Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Samples, Metadata and Cultivation
2.1.1. CCHFV
2.1.2. RVFV
2.1.3. DUGV
2.1.4. NSDV
2.1.5. MIDV and WSLV
2.2. SISPA and Sample Preparation for Nanopore Sequencing
2.3. Analysis of MinION Sequence Data
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; De Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Venter, M. Assessing the zoonotic potential of arboviruses of African origin. Curr. Opin. Virol. 2018, 28, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef]
- Egan, A.N.; Schlueter, J.; Spooner, D.M. Applications of next-generation sequencing in plant biology. Am. J. Bot. 2012, 99, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Johnson, L.K.; Sahasrabudhe, R.; Gill, J.A.; Roach, J.L.; Froenicke, L.; Brown, C.T.; Whitehead, A. Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish. GigaScience 2020, 9, giaa067. [Google Scholar] [CrossRef]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Saremi, N.F.; Oppenheimer, J.; Vollmers, C.; O’Connell, B.; Milne, S.A.; Byrne, A.; Yu, L.; Ryder, O.A.; Green, R.E.; Shapiro, B. An Annotated Draft Genome for the Andean Bear, Tremarctos ornatus. J. Hered. 2021, 112, 377–384. [Google Scholar] [CrossRef]
- Maestri, S.; Cosentino, E.; Paterno, M.; Freitag, H.; Garces, J.M.; Marcolungo, L.; Alfano, M.; Njunjić, I.; Schilthuizen, M.; Slik, F.; et al. A Rapid and Accurate MinION-Based Workflow for Tracking Species Biodiversity in the Field. Genes 2019, 10, 468. [Google Scholar] [CrossRef]
- Reyes, G.R.; Kim, J.P. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol. Cell. Probes 1991, 5, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Djikeng, A.; Halpin, R.; Kuzmickas, R.; DePasse, J.; Feldblyum, J.; Sengamalay, N.; Afonso, C.; Zhang, X.; Anderson, N.G.; Ghedin, E.; et al. Viral genome sequencing by random priming methods. BMC Genom. 2008, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosseel, T.; Scheuch, M.; Höper, D.; De Regge, N.; Caij, A.B.; Vandenbussche, F.; Van Borm, S. DNase SISPA-Next Generation Sequencing Confirms Schmallenberg Virus in Belgian Field Samples and Identifies Genetic Variation in Europe. PLoS ONE 2012, 7, e41967. [Google Scholar] [CrossRef] [PubMed]
- Song, D.H.; Kim, W.-K.; Gu, S.H.; Lee, D.; Kim, J.-A.; No, J.S.; Lee, S.-H.; Wiley, M.R.; Palacios, G.; Song, J.-W.; et al. Sequence-Independent, Single-Primer Amplification Next-Generation Sequencing of Hantaan Virus Cell Culture–Based Isolates. Am. J. Trop. Med. Hyg. 2016, 96, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Peserico, A.; Marcacci, M.; Malatesta, D.; Di Domenico, M.; Pratelli, A.; Mangone, I.; D’Alterio, N.; Pizzurro, F.; Cirone, F.; Zaccaria, G.; et al. Diagnosis and characterization of canine distemper virus through sequencing by MinION nanopore technology. Sci. Rep. 2019, 9, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollants, E.; Maes, P.; Merino, M.; Bloemen, M.; Van Ranst, M.; Vanmechelen, B. First genomic characterization of a Belgian Enterovirus C104 using sequence-independent Nanopore sequencing. Infect. Genet. Evol. 2020, 81, 104267. [Google Scholar] [CrossRef] [PubMed]
- Toh, X.; Wang, Y.; Rajapakse, M.P.; Lee, B.; Songkasupa, T.; Suwankitwat, N.; Kamlangdee, A.; Fernandez, C.J.; Huangfu, T. Use of nanopore sequencing to characterize african horse sickness virus (AHSV) from the African horse sickness outbreak in thailand in 2020. Transbound. Emerg. Dis. 2021, 69, 1010–1019. [Google Scholar] [CrossRef]
