Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations
Abstract
:1. Introduction
2. Materials and Methods
3. COPD Exacerbations and Current Treatment Results
3.1. Therapeutic Approaches
3.1.1. Antimicrobials
Antibiotics
3.1.2. Mucoregulators
N-acetylcysteine
3.1.3. Bronchodilators
Beta-2 Agonists
Muscarinic Antagonists
Methylxanthines
Future of Bronchodilators in COPD Exacerbations
3.1.4. Anti-Inflammatories
Corticosteroids
Corticosteroids in COPD Patients with or without COVID-19
3.1.5. Long-Term Oxygen Therapy and Beta-Blocker Therapy in COPD Exacerbations
3.1.6. Vitamin D
3.1.7. Personalized Medicine, Epigenetics and COPD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Offenbacher, S.; Beck, J.D.; Barros, S.P.; Suruki, R.Y.; Loewy, Z.G. Obstructive airway disease and edentulism in the Atherosclerosis Risk in Communities (ARIC) study. BMJ Open 2012, 2, e001615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, S.P.; Suruki, R.; Loewy, Z.G.; Beck, J.D.; Offenbacher, S. A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: Modulatory role of systemic biomarkers of inflammation. PLoS ONE 2013, 8, e68592. [Google Scholar] [CrossRef]
- Pragman, A.A.; Berger, J.P.; Williams, B.J. Understanding Persistent Bacterial Lung Infections: Clinical Implications Informed by the Biology of the Microbiota and Biofilms. Clin. Pulm. Med. 2016, 23, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, D.; Rakhamimiova, A.; Pollack, A.; Loewy, Z. Oral Biofilms: Development, Control and Analysis. High-Throughput 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Diagnosis, Management and Prevention of COPD; 2022 Report; GOLD: Fontana, WI, USA, 2022; Available online: https://goldcopd.org/2022-gold-reports-2/ (accessed on 14 November 2022).
- Papi, A.; Bellettato, C.M.; Braccioni, F.; Romagnoli, M.; Casolari, P.; Caramori, G.; Fabbri, L.M.; Johnston, S.L. Infections and Airway Inflammation in Chronic Obstructive Pulmonary Disease Severe Exacerbations. Am. J. Respir. Crit Care Med. 2006, 173, 1114–1121. [Google Scholar] [CrossRef] [Green Version]
- Ram, F.S.; Rodriguez-Roisin, R.; Granados-Navarrete, A.; Garcia-Aymerich, J.; Barnes, N.C. Antibiotics for Exacerbations of Chronic Obstructive Pulmonary Disease. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. CD004403.pub2. [Google Scholar]
- Sethi, S.; Murphy, T.F. Bacterial Infection in Chronic Obstructive Pulmonary Disease in 2000: A State-of-the-Art Review. Clin. Microbiol. Rev. 2001, 14, 336–363. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, T.; Kruse, J.M.; Marcy, F.; Piper, S.K.; Storm, C.; Nee, J. Is the Routine Use of Antipseudomonal Antibiotics in Acutely Exacerbated COPD Patients Indicated: A Retrospective Analysis in 437 ICU Patients. J. Crit. Care 2021, 65, 49–55. [Google Scholar] [CrossRef]
- Sethi, S.; Murphy, T.F. Acute Exacerbations of Chronic Bronchitis: New Developments Concerning Microbiology and Pathophysiology—Impact on Approaches to Risk Stratification and Therapy. Infect. Dis. Clin. N. Am. 2004, 18, 861–882. [Google Scholar] [CrossRef]
- El Moussaoui, R.; Roede, B.M.; Speelman, P.; Bresser, P.; Prins, J.M.; Bossuyt, P.M.M. Short-Course Antibiotic Treatment in Acute Exacerbations of Chronic Bronchitis and COPD: A Meta-Analysis of Double-Blind Studies. Thorax 2008, 63, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Schentag, J.J.; Ball, P.; Mandell, L. A Comparison of Gemifloxacin and Clarithromycin in Acute Exacerbations of Chronic Bronchitis and Long-Term Clinical Outcomes. Clin. Ther. 2002, 24, 639–652. [Google Scholar] [CrossRef]
