Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation of Bacterial Strains
2.2. Phenotypic Characterization of the Bacterial Isolates
2.3. Extraction of DNA from the Isolated Bacterial Strains
2.4. Detection of Enterobacterial Strains by PCR
2.5. MALDI-TOF-MS
2.6. Search for Virulence Determinants
2.7. Screening for Antibiotic Resistant Phenotypes
2.8. Screening for Genes Encoding Antibiotic Resistance
3. Results
3.1. Isolation of the Bacterial Strains
3.2. Phenotypic Characterization of Bacterial Isolates
3.3. Detection of Enterobacterial Strains by PCR
3.4. Identification of Endophyte Isolates by MALDI-TOF-MS
3.5. Searches for Virulence Determinants
3.6. Screening for Antibiotic Resistant Phenotypes and Genotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brennan, F.P.; Alsanius, B.W.; Allende, A.; Burgess, C.M.; Moreira, H.; Johannessen, G.S.; Castro, P.M.L.; Uyttendaele, M.; Truchado, P.; Holden, N.J. Harnessing agricultural microbiomes for human pathogen control. ISME Commun. 2022, 2, 44. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, N.; Pritchard, L.; Toth, I. Colonization out with the colon: Plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 2009, 33, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Rehman, Y.; Hasnain, S. Cross-kingdom pathogenicity across plants and human beings. J. Bacteriol. Parasitol. 2015, 6, e124. [Google Scholar]
- Kirzinger, M.W.; Nadarasah, G.; Stavrinides, J. Insights into cross-kingdom plant pathogenic bacteria. Genes 2011, 2, 980–997. [Google Scholar] [CrossRef] [Green Version]
- Brandl, M.T. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [Green Version]
- CDC. Ongoing Multistate Outbreak of Escherichia coli serotype O157:H7 Infections associated with consumption of fresh spinach—United States. JAMA Intern. Med. 2006, 296, 2195–2196. [Google Scholar]
- Jay, M.T.; Cooley, M.; Carychao, D.; Wiscomb, G.W.; Sweitzer, R.A.; Crawford-Miksza, L.; Farrar, J.A.; Lau, D.K.; O’Connell, J.; Millington, A.; et al. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerg. Infect. Dis. 2007, 13, 1908–1911. [Google Scholar] [CrossRef]
- Cooley, M.; Carychao, D.; Crawford-Miksza, L.; Jay, M.T.; Myers, C.; Rose, C.; Keys, C.; Farrar, J.; Mandrell, R.E. Incidence and tracking of Escherichia coli O157: H7 in a major produce production region in California. PLoS ONE 2007, 2, e1159. [Google Scholar] [CrossRef]
- CDC. Multistate Outbreak of Salmonella Typhimurium Infections Linked to Tomatoes 2006. Available online: https://www.cdc.gov/salmonella/2006/tomatoes-11-2006.html (accessed on 3 November 2006).
- CDC. Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers 2015. Available online: https://www.cdc.gov/salmonella/poona-09-15/index.html (accessed on 9 November 2015).
- CDC. Listeria Outbreak Linked to Packaged Salads Produced by Fresh Express 2022. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-fresh-express-packaged-salad-december-2021 (accessed on 8 March 2022).