- Brinkmann, A.; Uddin, S.; Krause, E.; Surtees, R.; Dinçer, E.; Kar, S.; Hacıoğlu, S.; Özkul, A.; Ergünay, K.; Nitsche, A. Utility of a Sequence-Independent, Single-Primer-Amplification (SISPA) and Nanopore Sequencing Approach for Detection and Characterization of Tick-Borne Viral Pathogens. Viruses 2021, 13, 203. [Google Scholar] [CrossRef]
- Leventhal, S.; Wilson, D.; Feldmann, H.; Hawman, D. A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses 2021, 13, 314. [Google Scholar] [CrossRef]
- Luers, A.J.; Adams, S.D.; Smalley, J.V.; Campanella, J.J. A Phylogenomic Study of the Genus Alphavirus Employing Whole Genome Comparison. Comp. Funct. Genom. 2005, 6, 217–227. [Google Scholar] [CrossRef]
- Aubry, F.; Nougairède, A.; Gould, E.A.; de Lamballerie, X. Flavivirus reverse genetic systems, construction techniques and applications: A historical perspective. Antivir. Res. 2014, 114, 67–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sas, M.A.; Vina-Rodriguez, A.; Mertens, M.; Eiden, M.; Emmerich, P.; Chaintoutis, S.C.; Mirazimi, A.; Groschup, M.H. A one-step multiplex real-time RT-PCR for the universal detection of all currently known CCHFV genotypes. J. Virol. Methods 2018, 255, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Barry, Y.; Stoek, F.; Pickin, M.J.; Ba, A.; Chitimia-Dobler, L.; Haki, M.L.; Doumbia, B.A.; Eisenbarth, A.; Diambar, A.; et al. Detection of Crimean-Congo hemorrhagic fever virus in blood-fed Hyalomma ticks collected from Mauritanian livestock. Parasites Vectors 2021, 14, 342. [Google Scholar] [CrossRef] [PubMed]
- Bird, B.H.; Bawiec, D.A.; Ksiazek, T.G.; Shoemaker, T.R.; Nichol, S.T. Highly Sensitive and Broadly Reactive Quantitative Reverse Transcription-PCR Assay for High-Throughput Detection of Rift Valley Fever Virus. J. Clin. Microbiol. 2007, 45, 3506–3513. [Google Scholar] [CrossRef] [Green Version]
- Stoek, F.; Rissmann, M.; Ulrich, R.; Eiden, M.; Groschup, M.H. Black rats (Rattus rattus) as potential reservoir hosts for Rift Valley fever phlebovirus: Experimental infection results in viral replication and shedding without clinical manifestation. Transbound. Emerg. Dis. 2021, 69, 1307–1318. [Google Scholar] [CrossRef]
- Hartlaub, J.; von Arnim, F.; Fast, C.; Mirazimi, A.; Keller, M.; Groschup, M. Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV. Viruses 2021, 13, 372. [Google Scholar] [CrossRef]
- Daodu, O.B.; Eisenbarth, A.; Schulz, A.; Hartlaub, J.; Olopade, J.O.; Oluwayelu, D.O.; Groschup, M.H. Molecular detection of dugbe orthonairovirus in cattle and their infesting ticks (Amblyomma and Rhipicephalus (Boophilus)) in Nigeria. PLoS Negl. Trop. Dis. 2021, 15, e0009905. [Google Scholar] [CrossRef]
- Hartlaub, J.; Gutjahr, B.; Fast, C.; Mirazimi, A.; Keller, M.; Groschup, M. Diagnosis and Pathogenesis of Nairobi Sheep Disease Orthonairovirus Infections in Sheep and Cattle. Viruses 2021, 13, 1250. [Google Scholar] [CrossRef]
- Chrzastek, K.; Lee, D.-H.; Smith, D.; Sharma, P.; Suarez, D.L.; Pantin-Jackwood, M.; Kapczynski, D.R. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses. Virology 2017, 509, 159–166. [Google Scholar] [CrossRef]
- Quick, J. One-Pot Native Barcoding of Amplicons. 2019. Available online: https://www.protocols.io/view/one-pot-native-barcoding-of-amplicons-e6nvw6617gmk/v1 (accessed on 10 January 2021).
