Yin, Y.; Jiao, X. Rapid Detection of Hypervirulent Serovar 4h Listeria monocytogenes by Multiplex PCR. Front. Microbiol. 2020, 11, 1309. [Google Scholar] [CrossRef]
- Shimojima, Y.; Ida, M.; Nakama, A.; Nishino, Y.; Fukui, R.; Kuroda, S.; Hirai, A.; Kai, A.; Sadamasu, K. Prevalence and Contamination Levels of Listeria monocytogenes in Ready-to-Eat Foods in Tokyo, Japan. J. Vet. Med. Sci. 2016, 78, 1183–1187. [Google Scholar] [CrossRef]
- Korsak, D.; Borek, A.; Daniluk, S.; Grabowska, A.; Pappelbaum, K. Antimicrobial Susceptibilities of Listeria monocytogenes Strains Isolated from Food and Food Processing Environment in Poland. Int. J. Food Microbiol. 2012, 158, 203–208. [Google Scholar] [CrossRef]
- O’Connor, L.; O’Leary, M.; Leonard, N.; Godinho, M.; O’Reilly, C.; Egan, J.; O’Mahony, R. The Characterization of Listeria Spp. Isolated from Food Products and the Food-Processing Environment. Lett. Appl. Microbiol. 2010, 51, 490–498. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Q.; Zhang, J.; Wu, S.; Guo, W. Prevalence, Enumeration, and Pheno- and Genotypic Characteristics of Listeria monocytogenes Isolated from Raw Foods in South China. Front. Microbiol. 2015, 6, 1026. [Google Scholar] [CrossRef] [PubMed]
- Swetha, C.S.; Porteen, K.; Elango, A.; Ronald, B.S.M.; Senthil Kumar, T.M.A.; Milton, A.P.; Sureshkannan, S. Genetic Diversity, Virulence and Distribution of Antimicrobial Resistance among Listeria monocytogenes Isolated from Milk, Beef, and Bovine Farm Environment. Iran. J. Vet. Res. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Capita, R.; Felices-Mercado, A.; García-Fernández, C. Characterization of Listeria monocytogenes Originating from the Spanish Meat-Processing Chain. Foods 2019, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Kayode, A.J.; Okoh, A.I. Incidence and Genetic Diversity of Multi-Drug Resistant Listeria monocytogenes Isolates Recovered from Fruits and Vegetables in the Eastern Cape Province, South Africa. Int. J. Food Microbiol. 2022, 363, 109513. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Hadjilouka, A.; Drosinos, E.H. Listeria Pathogenicity Island 1. Structure and Function. In Listeria Monocytogenes: Food Sources, Prevalence and Management Strategies; Hambrick, E.C., Ed.; Nova Publishers: New York, NY, USA, 2014; pp. 265–282. [Google Scholar]
- Sudagidan, M.; Ozalp, V.C.; Öztürk, O.; Yurt, M.N.Z.; Yavuz, O.; Tasbasi, B.B.; Ucak, S.; Mavili, Z.S.; Coban, A.; Aydin, A. Bacterial Surface, Biofilm and Virulence Properties of Listeria monocytogenes Strains Isolated from Smoked Salmon and Fish Food Contact Surfaces. Food Biosci. 2021, 41, 101021. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Characterization of Antibiogram Fingerprints in Listeria monocytogenes Recovered from Irrigation Water and Agricultural Soil Samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef]
- Du, X.J.; Zhang, X.; Wang, X.Y.; Su, Y.L.; Li, P.; Wang, S. Isolation and Characterization of Listeria monocytogenes in Chinese Food Obtained from the Central Area of China. Food Control 2017, 74, 9–16. [Google Scholar] [CrossRef]