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for foodborne disease outbreaks -United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, A.R.; Peña, A.G.; White, J.R.; Pettengill, J.B.; Li, C.; Allard, S.; Rideout, S.; Allard, M.; Hill, T.; Evans, P.; et al. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol. 2013, 13, 114. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.S. Isolation and characterization of plant and human pathogenic bacteria from green pepper (Capsicum annum L.) in Riyadh, Saudi Arabia. 3 Biotech 2014, 4, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.S.; Sebaihia, M.; Pritchard, L.; Holden, M.T.; Hyman, L.J.; Holeva, M.C.; Thomson, N.R.; Bentley, S.D.; Churcher, L.J.; Mungall, K.; et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA 2004, 101, 11105–11110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, I.K.; Pritchard, L.; Birch, P.R. Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu. Rev. Phytopathol. 2006, 44, 305–336. [Google Scholar] [CrossRef] [PubMed]
- Fouts, D.E.; Tyler, H.L.; DeBoy, R.T.; Daugherty, S.; Ren, Q.; Badger, J.H.; Durkin, A.S.; Huot, H.; Shrivastava, S.; Kothari, S.; et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 2008, 4, e1000141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenier, A.M.; Duport, G.; Pages, S.; Condemine, G.; Rahbe, Y. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl. Environ. Microbiol. 2006, 72, 1956–1965. [Google Scholar] [CrossRef] [Green Version]
- Schikora, A.; Carreri, A.; Charpentier, E.; Hirt, H. The dark side of the salad: Salmonella typhimurium the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS ONE 2008, 3, e2279. [Google Scholar] [CrossRef] [Green Version]
- Barak, J.D.; Kramer, L.C.; Hao, L.Y. Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Appl. Environ. Microbiol. 2011, 77, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.H.; Lee, J.; Park, E.; Kim, D.W.; Lee, D.H.; Ryu, C.M.; Choi, D.; Park, J.M. A human pathogenic bacterium Shigella proliferates in plants through adoption of type III effectors for shigellosis. Plant Cell Environ. 2019, 42, 2962–2978. [Google Scholar] [CrossRef]
- Traub, W.H.; Raymond, E.A.; Linehan, J. Identification of Enterobacteriaceae in the clinical microbiology laboratory. Appl. Microbiol. 1970, 20, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Fazzeli, H.; Arabestani, M.R.; Esfahani, B.N.; Khorvash, F.; Pourshafie, M.R.; Moghim, S.; Safaei, H.G.; Faghri, J.; Narimani, T. Development of PCR-based method for detection of Enterobacteriaceae in septicemia. J. Res. Med. Sci. 2012, 17, 671–675. [Google Scholar] [PubMed]
- Chen, J.; Tang, J.N.; Liu, J.; Cai, Z.; Bai, X. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. J. Appl. Microbiol. 2012, 112, 823–830. [Google Scholar] [CrossRef]
- EFSA. Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Scientific Opinion on Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI Standard MO2; Clinical and Laboratory Standarts Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Guo, H.; Pan, L.; Li, L.; Lu, J.; Kwok, L.; Menghe, B.; Zhang, H.; Zhang, W. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products. J. Food Sci. 2017, 82, 724–730. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Dong, K.; Yuan, J.; Guo, X. Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. BES Biomed. Environ. Sci. 2009, 22, 401–412. [Google Scholar] [CrossRef]
