Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultivation and Bacterial Strains
2.2. C. burnetii Replication Kinetics
2.3. Determination of C. burnetii-Induced Host Cell Response
2.4. Reverse Transcription and Cytokine-Specific Real-Time PCR
2.5. Statistical Analysis
3. Results
3.1. Different C. burnetii Strains Replicate with Similar Efficiencies in Bovine Mammary Gland Epithelial Cells
3.2. C. burnetii Infection Barely Affects Host Response in Bovine Mammary Gland Epithelial Cells
3.3. C. burnetii Blocks Pro-Inflammatory Responses of Bovine Mammary Gland Epithelial Cells in a Strain-Specific Manner
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benenson, A.S.; Tigertt, W.D. Studies on Q fever in man. Trans. Assoc. Am. Physicians 1956, 69, 98–104. [Google Scholar]
- Langley, J.M. Perinatal Q fever: Is Coxiella burnetii a human perinatal pathogen? In Q Fever; Marrie, T.J., Ed.; CRC Press: Boca Raton, FL, USA, 1990; Volume 1, p. 264. [Google Scholar]
- Berri, M.; Crochet, D.; Santiago, S.; Rodolakis, A. Spread of Coxiella burnetii infection in a flock of sheep after an episode of Q fever. Vet. Rec 2005, 157, 737–740. [Google Scholar] [CrossRef] [PubMed]
- De Lange, M.M.; Schimmer, B.; Vellema, P.; Hautvast, J.L.; Schneeberger, P.M.; Van Duijnhoven, Y.T. Coxiella burnetii seroprevalence and risk factors in sheep farmers and farm residents in The Netherlands. Epidemiol. Infect. 2014, 142, 1231–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimmer, B.; Schotten, N.; van Engelen, E.; Hautvast, J.L.; Schneeberger, P.M.; van Duijnhoven, Y.T. Coxiella burnetii seroprevalence and risk for humans on dairy cattle farms, the Netherlands, 2010–2011. Emerg. Infect. Dis. 2014, 20, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, L.; Guerrini, E.; Rampazzo, E.; Barberio, A.; Tilburg, J.J.; Hagen, F.; Lucchese, L.; Zuliani, F.; Marangon, S.; Natale, A. Molecular characterization by MLVA of Coxiella burnetii strains infecting dairy cows and goats of north-eastern Italy. Microbes Infect. 2015, 17, 776–781. [Google Scholar] [CrossRef]
- Agger, J.F.; Paul, S. Increasing prevalence of Coxiella burnetii seropositive Danish dairy cattle herds. Acta Vet. Scand. 2014, 56, 46. [Google Scholar] [CrossRef] [Green Version]
- Bottcher, J.; Vossen, A.; Janowetz, B.; Alex, M.; Gangl, A.; Randt, A.; Meier, N. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Vet. Microbiol. 2011, 151, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Bildfell, R.J.; Thomson, G.W.; Haines, D.M.; McEwen, B.J.; Smart, N. Coxiella burnetii infection is associated with placentitis in cases of bovine abortion. J. Vet. Diagn Investig. 2000, 12, 419–425. [Google Scholar] [CrossRef] [Green Version]
- De Biase, D.; Costagliola, A.; Del Piero, F.; Di Palo, R.; Coronati, D.; Galiero, G.; Uberti, B.D.; Lucibelli, M.G.; Fabbiano, A.; Davoust, B.; et al. Coxiella burnetii in Infertile Dairy Cattle With Chronic Endometritis. Vet. Pathol. 2018, 55, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Guatteo, R.; Beaudeau, F.; Joly, A.; Seegers, H. Coxiella burnetii shedding by dairy cows. Vet. Res. 2007, 38, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Biberstein, E.L.; Behymer, D.E.; Bushnell, R.; Crenshaw, G.; Riemann, H.P.; Franti, C.E. A survey of Q fever (Coxiella burnetii) in California dairy cows. Am. J. Vet. Res. 1974, 35, 1577–1582. [Google Scholar] [PubMed]