- Janez, N.; Skrlj, B.; Sternisa, M.; Klancnik, A.; Sabotic, J. The Role of the Listeria monocytogenes Surfactome in Biofilm Formation. Microb. Biotechnol. 2021, 14, 1269–1281. [Google Scholar] [CrossRef]
- Kayode, A.J.; Semerjian, L.; Osaili, T.; Olapade, O.; Okoh, A.I. Occurrence of Multidrug-Resistant Listeria monocytogenes in Environmental Waters: A Menace of Environmental and Public Health Concern. Front. Environ. Sci. 2021, 9, 737435. [Google Scholar] [CrossRef]
- Melian, C.; Bentencourt, E.; Castellano, P.; Ploper, D.; Vignolo, G.; Mendoza, L.M. Biofilm Genes Expression of Listeria monocytogenes Exposed to Latilactobacillus Curvatus Bacteriocins at 10 °C. Int. J. Food Microbiol. 2022, 370, 109648. [Google Scholar] [CrossRef]
- Hsu, C.; Cairns, L.; Hobley, L.; Abbott, J. Genomic Differences between Listeria monocytogenes EGDe Isolates Reveal Crucial Roles for SigB and Wall Rhamnosylation in Biofilm Formation. J. Bacteriol. 2020, 202, e00692-19. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.N.; Shi, C.Z.; Luo, C.X.; Hu, C.Y.; Meng, Y.H. Phloretin Inhibits Biofilm Formation by Affecting Quorum Sensing under Different Temperature. LWT Food Sci. Technol. 2020, 131, 109668. [Google Scholar] [CrossRef]
- Piercey, M.J.; Hingston, P.A.; Truelstrup Hansen, L. Genes Involved in Listeria monocytogenes Biofilm Formation at a Simulated Food Processing Plant Temperature of 15 °C. Int. J. Food Microbiol. 2016, 223, 63–74. [Google Scholar] [CrossRef]
- Matle, I.; Mbatha, K.R.; Lentsoane, O.; Magwedere, K.; Morey, L.; Madoroba, E. Occurrence, Serotypes, and Characteristics of Listeria monocytogenes in Meat and Meat Products in South Africa between 2014 and 2016. J. Food Saf. 2019, 39, e12629. [Google Scholar] [CrossRef]
- Pereira, S.A.; Alves, Â.; Ferreira, V.; Teixeira, P.C.M. The Impact of Environmental Stresses in the Virulence Traits of Listeria monocytogenes Relevant to Food Safety. In Listeria Monocytogenes; Nyila, M.A., Ed.; IntechOpen: London, UK, 2018; Volume 1, pp. 89–108. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Wu, Q.; Zhang, J.; Chen, Y.; Xue, L.; Lei, T.; Zeng, H.; Wu, S.; Ye, Q.; et al. Occurrence, Antibiotic Resistance, and Population Diversity of Listeria Monocytogenes isolated from Fresh Aquatic Products in China. Front. Microbiol. 2018, 9, 2215. [Google Scholar] [CrossRef] [PubMed]
- Tîrziu, E.; Herman, V.; Nichita, I.; Morar, A.; Imre, M.; Ban-Cucerzan, A.; Bucur, I.; Tîrziu, A.; Mateiu-Petrec, O.C.; Imre, K. Diversity and Antibiotic Resistance Profiles of Listeria monocytogenes Serogroups in Different Food Products from the Transylvania Region of Central Romania. J. Food Prot. 2022, 85, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Hailu, W.; Helmy, Y.A.; Carney-Knisely, G.; Kauffman, M.; Fraga, D.; Rajashekara, G. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics 2021, 10, 1450. [Google Scholar] [CrossRef]
- Park, E.; Ha, J.; Oh, H.; Kim, S.; Choi, Y.; Lee, Y.; Kim, Y.; Seo, Y.; Kang, J.; Yoon, Y. High Prevalence of Listeria monocytogenes in Smoked Duck: Antibiotic and Heat Resistance, Virulence, and Genetics of the Isolates. Food Sci. Anim. Resour. 2021, 41, 324–334. [Google Scholar] [CrossRef]
- Mpondo, L.; Ebomah, K.E.; Okoh, A.I. Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 481. [Google Scholar] [CrossRef]