- Teplitski, M.; Barak, J.D.; Schneider, K.P. Human enteric pathogens in produce: Un-answered ecological questions with direct implications for food safety. Curr. Opin. Biotechnol. 2009, 20, 166–171. [Google Scholar] [CrossRef]
- Izard, D.; Mergaert, J.; Gavini, F.; Beji, A.; Kersters, K.; De Ley, J.; Leclerc, H. Separation of Escherichia adecarboxylata from the Erwinia herbicola—Enterobacter agglomerans complex and from the other Enterobacteriaceae by nucleic acid and protein electrophoretic techniques. Ann. Inst. Pasteur Microbiol. 1985, 136, 151–168. [Google Scholar] [CrossRef]
- Alnajar, S.; Gupta, R.S. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 2017, 54, 108–127. [Google Scholar] [CrossRef]
- Kang, S.-M.; Shahzad, R.; Khan, M.A.; Hasnain, Z.; Lee, K.-E.; Park, H.-S.; Kim, L.-R.; Lee, I.-J. Ameliorative effect of indole-3-acetic acid and siderophore producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. J. Plant. Interact. 2021, 16, 30–41. [Google Scholar] [CrossRef]
- Broderick, A.; Lowe, E.; Xiao, A.; Ross, R.; Miller, R. Leclercia adecarboxylata folliculitis in a healthy swimmer—An emerging aquatic pathogen? JAAD Case Rep. 2019, 5, 706–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayet, S.; Lang, S.; Garnier, P.; Pierron, A.; Plantin, J.; Toko, L.; Royer, P.-Y.; Villemain, M.; Klopfenstein, T.; Gendrin, V. Leclercia adecarboxylata as emerging pathogen in human infections: Clinical features and antimicrobial susceptibility testing. Pathogens 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhauer, M.R.; Andersen, P.F.; Frandsen, T.H.; Nordestgaard, R.L.M.; Andersen, L.P. Leclercia adecarboxylata: A case report and literature review of 74 cases demonstrating its pathogenicity in immunocompromised patients. Infect. Dis. 2018, 51, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Terhes, G.; Burián, K. Leclercia adecarboxylata as an emerging pathogen in human infections: A 13-year retrospective analysis in Southern Hungary. J. Infect. Dev. Ctries. 2020, 14, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Sng, E.C.Y.; Goh, K.C.M.; Tan, S.H.; Tan, A.L.; Oh, H.M.L. Leclercia adecarboxylata bacteraemia: Clinical features and antibiotic susceptibilities in 2 hospitals in Singapore. Ann. Acad. Med. Singap. 2021, 50, 643–645. [Google Scholar] [CrossRef]
- Mazzariol, A.; Zuliani, J.; Fontana, R.; Cornaglia, G. Isolation from Blood Culture of a Leclercia adecarboxylata strain producing an SHV-12 extended-spectrum beta-lactamase. J. Clin. Microbiol. 2003, 41, 1738–1739. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.-W.; You, M.-J.; Lee, H.-S.; Lee, C.-S. Catheter-related bacteremia caused by multidrug-resistant Leclercia adecarboxylata in a patient with breast cancer. J. Clin. Microbiol. 2012, 50, 3129–3132. [Google Scholar] [CrossRef] [Green Version]
- Garza-González, E.; Bocanegra-Ibarias, P.; Rodríguez-Noriega, E.; González-Díaz, E.; Silva-Sanchez, J.; Garza-Ramos, U.; Contreras-Coronado-Tovar, I.F.; Santos-Hernández, J.E.; Gutiérrez-Bañuelos, D.; Mena-Ramirez, J.P.; et al. Molecular investigation of an outbreak associated with total parenteral nutrition contaminated with NDM-producing Leclercia adecarboxylata. BMC Infect. Dis. 2021, 21, 235. [Google Scholar] [CrossRef]
- Choudhary, M.; Choudhary, B.K.; Bhoyar, S.; Kale, S.B.; Chaudhari, S.P.; Bera, B.C.; Jain, A.; Barbuddhe, S.B. Isolation and characterization of multidrug-resistant Leclercia species from animal clinical case. Lett. Appl. Microbiol. 2018, 66, 44–48. [Google Scholar] [CrossRef]