- Guatteo, R.; Beaudeau, F.; Berri, M.; Rodolakis, A.; Joly, A.; Seegers, H. Shedding routes of Coxiella burnetii in dairy cows: Implications for detection and control. Vet. Res. 2006, 37, 827–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodolakis, A.; Berri, M.; Hechard, C.; Caudron, C.; Souriau, A.; Bodier, C.C.; Blanchard, B.; Camuset, P.; Devillechaise, P.; Natorp, J.C.; et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J. Dairy Sci. 2007, 90, 5352–5360. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.; Rauch, B.; Welcome, F.; Kim, S.G.; Dubovi, E.; Schukken, Y. Association between Coxiella burnetii shedding in milk and subclinical mastitis in dairy cattle. Vet. Res. 2008, 39, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobotta, K.; Bonkowski, K.; Liebler-Tenorio, E.; Germon, P.; Rainard, P.; Hambruch, N.; Pfarrer, C.; Jacobsen, I.D.; Menge, C. Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii. Vet. Res. 2017, 48, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astobiza, I.; Ruiz-Fons, F.; Pinero, A.; Barandika, J.F.; Hurtado, A.; Garcia-Perez, A.L. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J. Dairy Sci. 2012, 95, 1632–1638. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, A.; Andres, T.; Werner, R.; Wehr, R.; Frohlich, A.; Conraths, F.J.; Henning, K. Detection of Coxiella burnetii in dairy cattle bulk tank milk and single tank milk samples by confirmatory testing. Berl. Und Munch. Tierarztl. Wochenschr. 2015, 128, 271–277. [Google Scholar]
- Kim, S.G.; Kim, E.H.; Lafferty, C.J.; Dubovi, E. Coxiella burnetii in bulk tank milk samples, United States. Emerg Infect. Dis. 2005, 11, 619–621. [Google Scholar] [CrossRef]
- Valkovska, L.; Malisevs, A.; Kovalenko, K.; Berzins, A.; Grantina-Ievina, L. Coxiella Burnetii DNA in Milk, Milk Products, and Fermented Dairy Products. J. Vet. Res. 2021, 65, 441–447. [Google Scholar] [CrossRef]
- Enright, J.B.; Franti, C.E.; Longhurst, W.M.; Behymer, D.E.; Wright, M.E.; Dutson, V.J. Coxiella burneti in a wildlife-livestock environment. Antibody response of ewes and lambs in an endemic Q fever area. Am. J. Epidemiol. 1971, 94, 62–71. [Google Scholar] [CrossRef]
- Rodolakis, A. Q Fever in dairy animals. Ann. N Y Acad Sci 2009, 1166, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, D.B.; Raoult, D. A cluster of Coxiella burnetii infections associated with exposure to vaccinated goats and their unpasteurized dairy products. Am. J. Trop. Med. Hyg. 1992, 47, 35–40. [Google Scholar] [CrossRef]
- Hatchette, T.F.; Hudson, R.C.; Schlech, W.F.; Campbell, N.A.; Hatchette, J.E.; Ratnam, S.; Raoult, D.; Donovan, C.; Marrie, T.J. Goat-associated Q fever: A new disease in Newfoundland. Emerg. Infect. Dis. 2001, 7, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Maltezou, H.C.; Constantopoulou, I.; Kallergi, C.; Vlahou, V.; Georgakopoulos, D.; Kafetzis, D.A.; Raoult, D. Q fever in children in Greece. Am. J. Trop. Med. Hyg. 2004, 70, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Pexara, A.; Solomakos, N.; Govaris, A. Q fever and seroprevalence of Coxiella burnetii in domestic ruminants. Vet. Ital. 2018, 54, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, M.; Hammer, P.; Runge, M.; Valentin-Weigand, P.; Neubauer, H.; Henning, K.; Mertens-Scholz, K. Inactivation Kinetics of Coxiella burnetii During High-Temperature Short-Time Pasteurization of Milk. Front. Microbiol. 2022, 12, 753871. [Google Scholar] [CrossRef] [PubMed]
- Pinero, A.; Barandika, J.F.; Garcia-Perez, A.L.; Hurtado, A. Genetic diversity and variation over time of Coxiella burnetii genotypes in dairy cattle and the farm environment. Infect. Genet. Evol. 2015, 31, 231–235. [Google Scholar] [CrossRef]