- Godreuil, S.; Galimand, M.; Gerbaud, G.; Jacquet, C.; Courvalin, P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob. Agents Chemother. 2003, 47, 704–708. [Google Scholar] [CrossRef]
- Maung, A.T.; Mohammadi, T.N.; Nakashima, S.; Liu, P.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Antimicrobial resistance profiles of Listeria monocytogenes isolated from chicken meat in Fukuoka, Japan. Int. J. Food Microbiol. 2019, 2, 49–57. [Google Scholar] [CrossRef]
- Şanlıbaba, P.; Tezel, B.U.; Çakmak, G.A. Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey. J. Food Qual. 2018, 2018, 7693782. [Google Scholar] [CrossRef]
- Aksoy, A.; Sezer, Ç.; Vatansever, L.; Gülbaz, G. Presence and Antibiotic Resistance of Listeria monocytogenes in Raw Milk and Dairy Products. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 415–421. [Google Scholar] [CrossRef]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, N.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Noll, M.; Kleta, S.; Al Dahouk, S. Antibiotic Susceptibility of 259 Listeria monocytogenes Strains Isolated from Food, Food-Processing Plants and Human Samples in Germany. J. Infect. Public Health 2018, 11, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Olsen, R.H.; Ye, L.; Wang, W.; Shi, L.; Yan, H.; Meng, H. Characterization of Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from a Pork Processing Plant and Its Respective Meat Markets in Southern China. Foodborne Pathog. Dis. 2016, 13, 262–268. [Google Scholar] [CrossRef]
- Babarandage, H.; Harshani, C.; Ramesh, R.; Halmillawewa, A.P. Phenotypic and Genotypic Characterization of Antibiotic Resistance of Listeria monocytogenes Isolated from Raw Milk Samples Collected from Polonnaruwa, Sri Lanka. Emir. J. Food Agric. 2022, 34, 16–25. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.S.; Raimundo, D.C.; Ferreira, T.P.; Moreno, A.M.; Hofer, E.; Reis, C.M.F.; Matté, G.R.; Matté, M.H. Characterization of Antibiotic Resistance in Listeria Spp. Isolated from Slaughterhouse Environments, Pork and Human Infections. J. Infect. Dev. Ctries. 2014, 8, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Escolar, C.; Gómez, D.; Del Carmen Rota García, M.; Conchello, P.; Herrera, A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria Innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef]
- Andriyanov, P.A.; Zhurilov, P.A.; Liskova, E.A.; Karpova, T.I.; Sokolova, E.V.; Yushina, Y.K.; Zaiko, E.V.; Bataeva, D.S.; Voronina, O.L.; Psareva, E.K.; et al. Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from Humans, Animals, and Food Products in Russia in 1950–1980, 2000–2005, and 2018–2021. Antibiotics 2021, 10, 1206. [Google Scholar] [CrossRef]
- Tahoun, A.B.M.B.; Abou Elez, R.M.M.; Abdelfatah, E.N.; Elsohaby, I.; El-Gedawy, A.A.; Elmoslemany, A.M. Listeria monocytogenes in Raw Milk, Milking Equipment and Dairy Workers: Molecular Characterization and Antimicrobial Resistance Patterns. J. Glob. Antimicrob. Resist. 2017, 10, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Maia, D.S.V.; Haubert, L.; Würfel, S.D.F.R.; Kroning, I.S.; Cardoso, M.R.D.I.; Lopes, G.V.; Fiorentini, Â.M.; Da Silva, W.P. Listeria monocytogenes in Sliced Cheese and Ham from Retail Markets in Southern Brazil. FEMS Microbiol. Lett. 2020, 366, fnz249. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Dmowska, K.; Osek, J. Prevalence, Characterization, and Antimicrobial Resistance of Listeria monocytogenes Isolates from Bovine Hides and Carcasses. Appl. Environ. Microbiol. 2012, 78, 2043–2045. [Google Scholar] [CrossRef] [PubMed]