- Wilson, R.; Allegra, L.; Huchon, G.; Izquierdo, J.-L.; Jones, P.; Schaberg, T.; Sagnier, P.-P. MOSAIC Study Group Short-Term and Long-Term Outcomes of Moxifloxacin Compared to Standard Antibiotic Treatment in Acute Exacerbations of Chronic Bronchitis. Chest 2004, 125, 953–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqi, A.; Sethi, S. Optimizing Antibiotic Selection in Treating COPD Exacerbations. Int. J. Chron. Obs. Pulmon. Dis. 2008, 3, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Joyner, K.R.; Walkerly, A.; Seidel, K.; Walsh, N.; Damshekan, N.; Perry, T.; Soric, M.M. Comparison of Narrow-Versus Broad-Spectrum Antibiotics in Elderly Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease. J. Pharm. Pract. 2022, 35, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Baalbaki, N.; Giuliano, C.; Hartner, C.L.; Kale-Pradhan, P.; Johnson, L. Azithromycin Versus Beta-Lactams in Hospitalized Patients with Acute Exacerbations of COPD. J. Gen. Intern Med. 2022. [CrossRef] [PubMed]
- Smith, H.J. Dual Activity of Fluoroquinolones against Streptococcus Pneumoniae: The Facts behind the Claims. J. Antimicrob. Chemother. 2002, 49, 893–895. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A Critical Review of the Fluoroquinolones: Focus on Respiratory Infections. Drugs 2002, 62, 13–59. [Google Scholar] [CrossRef] [PubMed]
- Brueggemann, A.B.; Coffman, S.L.; Rhomberg, P.; Huynh, H.; Almer, L.; Nilius, A.; Flamm, R.; Doern, G.V. Fluoroquinolone Resistance in Streptococcus Pneumoniae in United States since 1994–1995. Antimicrob. Agents Chemother. 2002, 46, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, J.H.; Weigel, L.M.; Swenson, J.M.; Whitney, C.G.; Ferraro, M.J.; Tenover, F.C. Activities of Clinafloxacin, Gatifloxacin, Gemifloxacin, and Trovafloxacin against Recent Clinical Isolates of Levofloxacin-Resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2000, 44, 2962–2968. [Google Scholar] [CrossRef] [Green Version]
- Saravolatz, L.D.; Leggett, J. Gatifloxacin, Gemifloxacin, and Moxifloxacin: The Role of 3 Newer Fluoroquinolones. Clin. Infect. Dis. 2003, 37, 1210–1215. [Google Scholar] [CrossRef]
- Wilson, R.; Macklin-Doherty, A. The Use of Moxifloxacin for Acute Exacerbations of Chronic Obstructive Pulmonary Disease and Chronic Bronchitis. Expert Rev. Respir. Med. 2012, 6, 481–492. [Google Scholar] [CrossRef]
- Ruiz-González, A.; Sáez-Huerta, E.; Martínez-Alonso, M.; Bernet-Sánchez, A.; Porcel, J.M. A Simple Scoring System to Differentiate Bacterial from Viral Infections in Acute Exacerbations of COPD Requiring Hospitalization. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Choi, S.-H.; Huh, J.-W.; Sung, H.; Hong, S.B.; Lim, C.-M.; Koh, Y. Different Pattern of Viral Infections and Clinical Outcomes in Patient with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Chronic Obstructive Pulmonary Disease with Pneumonia: Respiratory Viral Infections in COPD Patients. J. Med. Virol. 2016, 88, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Vanspauwen, M.J.; Franssen, F.M.E.; Raoult, D.; Wouters, E.F.M.; Bruggeman, C.A.; Linssen, C.F.M. Infections with Mimivirus in Patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2012, 106, 1690–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perotin, J.-M.; Dury, S.; Renois, F.; Deslee, G.; Wolak, A.; Duval, V.; De Champs, C.; Lebargy, F.; Andreoletti, L. Detection of Multiple Viral and Bacterial Infections in Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Pilot Prospective Study. J. Med. Virol. 2013, 85, 866–873. [Google Scholar] [CrossRef]
- Chen, C.Y.J.; Yew, M.S.; Abisheganaden, J.A.; Xu, H. Predictors of Influenza PCR Positivity in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 25–32. [Google Scholar] [CrossRef]
- Biancardi, E.; Fennell, M.; Rawlinson, W.; Thomas, P.S. Viruses Are Frequently Present as the Infecting Agent in Acute Exacerbations of Chronic Obstructive Pulmonary Disease in Patients Presenting to Hospital: Respiratory Viruses in AECOPD. Intern Med. J. 2016, 46, 1160–1165. [Google Scholar] [CrossRef]