- De Koning, W.; Miladi, M.; Hiltemann, S.; Heikema, A.; Hays, J.P.; Flemming, S.; Beek, M.V.D.; Mustafa, D.A.; Backofen, R.; Grüning, B.; et al. NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy. GigaScience 2020, 9, giaa105. [Google Scholar] [CrossRef]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bente, D.A.; Forrester, N.L.; Watts, D.M.; McAuley, A.J.; Whitehouse, C.A.; Bray, M. Crimean-Congo hemorrhagic fever: History, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir. Res. 2013, 100, 159–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardwick, S.; Deveson, I.; Mercer, T. Reference standards for next-generation sequencing. Nat. Rev. Genet. 2017, 18, 473–484. [Google Scholar] [CrossRef]
Virus | Sample Type | Cq Value | Primer | Total Reads | Specific Reads/Segment | ||
---|---|---|---|---|---|---|---|
S | M | L | |||||
CCHFV | Animal origin | 19 | P | 2,492,000 | 223 | 305 | 2533 |
C | 2,528,000 | 20 | 344 | 2314 | |||
P+C+U | 6,320,000 | 275 (+13%) | 746 (+14%) | 5725 (+18%) | |||
27 | P | 1,373,327 | 14 | - | 25 | ||
C | 1,816,806 | 4 | - | 27 | |||
P+C+U | 4,498,185 | 23 (+28%) | - | 73 (+40%) | |||
30 | P | 4,196,000 | 1 | - | 2 | ||
C | 3,656,000 | - | - | 6 | |||
P+C+U | 9,336,000 | 1 | - | 9 (+13%) | |||
Cell culture | 21 | P | 128,140 | 46 | 55 | 209 | |
C | 187,246 | 1431 | 1078 | 4049 | |||
P+C+U | 1,757,226 | 2209 (+50%) | 1737 (+53%) | 6691 (+57%) | |||
RVFV | Animal origin | 20 | P | 716,000 | 22 | 125 | 168 |
C | 1,456,000 | 520 | 518 | 2012 | |||
P+C+U | 3,472,000 | 639 (+18%) | 766 (+19%) | 2567 (+18%) | |||
24 | P | 152,000 | - | 3 | 5 | ||
C | 633,319 | 11 | 4 | 23 | |||
P+C+U | 2,089,371 | 15 (+36%) | 14 (+100%) | 33 (+18%) | |||
30 | P | 432,000 | - | - | - | ||
C | 80,000 | - | - | - | |||
P+C+U | 1,996,000 | - | - | - | |||
Cell culture | 20 | P | 105,499 | 14 | 62 | 69 | |
C | 126,457 | 14 | 83 | 48 | |||
P+C+U | 1,673,796 | 47 (+68%) | 233 (+61%) | 221 (+81%) | |||
NSDV | Animal origin | 23 | P | 28,000 | - | - | - |
C | 32,000 | - | - | - | |||
P+C+U | 1,496,000 | - | - | - | |||
Cell culture | 15 | P | 288,704 | 426 | 71 | 3830 | |
C | 48,531 | 1 | - | 19 | |||
P+C+U | 1,644,776 | 511 (+20%) | 88 (+24%) | 4696 (+22%) | |||
DUGV | Animal origin | 20 | P | 4,044,000 | 25 | 66 | 215 |
C | 2,960,000 | 26 | 98 | 240 | |||
P+C+U | 8,444,000 | 55 (+8%) | 180 (+10%) | 523 (+15%) | |||
Cell culture | 15 | P | 1,555,504 | 3199 | 13,744 | 44,478 | |
C | 43,232 | 43 | 171 | 516 | |||
P+C+U | 2,906,788 | 4073 (+26%) | 17,811 (+28%) | 57,423 (+28%) | |||
WSLV | Cell culture | 25 | P | 2,493,349 | 219,001 | ||
C | 82,025 | 4496 | |||||
P+C+U | 3,607,384 | 296,123 (+33%) | |||||
MIDV | Cell culture | 19 | P | 459,245 | 303,809 | ||
C | 65,279 | 3884 | |||||
P+C+U | 1,556,534 | 400,767 (+30%) |
(A) CCHFV | ||||||||||||
Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | |||||||||
Sample Type | Cq Value | Primer | Gene Segment | Gene Segment | Gene Segment | |||||||
S | M | L | S | M | L | S | M | L | ||||
Animal origin | 19 | P | 91.9/4.13 | 91.0/7.37 | 44.93/1.76 | 11 | 1.5 | 8.1 | 11.1 | 99.8 | 99.5 | 99.6 |
C | 42.03/1.1 | 99.08/7.13 | 32.95/2.75 | 12.4 | 1.6 | 7.5 | 10.0 | 99.9 | 99.7 | 99.4 | ||
P+C+U | 97.4/4.86 | 99.71/14.39 | 92.04/10.26 | 11.5 | 1.8 | 9.4 | 12.1 | 99.9 | 99.8 | 99.6 | ||
27 | P | 9.08/0.18 | - | 8.12/0.15 | 7.2 | 1.1 | - | 9.1 | 99.4 | - | 99.3 | |
C | 8.42/0.20 | - | 8.46/0.17 | 7.0 | 1.06 | - | 4.2 | 99.6 | - | 99.5 | ||
P+C+U | 10.46/0.21 | - | 9.55/0.28 | 7.1 | 1.18 | - | 2.6 | 99.7 | - | 99.9 | ||
30 | P | 3.42/0.05 | - | 4.83/0.05 | - | 0.7 | - | 2.1 | 98.1 | - | 99.5 | |
C | - | - | 6.45/0.06 | - | - | - | 3.1 | n | - | 99.1 | ||
P+C+U | 2.84/0.05 | - | 7.42/0.07 | 7.7 | 0.6 | - | 3.6 | 99.1 | - | 99.7 | ||
Cell culture | 21 | P | 9.78/1.18 | 7.6/2.24 | 18.12/2.15 | 12.90 | 2.5 | 7.1 | 14.1 | 98.1 | 98.7 | 99.1 |
C | 62.03/1.24 | 79.08/7.83 | 72.95/4.75 | 14.66 | 4.6 | 5.6 | 11.2 | 99.1 | 99.4 | 99.6 | ||
P+C+U | 94.4/7.86 | 91.71/24.39 | 96.04/14.26 | 17.02 | 8.8 | 9.9 | 19.2 | 99.9 | 99.7 | 99.7 | ||
(B) RVFV | ||||||||||||
Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | |||||||||
Sample Type | Cq Value | Primer | Gene Segment | Gene Segment | Gene Segment | |||||||
S | M | L | S | M | L | S | M | L | ||||
Animal origin | 19 | P | 1.29/0.11 | 58.34/0.58 | 35.22/0.35 | 10.86 | 1.2 | 9.2 | 10.1 | 98.7 | 99.1 | 99.2 |
C | 76.23/1.3 | 67.05/1.14 | 93.52/5.18 | 7.42 | 1.5 | 8.6 | 11.3 | 99.4 | 99.3 | 99.3 | ||
P+C+U | 74.97/4.42 | 99.90/5.17 | 99.90/130.2 | 7.51 | 1.9 | 8.5 | 14.1 | 99.8 | 99.7 | 99.9 | ||
27 | P | - | 41.48/0.1 | 37.71/0.11 | 7.10 | - | 8.2 | 11.3 | - | 98.9 | 99.1 | |
C | 2.86/7.4 | 43.46/0.2 | 42.85/0.63 | 8.96 | 1.5 | 7.4 | 14.3 | 99.3 | 99.4 | 99.4 | ||
P+C+U | 3.55/8.2 | 58.06/0.8 | 49.77/0.78 | 7.89 | 1.9 | 5.6 | 16.4 | 99.7 | 99.8 | 99.8 | ||
30 | P | - | - | - | - | - | - | - | - | - | - | |
C | - | - | - | - | - | - | - | - | - | - | ||
P+C+U | 3–7.36 | - | - | 7.01 | 1.1 | - | - | 98.1 | - | - | ||
Cell culture | 21 | P | 11.29/0.21 | 14.34/0.48 | 5.22/0.75 | 13.4 | 2.1 | 7.2 | 11.1 | 98.4 | 99.1 | 99.4 |
C | 16.23/0.3 | 27.05/1.24 | 23.52/4.18 | 15.84 | 1.8 | 9.6 | 17.5 | 98.2 | 99.5 | 99.8 | ||
P+C+U | 24.97/2.42 | 32.90/3.27 | 28.90/5.2 | 13.86 | 1.7 | 7.7 | 16.6 | 99.5 | 99.9 | 99.9 | ||
(C) NSDV | ||||||||||||
Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | |||||||||
Sample Type | Cq Value | Primer | Gene Segment | Gene Segment | Gene Segment | |||||||
S | M | L | S | M | L | S | M | L | ||||
Animal origin | 23 | P | - | - | - | - | - | - | - | - | - | - |