- Sala, C.; Morar, A.; Tîrziu, E.; Nichita, I.; Imre, M.; Imre, K. Environmental Occurrence and Antibiotic Susceptibility Profile of Listeria monocytogenes at a Slaughterhouse Raw Processing Plant in Romania. J. Food Prot. 2016, 79, 1794–1797. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, D.; Tao, Y.; Xie, L.; Han, L.; Zhang, Y.; Sun, J. New Genetic Context of Lnu(B) Composed of Two Multi-Resistance Gene Clusters in Clinical Streptococcus Agalactiae ST-19 Strains. Antimicrob. Resist. Infect. Control 2019, 8, 117. [Google Scholar] [CrossRef]
- Granier, S.A.; Moubareck, C.; Colaneri, C.; Lemire, A.; Roussel, S.; Dao, T.T.; Courvalin, P.; Brisabois, A. Antimicrobial Resistance of Listeria monocytogenes Isolates from Food and the Environment in France over a 10-Year Period. Appl. Environ. Microbiol. 2011, 77, 2788–2790. [Google Scholar] [CrossRef] [Green Version]
Sample Type | Food | Food Processing Environments | ||
---|---|---|---|---|
No. of L. monocytogenes Strains | 27 (67.5) | 13 (32.5) | ||
Serotypes (%) | 1/2a | 18 (66.7) | 2 (15.4) | |
1/2c | 2 (7.4) | 7 (53.8) | ||
3a | 0 (0.0) | 2 (15.4) | ||
3c | 4 (14.8) | 2 (15.4) | ||
Other | 3 (11.1) | 0 (0.0) | ||
Genetic determinants of virulence (%) | LIPI-1 | hlyA | 27 (100.0) | 13 (100.0) |
prfA | 27 (100.0) | 13 (100.0) | ||
Biofilm | inlB | 26 (96.3) | 13 (100.0) | |
luxS | 20 (74.1) | 13 (100.0) | ||
sigB | 20 (74.1) | 13 (100.0) | ||
Biofilm formation (%) | Weak | 1 (3.7) | 5 (38.5) | |
Moderate | 4 (14.8) | 4 (30.8) | ||
Strong | 2 (7.4) | 1 (7.6) | ||
Negative | 20 (74.1) | 3 (23.1) | ||
Slime production (%) | Positive | 4 (14.8) | 0 (0.0) | |
Negative | 23 (85.2) | 13 (100.0) |
No. | Antibiotic | Resistance | Food | Food Processing Environments | Total | ||
---|---|---|---|---|---|---|---|
Test Method Used | |||||||
Disc Diffusion (%) | MIC Range (µg/mL) | Disc Diffusion (%) | MIC Range (µg/mL) | ||||
1. | AMP | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | ND | 0 | ND | 0 | ||
R | 0 | 0 | 0 | ||||
2. | C | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | ND | 0 | ND | 0 | ||
R | 0 | 0 | 0 | ||||
3. | CIP | S | 25 (92.6) | ND | 13 (100.0) | ND | 38 (95.0) |
I | 2 (7.4) | 0.38–0.50 | 0 | ND | 2 (5.0) | ||
R | 0 | 0 | 0 | ||||
4. | E | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | ND | 0 | ND | 0 | ||
R | 0 | 0 | 0 | ||||
5. | CN | S | 26 (96.3) | ND | 13 (100.0) | ND | 39 (97.5) |
I | 1 (3.7) | 0.19 | 0 | ND | 1 (2.5) | ||
R | 0 | 0 | 0 | ||||
6. | DA | S | 4 (14.8) | ND | 1 (7.7) | ND | 5 (12.5) |
I | 14 (51.9) | 1.0–32.0 | 9 (69.2) | 1.5–4.0 | 23 (57.5) | ||
R | 9 (33.3) | 3 (23.1) | 12 (30.0) | ||||
7. | MEM | S | 26 (96.3) | ND | 13 (100.0) | ND | 39 (97.5) |
R | 1 (3.7) | 0.047 | 0 | 1 (2.5) | |||
8. | P | S | 27 (100.0) | ND | 12 (92.3) | ND | 39 (97.5) |
R | 0 | 1 (7.7) | 1 | 1 (2.5) | |||