- Kan-o, K.; Washio, Y.; Fujimoto, T.; Shiroyama, N.; Nakano, T.; Wakamatsu, K.; Takata, S.; Yoshida, M.; Fujita, M.; Matsumoto, K. Differences in the Spectrum of Respiratory Viruses and Detection of Human Rhinovirus C in Exacerbations of Adult Asthma and Chronic Obstructive Pulmonary Disease. Respir. Investig. 2022, 60, 129–136. [Google Scholar] [CrossRef]
- Yormaz, B.; Findik, D.; Süerdem, M. Differences of Viral Panel Positive versus Negative by Real-Time PCR in COPD Exacerbated Patients. Tuberk Toraks 2019, 67, 124–130. [Google Scholar] [CrossRef]
- Koul, P.; Mir, H.; Akram, S.; Potdar, V.; Chadha, M. Respiratory Viruses in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Lung India 2017, 34, 29. [Google Scholar] [CrossRef] [PubMed]
- McManus, T.E.; Marley, A.-M.; Baxter, N.; Christie, S.N.; O’Neill, H.J.; Elborn, J.S.; Coyle, P.V.; Kidney, J.C. Respiratory Viral Infection in Exacerbations of COPD. Respir. Med. 2008, 102, 1575–1580. [Google Scholar] [CrossRef]
- Yin, T.; Zhu, Z.; Mei, Z.; Feng, J.; Zhang, W.; He, Y.; Shi, J.; Qian, L.; Liu, Y.; Huang, Q.; et al. Analysis of Viral Infection and Biomarkers in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Clin. Respir. J. 2018, 12, 1228–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rijn, A.L.; van Boheemen, S.; Sidorov, I.; Carbo, E.C.; Pappas, N.; Mei, H.; Feltkamp, M.; Aanerud, M.; Bakke, P.; Claas, E.C.J.; et al. The Respiratory Virome and Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. PLoS ONE 2019, 14, e0223952. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A.; Ginde, A.A.; Clark, S.; Cartwright, C.P.; Falsey, A.R.; Niewoehner, D.E. Viral Pathogens in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Intern Emerg. Med. 2008, 3, 355. [Google Scholar] [CrossRef] [PubMed]
- Beckham, J.D.; Cadena, A.; Lin, J.; Piedra, P.A.; Glezen, W.P.; Greenberg, S.B.; Atmar, R.L. Respiratory Viral Infections in Patients with Chronic, Obstructive Pulmonary Disease. J. Infect. 2005, 50, 322–330. [Google Scholar] [CrossRef]
- Ko, F.W.S.; Ip, M.; Chan, P.K.S.; Chan, M.C.H.; To, K.-W.; Ng, S.S.S.; Chau, S.S.L.; Tang, J.W.; Hui, D.S.C. Viral Etiology of Acute Exacerbations of COPD in Hong Kong. Chest 2007, 132, 900–908. [Google Scholar] [CrossRef]
- de Jong, Y.P.; Uil, S.M.; Grotjohan, H.P.; Postma, D.S.; Kerstjens, H.A.M.; van den Berg, J.W.K. Oral or IV Prednisolone in the Treatment of COPD Exacerbations. Chest 2007, 132, 1741–1747. [Google Scholar] [CrossRef]
- MacLeod, M.; Papi, A.; Contoli, M.; Beghé, B.; Celli, B.R.; Wedzicha, J.A.; Fabbri, L.M. Chronic Obstructive Pulmonary Disease Exacerbation Fundamentals: Diagnosis, Treatment, Prevention and Disease Impact. Respirology 2021, 26, 532–551. [Google Scholar] [CrossRef]
- Lamb, Y.N. Nirmatrelvir Plus Ritonavir: First Approval. Drugs 2022, 82, 585–591. [Google Scholar] [CrossRef]
- Jiang, C.; Zou, J.; Lv, Q.; Yang, Y. Systematic Review and Meta-Analysis of the Efficacy of N-Acetylcysteine in the Treatment of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Ann. Palliat. Med. 2021, 10, 6564–6576. [Google Scholar] [CrossRef]
- Hsu, E.; Bajaj, T. Beta 2 Agonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Naji, A.; Gatling, J.W. Muscarinic Antagonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cates, C.J.; Welsh, E.J.; Rowe, B.H. Holding Chambers (Spacers) versus Nebulisers for Beta-Agonist Treatment of Acute Asthma. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Dolovich, M.B.; Ahrens, R.C.; Hess, D.R.; Anderson, P.; Dhand, R.; Rau, J.L.; Smaldone, G.C.; Guyatt, G. Device Selection and Outcomes of Aerosol Therapy: Evidence-Based Guidelines. Chest 2005, 127, 335–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.O. Bronchodilator Delivery in Acute Airflow Obstruction: A Meta-Analysis. Arch. Intern Med. 1997, 157, 1736. [Google Scholar] [CrossRef] [PubMed]