- Brenner, D.J.; McWhorter, A.C.; Knutson, J.K.; Steigerwalt, A.G. Escherichia vulneris: A new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 1982, 15, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- Pien, F.D.; Shrum, S.; Swenson, J.M.; Hill, B.C.; Thornsberry, C.; Farmer, J.J., III. Colonization of human wounds by Escherichia vulneris and Escherichia hermannii. J. Clin. Microbiol. 1985, 22, 283–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horii, T.; Suzuki, Y.; Kimura, T.; Kanno, T.; Maekawa, M. Intravenous catheter-related septic shock caused by Staphylococcus sciuri and Escherichia vulneris. Scand. J. Infect. Dis. 2001, 33, 930–932. [Google Scholar] [PubMed]
- Anon, M.T.; Ruiz-Velasco, L.M.; Borrajo, E.; Giner, C.; Sendino, M.; Canton, R. Escherichia vulneris infection. Report of 2 cases. Enferm. Infecc. Microbiol. Clin. 1993, 11, 559–561. [Google Scholar] [PubMed]
- Arslan, U.; Cosar, M.; Tuncer, I.; Findik, D. Escherichia vulneris peritonitis in a patient on CAPD. Perit. Dial. Int. 2008, 28, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Awsare, S.V.; Lillo, M. A case report of Escherichia vulneris urosepsis. Rev. Infect. Dis. 1991, 13, 1247–1248. [Google Scholar] [CrossRef]
- Senanayake, S.N.; Jadeer, A.; Talaulikar, G.S.; Roy, J. First reported case of dialysis-related peritonitis due to Escherichia vulneris. J. Clin. Microbiol. 2006, 44, 4283–4284. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Nagarjuna, D.; Gaind, R.; Chopra, S.; Debata, P.K.; Dawar, R.; Sardana, R.; Yadav, M. Escherichia vulneris: An unusual cause of complicated diarrhoea and sepsis in an infant. A case report and review of literature. New Microbes New Infect. 2016, 13, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Chandra, S.P.; Dhawan, B.; Kapil, A.; Das, B.K. Meningitis due to Escherichia vulneris. Neurol. India 2005, 53, 122–123. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, A.; Nath, G.; Tikoo, A.; Sanyal, S.C. Enteropathogenicity and antimicrobial susceptibility of new Escherichia spp. J. Diarrhoeal Dis. Res. 1999, 17, 85–87. [Google Scholar]
- Lim, J.A.; Jee, S.; Lee, D.H.; Roh, E.; Jung, K.; Oh, C.; Heu, S. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 2013, 23, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Caruso, A.; Licciardello, G.; La Rosa, R.; Catara, V.; Bella, P. Mixed infection of Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. brasiliensis in tomato stem rot in Italy. J. Plant Pathol. 2016, 98, 661–665. [Google Scholar]
- De Baere, T.; Verhelst, R.; Labit, C.; Verschraegen, G.; Wauters, G.; Claeys, G.; Vaneechoutte, M. Bacteremic infection with Pantoea ananatis. J. Clin. Microbiol. 2004, 42, 4393–4395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.; Liu, C.; Tsai, H.Y.; Hsu, M.; Yang, I.; Huang, Y.; Liao, C.; Hsueh, P. Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. J. Microbiol. Immunol. Infect. 2013, 46, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, A.T.; Cazacu, A.C.; Allen, C.H. Pantoea agglomerans, as a plant pathogen causing human disease. J. Clin. Microbiol. 2007, 45, 1989–1992. [Google Scholar] [CrossRef]
- Rave, O.; Assous, M.V.; Hashkes, P.J.; Lebel, E.; Hadas-Halpern, I.; Megged, O. Pantoea agglomerans foreign body-induced septic arthritis. Pediatr. Infect. Dis. J. 2012, 31, 1311–1312. [Google Scholar] [CrossRef]