9. | RD | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | 0 | 0 | ||||
R | 0 | 0 | 0 | ||||
10. | SXT | S | 25 (92.6) | ND | 10 (76.9) | ND | 35 (87.5) |
R | 2 (7.4) | 0.064 | 3 (23.1) | 0.064–0.125 | 5 (12.5) | ||
11. | TE | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | 0 | 0 | ||||
R | 0 | 0 | 0 | ||||
12. | VA | S | 27 (100.0) | ND | 13 (100.0) | ND | 40 (100.0) |
I | 0 | 0 | 0 | ||||
R | 0 | 0 | 0 |
Food | Food Processing Environments | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number (%) of Resistant Strains (n = 27) | Number (%) of Resistant Strains (n = 13) | ||||||||||
1/2a | 1/2c | 3c | Other | Total | 1/2a | 1/2c | 3a | 3c | Total | ||
1. | DA (R/I) | 13 (48.1) | 1 (3.7) | 3 (11.1) | 3 (11.1) | 20 (74.0) | 2 (15.4) | 4 (30.8) | 2 (15.4) | 2 (15.4) | 10 (77.0) |
3. | CN (I), SXT (R) | 1 (3.7) | - | - | - | 1 (3.7) | - | - | - | - | - |
4. | DA (I), CIP (I) | 1 (3.7) | - | 1 (3.7) | - | 2 (7.4) | - | - | - | - | - |
5. | DA (I), SXT (R) | - | - | - | - | - | - | 2 (15.4) | - | - | 2 (15.4) |
6. | P (R), SXT (R) | - | - | - | - | - | - | 1 (7.7) | - | - | 1 (7.7) |
7. | DA (R), MEM (R), SXT (R) | 1 (3.7) | - | - | - | 1 (3.7) | - | - | - | - | - |
Not resistance for all | 2 (7.4) | 1 (3.7) | - | - | 3 (11.1) | - | - | - | - | - |
Antibiotic (n) | Antibiotic Resistance Genes | Isolates from Food | Isolates from the Food Processing Environments | Total Positive |
---|---|---|---|---|
CIP (2) | Lde | 2 (100.0) | - | 2 (100.0) |
CN (1) | aadB aac(3)-IIa(aacC2)a | 1 (100.0) 0 (0.0) | - 0 (0.0) | 1 (100.0) 0 (0.0) |
P (1) | penA | 0 (0.0) | 0 (0.0) | 0 (0.0) |
DA (35) | mefA lnuA lnuB | 8 (22.9) 12 (34.3) 0 (0.0) | 1 (2.9) 1 (2.9) 0 (0.0) | 9 (25.8) 13 (37.2) 0 (0.0) |
SXT (5) | sulI sulII | 1 (20.0) 1 (20.0) | 3 (60.0) 1 (20.0) | 4 (80.0) 2 (40.0) |
Food | Food Processing Environments | Total Number (%) of Clindamycin Resistant Strains (n = 35) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number (%) of Clindamycin Resistant Strains (n = 23) | Number (%) of Clindamycin Resistant Strains (n = 12) | |||||||||||
1/2a | 1/2c | 3c | Other | Total | 1/2a | 1/2c | 3a | 3c | Total | |||
1. | lnuA | 4 (17.0) | - | - | 1 (4.3) | 5 (21.3) | - | 1 (8.3) | - | - | 1 (8.3) | 6 (17.1) |
2. | mefA | 1 (4.3) | - | - | - | 1 (4.3) | - | 1 (8.3) | - | - | 1 (8.3) | 2 (5.7) |
3. | mefA-lnuA | 3 (12.7) | - | 2 (8.4) | 2 (8.4) | 7 (30.4) | - | - | - | - | - | 7 (20.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens 2022, 11, 1099. https://doi.org/10.3390/pathogens11101099
Wiśniewski P, Zakrzewski AJ, Zadernowska A, Chajęcka-Wierzchowska W. Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens. 2022; 11(10):1099. https://doi.org/10.3390/pathogens11101099
Chicago/Turabian StyleWiśniewski, Patryk, Arkadiusz Józef Zakrzewski, Anna Zadernowska, and Wioleta Chajęcka-Wierzchowska. 2022. "Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments" Pathogens 11, no. 10: 1099. https://doi.org/10.3390/pathogens11101099
APA StyleWiśniewski, P., Zakrzewski, A. J., Zadernowska, A., & Chajęcka-Wierzchowska, W. (2022). Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens, 11(10), 1099. https://doi.org/10.3390/pathogens11101099