- Pearson, T.; Hornstra, H.M.; Hilsabeck, R.; Gates, L.T.; Olivas, S.M.; Birdsell, D.M.; Hall, C.M.; German, S.; Cook, J.M.; Seymour, M.L.; et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol. 2014, 14, 41. [Google Scholar] [CrossRef] [Green Version]
- Olivas, S.; Hornstra, H.; Priestley, R.A.; Kaufman, E.; Hepp, C.; Sonderegger, D.L.; Handady, K.; Massung, R.F.; Keim, P.; Kersh, G.J.; et al. Massive dispersal of Coxiella burnetii among cattle across the United States. Microb. Genom. 2016, 2, e000068. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, W.; Morroy, G.; Renders, N.H.; Wever, P.C.; Hermans, M.H.; Leenders, A.C.; Schneeberger, P.M. Epidemic Q fever in humans in the Netherlands. Adv. Exp. Med. Biol. 2012, 984, 329–364. [Google Scholar] [CrossRef]
- Tilburg, J.J.; Roest, H.J.; Buffet, S.; Nabuurs-Franssen, M.H.; Horrevorts, A.M.; Raoult, D.; Klaassen, C.H. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. Emerg. Infect. Dis. 2012, 18, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Sobotta, K.; Hillarius, K.; Jimenez, P.H.; Kerner, K.; Heydel, C.; Menge, C. Interaction of Coxiella burnetii Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages. Front. Cell Infect. Microbiol. 2017, 7, 543. [Google Scholar] [CrossRef] [PubMed]
- Tomaiuolo, S.; Boarbi, S.; Fancello, T.; Michel, P.; Desqueper, D.; Gregoire, F.; Callens, J.; Fretin, D.; Devriendt, B.; Cox, E.; et al. Phylogeography of Human and Animal Coxiella burnetii Strains: Genetic Fingerprinting of Q Fever in Belgium. Front. Cell Infect. Microbiol. 2020, 10, 625576. [Google Scholar] [CrossRef] [PubMed]
- Joulie, A.; Sidi-Boumedine, K.; Bailly, X.; Gasqui, P.; Barry, S.; Jaffrelo, L.; Poncet, C.; Abrial, D.; Yang, E.; Animal diagnostic laboratories, C.; et al. Molecular epidemiology of Coxiella burnetii in French livestock reveals the existence of three main genotype clusters and suggests species-specific associations as well as regional stability. Infect. Genet. Evol. 2017, 48, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ammerdorffer, A.; Kuley, R.; Dinkla, A.; Joosten, L.A.B.; Toman, R.; Roest, H.J.; Sprong, T.; Rebel, J.M. Coxiella burnetii isolates originating from infected cattle induce a more pronounced proinflammatory cytokine response compared to isolates from infected goats and sheep. Pathog. Dis. 2017, 75. [Google Scholar] [CrossRef] [Green Version]
- Roussel, P.; Cunha, P.; Porcherie, A.; Petzl, W.; Gilbert, F.B.; Riollet, C.; Zerbe, H.; Rainard, P.; Germon, P. Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis. Vet. Res. 2015, 46, 56. [Google Scholar] [CrossRef] [Green Version]
- Svraka, S.; Toman, R.; Skultety, L.; Slaba, K.; Homan, W.L. Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol. Lett. 2006, 254, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.H. Genetische Unterschiede zwischen Coxiella burnetii-Isolaten und ihre Korrelation zur Epidemiologie und Klinik des Q-Fiebers; Justus-Liebig-University: Giessen, Germany, 2012. [Google Scholar]
- Sobotta, K.; Hillarius, K.; Mager, M.; Kerner, K.; Heydel, C.; Menge, C. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response. Infect. Immun. 2016, 84, 1722–1734. [Google Scholar] [CrossRef] [Green Version]