- Ko, F.W.; Chan, K.P.; Hui, D.S.; Goddard, J.R.; Shaw, J.G.; Reid, D.W.; Yang, I.A. Acute Exacerbation of COPD: Hot Topics on Acute Exacerbation of COPD. Respirology 2016, 21, 1152–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonds, A.; Hanak, A.; Chatwin, M.; Morrell, M.; Hall, A.; Parker, K.; Siggers, J.; Dickinson, R. Evaluation of Droplet Dispersion during Non-Invasive Ventilation, Oxygen Therapy, Nebuliser Treatment and Chest Physiotherapy in Clinical Practice: Implications for Management of Pandemic Influenza and Other Airborne Infections. Health Technol Assess 2010, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunadharaju, R.; Sethi, S. Treatment of Acute Exacerbations in Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2020, 41, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Rowe, B.H.; Camargo, C.A. Methylxanthines for Exacerbations of Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2003, 2010. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.J.; Alves, C.; Furtado, S.; Ferreira, J.; Drummond, M.; Robalo-Cordeiro, C. COPD Exacerbations: Management and Hospital Discharge. Pulmonology 2018, 24, 345–350. [Google Scholar] [CrossRef] [PubMed]
- National Clinical Guideline Centre (UK). Chronic Obstructive Pulmonary Disease: Management of Chronic Obstructive Pulmonary Disease in Adults in Primary and Secondary Care; National Institute for Health and Clinical Excellence: Guidance; Royal College of Physicians (UK): London, UK, 2010. [Google Scholar]
- Cazzola, M.; Rogliani, P.; Matera, M.G. The Future of Bronchodilation: Looking for New Classes of Bronchodilators. Eur. Respir. Rev. 2019, 28. [Google Scholar] [CrossRef] [Green Version]
- Mak, G.; Hanania, N.A. New Bronchodilators. Curr. Opin. Pharmacol. 2012, 12, 238–245. [Google Scholar] [CrossRef]
- Beute, J.; Lukkes, M.; Koekoek, E.P.; Nastiti, H.; Ganesh, K.; de Bruijn, M.J.W.; Hockman, S.; van Nimwegen, M.; Braunstahl, G.-J.; Boon, L.; et al. A Pathophysiological Role of PDE3 in Allergic Airway Inflammation. JCI Insight 2018, 3, e94888. [Google Scholar] [CrossRef]
- Franciosi, L.G.; Diamant, Z.; Banner, K.H.; Zuiker, R.; Morelli, N.; Kamerling, I.M.C.; de Kam, M.L.; Burggraaf, J.; Cohen, A.F.; Cazzola, M.; et al. Efficacy and Safety of RPL554, a Dual PDE3 and PDE4 Inhibitor, in Healthy Volunteers and in Patients with Asthma or Chronic Obstructive Pulmonary Disease: Findings from Four Clinical Trials. Lancet Respir. Med. 2013, 1, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.; D’Anjou, H.; Higgins, M.-È.; Gougeon, J.; Aubé, P.; Moktefi, K.; Mouissi, S.; Séguin, S.; Séguin, R.; Renzi, P.M.; et al. A Multi-Target Antisense Approach against PDE4 and PDE7 Reduces Smoke-Induced Lung Inflammation in Mice. Respir. Res. 2009, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banner, K.H.; Press, N.J. Dual PDE3/4 Inhibitors as Therapeutic Agents for Chronic Obstructive Pulmonary Disease. Br. J. Pharmacol. 2009, 157, 892–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjua, S.; Fortescue, R.; Poole, P. Phosphodiesterase-4 Inhibitors for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2020, 2020. [Google Scholar] [CrossRef]
- Kim, D.; Cho, S.; Castaño, M.A.; Panettieri, R.A.; Woo, J.A.; Liggett, S.B. Biased TAS2R Bronchodilators Inhibit Airway Smooth Muscle Growth by Downregulating Phosphorylated Extracellular Signal–Regulated Kinase 1/2. Am. J. Respir. Cell Mol. Biol. 2019, 60, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter Taste Receptors on Airway Smooth Muscle Bronchodilate by Localized Calcium Signaling and Reverse Obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Lebender, L.F.; Prünte, L.; Rumzhum, N.N.; Ammit, A.J. Selectively Targeting Prostanoid E (EP) Receptor-Mediated Cell Signalling Pathways: Implications for Lung Health and Disease. Pulm. Pharmacol. Ther. 2018, 49, 75–87. [Google Scholar] [CrossRef]