- Sastre, A.; González-Arregoces, J.E.; Romainoik, I.; Mariño, S.; Lucas, C.; Monfá, E.; Stefan, G.; León, B.; Prieto, M. Peritonitis caused by Pantoea agglomerans in peritoneal dialysis. Nefrologia 2016, 37, 108–109. [Google Scholar] [CrossRef] [Green Version]
- Shubov, A.; Jagannathan, P.; Chin-Hong, P.V. Pantoea agglomerans pneumonia in a heart-lung transplant recipient: Case report and a review of an emerging pathogen in immunocompromised host. Transpl. Infect. Dis. 2011, 13, 536–539. [Google Scholar] [CrossRef]
- Kazancioglu, R.; Buyukaydin, B.; Iraz, M.; Alay, M.; Erkos, R. An unusual cause of peritonitis in peritoneal dialysis patients: Pantoea agglomerans. J. Infect. Dev. Ctries. 2014, 8, 919–922. [Google Scholar] [CrossRef] [Green Version]
- Labianca, L.; Montanaro, A.; Turturro, F.; Calderaro, C.; Ferretti, A. Osteomyelitis caused by Pantoea agglomerans in a closed fracture in a child. Orthopedics 2013, 36, e252–e256. [Google Scholar] [CrossRef] [Green Version]
- Mardaneh, J.; Dallal, M.M. Isolation, identification and antimicrobial susceptibility of Pantoea (Enterobacter) agglomerans isolated from consumed powdered infant formula milk (PIF) in NICU ward: First report from Iran. Iran. J. Microbiol. 2013, 5, 263–267. [Google Scholar]
- Büyükcam, A.; Tuncer, Ö.; Gür, D.; Sancak, B.; Ceyhan, M.; Cengiz, A.B.; Kara, A. Clinical and microbiological characteristics of Pantoea agglomerans infection in children. J. Infect. 2018, 11, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Westblom, T.U.; Coggins, M.E. Osteomyelitis caused by Enterobacter taylorae, formerly enteric group 19. J. Clin. Microbiol. 1987, 25, 2432–2433. [Google Scholar] [CrossRef] [Green Version]
- Garazzino, S.; Aprato, A.; Maiello, A.; Massé, A.; Biasibetti, A.; De Rosa, F.G.; Di Perri, G. Osteomyelitis caused by Enterobacter cancerogenus infection following a traumatic injury: Case report and review of the literature. J. Clin. Microbiol. 2005, 43, 1459–1461. [Google Scholar] [CrossRef] [Green Version]
- Reina, J.; Salva, F.; Gil, J.; Alomar, P. Urinary tract infection caused by Enterobacter taylorae. J. Clin. Microbiol. 1989, 27, 2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinstien, E.M.; Klevjer-Anderson, P.; Smith, C.A.; Drouin, M.T.; Patterson, J.E. Enterobacter taylorae, a new opportunistic pathogen: Report of four cases. J. Clin. Microbiol. 1993, 31, 249–254. [Google Scholar] [CrossRef]
- Martinez, J.; Toval, M.; Colomo, L.F. 3 new cases of Enterobacter taylorae infection. Enferm. Infecc. Microbiol. Clin. 1994, 12, 289–292. [Google Scholar] [PubMed]
- Abbott, S.L.; Janda, J.M. Enterobacter cancerogenus (“Enterobacter taylorae”) infections associated with severe trauma or crush injuries. Am. J. Clin. Pathol. 1997, 107, 359–361. [Google Scholar] [CrossRef] [Green Version]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrug-Resistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.; Roggenkamp, A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003, 69, 5306–5318. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Shahrear, S.; Afroj Zinnia, M.; Tajwar, A.; Islam, A.B.M.M.K. Functional annotation of hypothetical proteins from the Enterobacter cloacae B13 Strain and Its association with pathogenicity. Bioinform. Biol. Insights 2022, 16, 11779322221115535. [Google Scholar] [CrossRef]
- Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: Clinical impact and emerging antibiotic resistance. Future Microbiol. 2012, 7, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.I.; Ortiz, C.; Paraje, M.G.; Balanzino, L.E.; Albesa, I. Purification and characterization of a cytotoxin from Enterobacter cloacae. Can. J. Microbiol. 1997, 43, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Krzymińska, S.; Mokracka, J.; Koczura, R.; Kaznowski, A. Cytotoxic activity of Enterobacter cloacae human isolates. FEMS Immunol. Med. Microbiol. 2009, 56, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Stuber, K.; Frey, J.; Burnens, A.P.; Kuhnert, P. Detection of type III secretion genes as a general indicator of bacterial virulence. Mol. Cell. Probes 2003, 17, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Hsieh, C.F.; Chang, P.C.; Chen, J.J.; Lin, Y.H.; Lai, C.C.; Chao, C.M.; Chuang, Y.C. Clinical significance of community- and healthcare-acquired carbapenem-resistant Enterobacteriaceae isolates. PLoS ONE 2016, 11, e0151897. [Google Scholar] [CrossRef] [PubMed]
- Mshana, S.E.; Gerwing, L.; Minde, M.; Hain, T.; Domann, E.; Lyamuya, E.; Chakraborty, T.; Imirzalioglu, C. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int. J. Antimicrob. Agents 2011, 38, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Pati, N.B.; Doijad, S.P.; Schultze, T.; Mannala, G.K.; Yao, Y.; Jaiswal, S.; Ryan, D.; Suar, M.; Gwozdzinski, K.; Bunk, B.; et al. Enterobacter bugandensis: A novel enterobacterial species associated with severe clinical infection. Sci. Rep. 2018, 8, 5392. [Google Scholar] [CrossRef] [Green Version]
- Al Atrouni, A.; Joly-Guillou, M.L.; Hamze, M.; Kempf, M. Reservoirs of non-baumannii Acinetobacter species. Front. Microbiol. 2016, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, L.; van der Toorn, J. Acinetobacter species: Which do we mean? Clin. Infect. Dis. 1992, 15, 748–749. [Google Scholar] [CrossRef]
- Rosenthal, S.; Tager, l.B. Prevalence of gram-negative rods in the normal pharyngeal flora. Ann. Intern. Med. 1975, 83, 355–357. [Google Scholar] [CrossRef]
- Rafei, R.; Hamze, M.; Pailhories, H.; Eveillard, M.; Marsollier, L.; Joly-Guillou, M.L.; Dabboussi, F.; Kempf, M. Extra human epidemiology of Acinetobacter baumannii in Lebanon. Appl. Environ. Microbiol. 2015, 81, 2359–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glew, R.H.; Moellering, R.C., Jr.; Kunz, L.J. Infections with Acinetobacter calcoaceticus (Herellea vaginicola): Clinical and laboratory studies. Medicine 1977, 56, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Buxton, A.E.; Anderson, R.L.; Werdegar, D.; Atlas, E. Nosocomial respiratory tract infection and colonization with Acinetobacter calcoaceticus. Am. J. Med. 1978, 65, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nakae, T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J. Antimicrob. Chemother. 1991, 28, 35–45. [Google Scholar] [CrossRef]
- Vila, J.; Marti, S.; Sanchez-Cespedes, J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007, 59, 1210–1215. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [Green Version]
- Von Graevenitz, A.; Weinstein, J. Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J. Biol. Med. 1971, 44, 265–273. [Google Scholar]
- Yoshino, Y.; Kitazawa, T.; Kamimura, M.; Tatsuno, K.; Ota, Y.; Yotsuyanagi, H. Pseudomonas putida bacteremia in adult patients: Five case reports and a review of the literature. J. Infect. Chemother. 2011, 17, 278–282. [Google Scholar] [CrossRef]
- Perz, J.F.; Craig, A.S.; Stratton, C.W.; Bodner, S.J.; Phillips, W.E., Jr.; Schaffner, W. Pseudomonas putida septicemia in a special care nursery due to contaminated flush solutions prepared in a hospital pharmacy. J. Clin. Microbiol. 2005, 43, 5316–5318. [Google Scholar] [CrossRef] [Green Version]