- Klee, S.R.; Tyczka, J.; Ellerbrok, H.; Franz, T.; Linke, S.; Baljer, G.; Appel, B. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 2006, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic. Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- Farooq, M.; Khan, A.U.; El-Adawy, H.; Mertens-Scholz, K.; Khan, I.; Neubauer, H.; Ho, Y.S. Research Trends and Hotspots of Q Fever Research: A Bibliometric Analysis 1990-2019. BioMed. Res. Int. 2022, 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Vicari, N.; Faccini, S.; Ricchi, M.; Garbarino, C.; Decastelli, L.; Boldini, M.; Rosignoli, C.; Dalmasso, A.; Bronzo, V.; Fabbi, M. Occurrence of Coxiella burnetii in bulk tank milk from northwestern Italy. Vet. Rec. 2013, 172, 687. [Google Scholar] [CrossRef] [PubMed]
- Valergakis, G.E.; Russell, C.; Grogono-Thomas, R.; Bradley, A.J.; Eisler, M.C. Coxiella burnetii in bulk tank milk of dairy cattle in south-west England. Vet. Rec. 2012, 171, 151–152, 156. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, L.; Kagnoff, M.F.; Fierer, J. Intestinal epithelial cells as watchdogs for the natural immune system. Trends Microbiol. 1995, 3, 118–120. [Google Scholar] [CrossRef]
- Meghari, S.; Honstettre, A.; Lepidi, H.; Ryffel, B.; Raoult, D.; Mege, J.L. TLR2 is necessary to inflammatory response in Coxiella burnetii infection. Ann. N Y Acad. Sci. 2005, 1063, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luhrmann, A.; Roy, C.R. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect. Immun. 2007, 75, 5282–5289. [Google Scholar] [CrossRef] [Green Version]
- Bisle, S.; Klingenbeck, L.; Borges, V.; Sobotta, K.; Schulze-Luehrmann, J.; Menge, C.; Heydel, C.; Gomes, J.P.; Luhrmann, A. The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 2016, 7, 400–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckart, R.A.; Bisle, S.; Schulze-Luehrmann, J.; Wittmann, I.; Jantsch, J.; Schmid, B.; Berens, C.; Luhrmann, A. Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect. Immun. 2014, 82, 2763–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingenbeck, L.; Eckart, R.A.; Berens, C.; Luhrmann, A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell. Microbiol. 2012, 15, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Luhrmann, A.; Nogueira, C.V.; Carey, K.L.; Roy, C.R. Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc. Natl. Acad. Sci. USA 2010, 107, 18997–19001. [Google Scholar] [CrossRef] [Green Version]
- Alluwaimi, A.M. The cytokines of bovine mammary gland: Prospects for diagnosis and therapy. Res. Vet. Sci. 2004, 77, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Thelemann, C.; Eren, R.O.; Coutaz, M.; Brasseit, J.; Bouzourene, H.; Rosa, M.; Duval, A.; Lavanchy, C.; Mack, V.; Mueller, C.; et al. Interferon-gamma induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS ONE 2014, 9, e86844. [Google Scholar] [CrossRef] [PubMed]
- Kagebein, D.; Gutjahr, M.; Grosse, C.; Vogel, A.B.; Rodel, J.; Knittler, M.R. Chlamydia trachomatis-infected epithelial cells and fibroblasts retain the ability to express surface-presented major histocompatibility complex class I molecules. Infect. Immun. 2014, 82, 993–1006. [Google Scholar] [CrossRef] [Green Version]