- Buckley, J.; Birrell, M.A.; Maher, S.A.; Nials, A.T.; Clarke, D.L.; Belvisi, M.G. EP4 Receptor as a New Target for Bronchodilator Therapy. Thorax 2011, 66, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Hamed, O.; Yan, D.; Michi, A.N.; Mostafa, M.M.; Wiehler, S.; Newton, R.; Giembycz, M.A. Prostanoid Receptors of the EP4 -Subtype Mediate Gene Expression Changes in Human Airway Epithelial Cells with Potential Anti-Inflammatory Activity. J. Pharmacol. Exp. Ther. 2021, 376, 161–180. [Google Scholar] [CrossRef]
- Chiba, Y.; Misawa, M. The Role of RhoA-Mediated Ca2+ Sensitization of Bronchial Smooth Muscle Contraction in Airway Hyperresponsiveness. J. Smooth Muscle Res. 2004, 40, 155–167. [Google Scholar] [CrossRef]
- Fernandes, L.B.; Henry, P.J.; Goldie, R.G. Review: Rho Kinase as a Therapeutic Target in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Ther. Adv. Respir. Dis. 2007, 1, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; LoGrasso, P.V.; Defert, O.; Li, R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 2016, 59, 2269–2300. [Google Scholar] [CrossRef] [PubMed]
- Defert, O.; Boland, S. Rho Kinase Inhibitors: A Patent Review (2014–2016). Expert Opin. Ther. Pat. 2017, 27, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Yarova, P.L.; Stewart, A.L.; Sathish, V.; Britt, R.D.; Thompson, M.A.; P. Lowe, A.P.; Freeman, M.; Aravamudan, B.; Kita, H.; Brennan, S.C.; et al. Calcium-Sensing Receptor Antagonists Abrogate Airway Hyperresponsiveness and Inflammation in Allergic Asthma. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banno, A.; Reddy, A.T.; P. Lakshmi, S.; Reddy, R.C. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma. Nucl. Recept. Res. 2018, 5, 101306. [Google Scholar] [CrossRef] [Green Version]
- Fogli, S.; Pellegrini, S.; Adinolfi, B.; Mariotti, V.; Melissari, E.; Betti, L.; Fabbrini, L.; Giannaccini, G.; Lucacchini, A.; Bardelli, C.; et al. Rosiglitazone Reverses Salbutamol-Induced Β2-Adrenoceptor Tolerance in Airway Smooth Muscle: Rosiglitazone and Β2-Adrenoceptor Responsiveness. Br. J. Pharmacol. 2011, 162, 378–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, C.; Bailey, S.R.; Tran, J.; Haitsma, G.; Ibrahim, Z.A.; Foster, S.R.; Tang, M.L.K.; Royce, S.G.; Bourke, J.E. Rosiglitazone Elicits in Vitro Relaxation in Airways and Precision Cut Lung Slices from a Mouse Model of Chronic Allergic Airways Disease. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 309, L1219–L1228. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.; Royce, S.G.; Samuel, C.S.; Bourke, J.E. Serelaxin as a Novel Therapeutic Opposing Fibrosis and Contraction in Lung Diseases. Pharmacol. Ther. 2018, 187, 61–70. [Google Scholar] [CrossRef]
- Lam, M.; Royce, S.G.; Donovan, C.; Jelinic, M.; Parry, L.J.; Samuel, C.S.; Bourke, J.E. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation. Front. Pharmacol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Pini, A.; Boccalini, G.; Lucarini, L.; Catarinicchia, S.; Guasti, D.; Masini, E.; Bani, D.; Nistri, S. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin). J. Pharmacol. Exp. Ther. 2016, 357, 451–458. [Google Scholar] [CrossRef]
- Muppidi, A.; Lee, S.J.; Hsu, C.-H.; Zou, H.; Lee, C.; Pflimlin, E.; Mahankali, M.; Yang, P.; Chao, E.; Ahmad, I.; et al. Design and Synthesis of Potent, Long-Acting Lipidated Relaxin-2 Analogs. Bioconjugate Chem. 2019, 30, 83–89. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.; Hoy, A.M.; Bamford, M.J.; Mossakowska, D.E.; Ruediger, M.P.; Griggs, J.; Desai, S.; Simpson, K.; Caballero-Hernandez, I.; Iredale, J.P.; et al. In Search of a Small Molecule Agonist of the Relaxin Receptor RXFP1 for the Treatment of Liver Fibrosis. Sci. Rep. 2017, 7, 10806. [Google Scholar] [CrossRef] [Green Version]