- Torii, K.; Noda, Y.; Miyazaki, Y.; Ohta, M. An unusual outbreak of infusion-related bacteremia in a gastrointestinal disease ward. Jpn. J. Infect. Dis. 2003, 56, 177–178. [Google Scholar]
- Kumita, W.; Saito, R.; Sato, K.; Ode, T.; Moriya, K.; Koike, K. Molecular characterizations of carbapenem and ciprofloxacin resistance in clinical isolates of Pseudomonas putida. J. Infect. Chemother. 2009, 15, 6–12. [Google Scholar] [CrossRef] [PubMed]
Bacterial Isolates | Source Plant Parts | Isolation Media | Cell Shape | Gram Stain | Taxonomic Identification of Bacterial Isolates by MALDI-TOF | ID Score Value |
---|---|---|---|---|---|---|
T 2.1. | Tomato flower | Endo agar | Short rods | negative | Enterobacter cancerogenus | 1.97. |
T 2.2. | Tomato flower | Endo agar | Short rods | negative | Enterobacter cloacae | 1.92 |
T 2.3. | Tomato flower | Endo agar | Short rods | negative | Leclercia adecarboxylata | 2.29 |
T 2.4. | Tomato flower | Endo agar | Short rods | negative | Acinetobacter calcoaceticus | 1.81 |
T 2.5. | Tomato flower | Endo agar | Short rods | negative | unidentified isolate | 1.23 |
T 2.6. | Tomato flower | SS agar | Short rods | negative | Enterobacter cancerogenus | 1.95 |
T 6.1. | Tomato flower | Endo agar | Short rods | negative | Leclercia adecarboxylata | 1.93 |
T 3.4. | Tomato stem | Endo agar | Short rods | negative | unidentified isolate | 1.34 |
T 5.4. | Tomato stem | Endo agar | Short rods | negative | Pseudesherichia vulneris | 1.92 |
T 9.2. | Tomato leaf | Endo agar | Short rods | negative | Enterobacter bugandensis | 1.84 |
T 8.4. | Tomato fruit | Endo agar | Short rods | negative | Pantoea agglomerans | 2.05 |
T 10.1. | Tomato fruit | Endo agar | Short rods | negative | Pantoea ananatis | 1.97 |
T 10.2. | Tomato fruit | Endo agar | Short rods | negative | Pectobacterium carotovorum | 2.06 |
T 10.3. | Tomato fruit | Endo agar | Short rods | negative | Pantoea agglomerans | 2.02 |
T 10.4. | Tomato fruit | Endo agar | Short rods | negative | Leclercia adecarboxylata | 2.43 |
T 11.2. | Tomato seed | Endo agar | Short rods | negative | Pantoea agglomerans | 1.99 |
T 12.3. | Tomato seed | Endo agar | Short rods | negative | Pantoea agglomerans | 1.89 |
T 12.4. | Tomato seed | Endo agar | Short rods | negative | Enterobacter cloacae | 2.18 |
P 3.5. | Pepper leaf | Endo agar | Short rods | negative | Pantoea agglomerans | 2.11 |
P 7.3. | Pepper leaf | Endo agar | Short rods | negative | Leclercia adecarboxylata | 2.39 |
P 7.4. | Pepper leaf | Endo agar | Short rods | negative | Leclercia adecarboxylata | 1.91 |
P 2.4. | Pepper fruit stem | SS agar | Short rods | negative | Pseudomonas sp. | 2.19 |
P 8.5. | Pepper fruit stem | SS agar | Short rods | negative | Pseudomonas putida | 1.89 |
P 8.6. | Pepper fruit stem | Endo agar | Short rods | negative | Leclercia adecarboxylata | 2.08 |
P 8.7. | Pepper fruit stem | SB agar | cocci | positive | Enterococcus sp. | 1.98 |
P 8.8. | Pepper fruit stem | SB agar | cocci | positive | Enterococcus sp. | 2.01 |
Bacterial Isolates | Glucose | Arabinose | Inositol | Lactose | L-lysine Decarboxylase | Urease | Gelatin | Citrate | VP | H2S | Methyl-Red | Ornithine | Indole |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T 2.1. | + | + | − | V | + | V | + | + | + | − | − | + | − |
T 2.2 | + | + | − | V | + | − | + | + | + | − | − | + | − |