C | - | - | - | - | - | - | - | - | - | - | ||
P+C+U | - | - | - | - | - | - | - | - | - | - | ||
Cell culture | 18 | P | 90.9/7.36 | 85.96/9.54 | 89.81/7.34 | 12.4 | 2.4 | 7.5 | 9.9 | 99.1 | 89.4 | 99.3 |
C | 4.1/0.02 | - | 9.4/0.56 | 7.1 | - | - | 13.4 | - | - | 87.1 | ||
P+C+U | 99.9/37.15 | 95.96/99.51 | 99.81/87.36 | 11.5 | 3.7 | 4.6 | 12.9 | 99.62 | 92.5 | 99.54 | ||
(D) DUGV | ||||||||||||
Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | |||||||||
Sample Type | Cq Value | Primer | Gene Segment | Gene Segment | Gene Segment | |||||||
S | M | L | S | M | L | S | M | L | ||||
Animal origin | 20 | P | 1.29/0.20 | 4.34/0.45 | 1.22/0.79 | 8.9 | 1.8 | 8.2 | 11.1 | 98.9 | 99.4 | 99.4 |
C | 1.23/0.30 | 7.05/1.23 | 2.52/0.18 | 7.2 | 2.4 | 6.5 | 17.2 | 99.0 | 99.6 | 99.6 | ||
P+C+U | 4.97/1.42 | 8.90/1.25 | 3.07/0.13 | 8.4 | 7.5 | 9.1 | 14.5 | 99.4 | 99.8 | 99.9 | ||
Cell culture | 15 | P | 91/101.71 | 89.21/200.02 | 92/211.36 | 15.6 | 3.3 | 8.2 | 13.6 | 99.2 | 98.9 | 99.1 |
C | 8.97/2.42 | 9.90/1.36 | 8.07/2.13 | 7.45 | 2.6 | 7.4 | 17.9 | 98.1 | 99.1 | 99.4 | ||
P+C+U | 100/142.74 | 99.98/222.99 | 100/234.36 | 14.1 | 4.7 | 4.6 | 14.5 | 99.36 | 99.63 | 99.88 | ||
(E) WSLV | ||||||||||||
Sample Type | Cq Value | Primer | Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | ||||||
Cell culture | 25 | P | 96.4/1125.2 | 18.2 | 20.1 | 94.45 | ||||||
C | 71.4/74.5 | 17.1 | 9.9 | 85.06 | ||||||||
P+C+U | 100/1388.25 | 18.6 | 18.6 | 99.59 | ||||||||
(F) MIDV | ||||||||||||
Sample Type | Cq Value | Primer | Coverage (%) and Depth | Mean Read Quality (Q) | Read Length N50 (bp%) | Identity Levels in Percent (KMA) | ||||||
Cell culture | 19 | P | 91.86/1556 | 17.8 | 21.4 | 89.32 | ||||||
C | 59.42/42.36 | 18.9 | 11.4 | 77.45 | ||||||||
P+C+U | 94.47/1975.37 | 16.5 | 25.6 | 91.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulz, A.; Sadeghi, B.; Stoek, F.; King, J.; Fischer, K.; Pohlmann, A.; Eiden, M.; Groschup, M.H. Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies. Pathogens 2022, 11, 1502. https://doi.org/10.3390/pathogens11121502
Schulz A, Sadeghi B, Stoek F, King J, Fischer K, Pohlmann A, Eiden M, Groschup MH. Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies. Pathogens. 2022; 11(12):1502. https://doi.org/10.3390/pathogens11121502
Chicago/Turabian StyleSchulz, Ansgar, Balal Sadeghi, Franziska Stoek, Jacqueline King, Kerstin Fischer, Anne Pohlmann, Martin Eiden, and Martin H. Groschup. 2022. "Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies" Pathogens 11, no. 12: 1502. https://doi.org/10.3390/pathogens11121502
APA StyleSchulz, A., Sadeghi, B., Stoek, F., King, J., Fischer, K., Pohlmann, A., Eiden, M., & Groschup, M. H. (2022). Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies. Pathogens, 11(12), 1502. https://doi.org/10.3390/pathogens11121502