- Derbigny, W.A.; Shobe, L.R.; Kamran, J.C.; Toomey, K.S.; Ofner, S. Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect. Immun. 2012, 80, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Beare, P.A.; Unsworth, N.; Andoh, M.; Voth, D.E.; Omsland, A.; Gilk, S.D.; Williams, K.P.; Sobral, B.W.; Kupko, J.J., 3rd; Porcella, S.F.; et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect. Immun. 2009, 77, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E.; Million, M.; D’Amato, F.; Rouli, L.; Richet, H.; Stein, A.; Rolain, J.M.; Raoult, D. Q fever and pregnancy: Disease, prevention, and strain specificity. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Russell-Lodrigue, K.E.; Andoh, M.; Poels, M.W.; Shive, H.R.; Weeks, B.R.; Zhang, G.Q.; Tersteeg, C.; Masegi, T.; Hotta, A.; Yamaguchi, T.; et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect. Immun. 2009, 77, 5640–5650. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, J.H.; Newton, P.; Newton, H.J. Coxiella burnetii: Turning hostility into a home. Cell Microbiol. 2015, 17, 621–631. [Google Scholar] [CrossRef]
- Ho, T.; Htwe, K.K.; Yamasaki, N.; Zhang, G.Q.; Ogawa, M.; Yamaguchi, T.; Fukushi, H.; Hirai, K. Isolation of Coxiella burnetii from dairy cattle and ticks, and some characteristics of the isolates in Japan. Microbiol. Immunol. 1995, 39, 663–671. [Google Scholar] [CrossRef]
- Mori, M.; Boarbi, S.; Michel, P.; Bakinahe, R.; Rits, K.; Wattiau, P.; Fretin, D. In vitro and in vivo infectious potential of coxiella burnetii: A study on Belgian livestock isolates. PLoS ONE 2013, 8, e67622. [Google Scholar] [CrossRef]
Strain | Abbr. | Genetic Properties | Q Fever/Coxiellosis | Origin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MLVA Genotype | Plasmid | adaA | Disease | Course | Species | Sample | ||||
Nine Mile I (493) 1 | NMI | IV | QpH1 | + | U. | U. | Tick | U. | ||
Henzerling | H | IV | QpH1 | + | Pneumonia | Acute | Human | U. | ||
Scurry | S | II | none | − | Hepatitis | Chronic | Human | U. | ||
Dugway 2 | D | III | QpH1 | + | U. | U. | Rodent | U. | ||
Z3055/91 | II | QpH1 | + | U. | U. | Sheep | Vaginal swab | |||
Z69/06 | III | QpH1 | + | U. | U. | Cattle | Milk | |||
Cb23/2 | I | QpH1 | + | U. | U. | Sheep | Fetus | |||
Cb71/3 | III | QpH1 | + | U. | U. | Goat | Fetal membranes | |||
Cb98/2 | III | QpH1 | + | U. | U. | Cattle | Unspecified tissue | |||
Cb19/34 | I | QpH1 | + | U. | U. | Goat | Fetus/fetal membranes | |||
Cb30/14 | I | QpH1 | + | U. | U. | Sheep | Fetal membranes | |||
Z3464/92 | I | QpH1 | + | Abortion | U. | Goat | Fetal membranes | |||
Z488/94 | III | QpH1 | + | Abortion | U. | Cattle | Fetal membranes | |||
Cb28/6 | III | QpH1 | + | U. | U. | Cattle | Milk | |||
Cb33/4 | III | QpH1 | + | U. | U. | Cattle | Milk |
Primer | Sequence 5′-3′ |
---|---|
GAPDH | F: GCG ATA CTC ACT CTT CTA CCT TCG A |
R: TCG TAC CAG GAA ATG AGC TTG AC | |
IL-1β | F: ACC TGA ACC CAT CAA CGA AAT G |
R: TAG GGT CAT CAG CCT CAA ATA ACA | |
IL-6 | F: CTG AAG CAA AAG ATC GCA GAT CTA |
R: CTC GTT TGA AGA CTG CAT CTT CTC | |
TNF-α | F: TCT TCT CAA GCC TCA AGT AAC AAG T |
R: CCA TGA GGG CAT TGG CAT AC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobotta, K.; Bonkowski, K.; Heydel, C.; Henning, K.; Menge, C. Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens 2022, 11, 1422. https://doi.org/10.3390/pathogens11121422
Sobotta K, Bonkowski K, Heydel C, Henning K, Menge C. Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens. 2022; 11(12):1422. https://doi.org/10.3390/pathogens11121422
Chicago/Turabian StyleSobotta, Katharina, Katharina Bonkowski, Carsten Heydel, Klaus Henning, and Christian Menge. 2022. "Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells" Pathogens 11, no. 12: 1422. https://doi.org/10.3390/pathogens11121422
APA StyleSobotta, K., Bonkowski, K., Heydel, C., Henning, K., & Menge, C. (2022). Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens, 11(12), 1422. https://doi.org/10.3390/pathogens11121422