T 2.3 | + | + | − | V | − | − | + | − | − | − | + | + | + |
T 2.4 | + | − | − | V | V | V | + | + | + | − | − | + | − |
T 2.5. | + | + | V | V | − | − | + | − | − | − | + | + | − |
T 2.6 | + | + | − | V | V | − | + | + | + | − | − | + | − |
T 6.1 | − | − | − | V | + | − | + | + | − | − | − | + | − |
T 3.4. | + | + | − | V | + | − | + | + | + | − | − | + | − |
T 5.4 | + | + | − | + | + | − | + | − | − | − | + | + | − |
T 9.2 | + | + | − | V | − | − | + | + | + | − | − | + | − |
T 8.4. | + | + | V | V | − | − | + | + | + | − | − | + | − |
T 10.1 | + | + | V | + | V | − | + | + | + | − | − | + | + |
T 10.2 | − | + | V | + | − | − | + | + | − | − | − | + | − |
T 10.3 | + | + | − | V | − | − | + | V | + | − | − | + | − |
T 10.4 | − | − | − | V | + | − | + | + | − | − | − | + | − |
T 11.2 | + | + | V | V | − | − | + | + | + | − | − | + | − |
T 12.3 | + | + | V | V | − | − | + | V | + | − | + | + | − |
T 12.4 | + | + | − | V | + | + | + | + | + | − | − | + | − |
P 3.5 | + | − | V | V | − | − | + | − | + | − | − | + | − |
P 7.3. | + | + | V | V | + | V | + | + | + | − | − | + | + |
P 7.4 | − | − | − | V | + | − | + | + | − | − | − | + | − |
P 2.4. | − | − | − | V | + | + | + | + | − | − | − | − | − |
P 8.5. | − | − | − | V | + | − | + | + | − | − | − | + | − |
P 8.6 | + | + | V | V | − | − | + | − | − | − | + | + | + |
P 8.7. | + | + | − | V | − | − | + | + | − | − | − | − | − |
P 8.8 | + | − | − | V | − | V | + | + | − | − | + | − | − |
Bacterial Strains | Streptomycin | Tetracycline | Ampicillin/Sulbactam | Neomycin | Kanamycin | Sulfamethoxazole | Chloramphenicol | Trimethoprim | Nalidixic Acid | Gentamycin |
---|---|---|---|---|---|---|---|---|---|---|
Leclercia adecarboxylata | R | S | S | I | I | S | S | S | S | R |
Enterobacter cancerogenus | I | S | S | R | I | I | I | I | S | R |
Enterobacter cloacae | S | S | S | S | I | S | R | S | S | S |
Enterobacter bugandensis | S | R | R | I | I | R | I | R | S | R |
Pantoea agglomerans | I | S | I | R | I | S | S | S | S | R |
Pantoea ananatis | I | S | S | R | S | S | S | S | S | R |
Pseudoesherichia vulneris | I | S | S | R | I | I | I | S | I | R |
Pectobacterium carotovorum | R | S | S | R | I | S | I | R | I | R |
Pseudomonas putida | S | S | R | S | S | R | R | R | I | R |
Pseudomonas spp. | S | S | R | S | S | R | R | R | I | R |
Acinetobacter calcoaceticus | S | S | S | S | S | S | R | R | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizheva, Y.; Georgiev, G.; Donchev, D.; Dimitrova, M.; Pandova, M.; Rasheva, I.; Hristova, P. Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria. Pathogens 2022, 11, 1507. https://doi.org/10.3390/pathogens11121507
Kizheva Y, Georgiev G, Donchev D, Dimitrova M, Pandova M, Rasheva I, Hristova P. Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria. Pathogens. 2022; 11(12):1507. https://doi.org/10.3390/pathogens11121507
Chicago/Turabian StyleKizheva, Yoana, Georgi Georgiev, Deyan Donchev, Melani Dimitrova, Maria Pandova, Iliyana Rasheva, and Petya Hristova. 2022. "Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria" Pathogens 11, no. 12: 1507. https://doi.org/10.3390/pathogens11121507
APA StyleKizheva, Y., Georgiev, G., Donchev, D., Dimitrova, M., Pandova, M., Rasheva, I., & Hristova, P. (2022). Cross-Over Pathogenic Bacteria Detected in Infected Tomatoes (Solanum lycopersicum L.) and Peppers (Capsicum annuum L.) in Bulgaria. Pathogens, 11(12), 1507. https://doi.org/10.3390/pathogens11121507