- Dupont, L.L.; Glynos, C.; Bracke, K.R.; Brouckaert, P.; Brusselle, G.G. Role of the Nitric Oxide–Soluble Guanylyl Cyclase Pathway in Obstructive Airway Diseases. Pulm. Pharmacol. Ther. 2014, 29, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Salazar-Degracia, A.; Peinado, V.I.; Tura-Ceide, O.; Blanco, I.; Barreiro, E.; Barberà, J.A. Soluble Guanylate Cyclase Stimulation Reduces Oxidative Stress in Experimental Chronic Obstructive Pulmonary Disease. PLoS ONE 2018, 13, e0190628. [Google Scholar] [CrossRef] [Green Version]
- Panettieri, R.A.; Pera, T.; Liggett, S.B.; Benovic, J.L.; Penn, R.B. Pepducins as a Potential Treatment Strategy for Asthma and COPD. Curr. Opin. Pharmacol. 2018, 40, 120–125. [Google Scholar] [CrossRef]
- Carr, R.; Koziol-White, C.; Zhang, J.; Lam, H.; An, S.S.; Tall, G.G.; Panettieri, R.A.; Benovic, J.L. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol. Pharmacol. 2016, 89, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.A.; Wheeler, J.; Finch, C.; Pinner, N. Corticosteroids in the Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2014, 421. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-Term Systemic Corticosteroid Exposure: A Systematic Literature Review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef] [Green Version]
- Leuppi, J.D.; Schuetz, P.; Bingisser, R.; Bodmer, M.; Briel, M.; Drescher, T.; Duerring, U.; Henzen, C.; Leibbrandt, Y.; Maier, S.; et al. Short-Term vs Conventional Glucocorticoid Therapy in Acute Exacerbations of Chronic Obstructive Pulmonary Disease: The REDUCE Randomized Clinical Trial. JAMA 2013, 309, 2223. [Google Scholar] [CrossRef]
- Walters, J.A.; Tan, D.J.; White, C.J.; Wood-Baker, R. Different Durations of Corticosteroid Therapy for Exacerbations of Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Li, L.; Zhao, N.; Ma, X.; Sun, F.; He, B.; Qin, Z.; Wu, K.; Wang, X.; Zhao, Q.; Zhang, S.; et al. Personalized Variable vs Fixed-Dose Systemic Corticosteroid Therapy in Hospitalized Patients with Acute Exacerbations of COPD. Chest 2021, 160, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Finch, D.; Pavord, I.; Jones, P.; Burgel, P.R.; Rabe, K.F. Exacerbations of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abroug, F.; Krishnan, J.A. What Is the Right Dose of Systemic Corticosteroids for Intensive Care Unit Patients with Chronic Obstructive Pulmonary Disease Exacerbations? A Question in Search of a Definitive Answer. Am. J. Respir. Crit Care Med. 2014, 189, 1014–1016. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Reid, C.; Haldar, P.; McCormick, M.; Haldar, K.; Kebadze, T.; Duvoix, A.; et al. Acute Exacerbations of Chronic Obstructive Pulmonary Disease: Identification of Biologic Clusters and Their Biomarkers. Am. J. Respir. Crit Care Med. 2011, 184, 662–671. [Google Scholar] [CrossRef]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Pancholi, M.; Venge, P.; Lomas, D.A.; Barer, M.R.; Johnston, S.L.; Pavord, I.D.; et al. Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease: A Randomized Placebo-Controlled Trial. Am. J. Respir. Crit Care Med. 2012, 186, 48–55. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; WHO/2019-nCoV/clinical/2020.4; World Health Organization: Geneva, Switzerland, 2020. Available online: https://apps.who.int/iris/handle/10665/331446 (accessed on 28 November 2022).
- Hasan, S.S.; Capstick, T.; Zaidi, S.T.R.; Kow, C.S.; Merchant, H.A. Use of Corticosteroids in Asthma and COPD Patients with or without COVID-19. Respir. Med. 2020, 170, 106045. [Google Scholar] [CrossRef]
- Johns, M.; George, S.; Taburyanskaya, M.; Poon, Y.K. A Review of the Evidence for Corticosteroids in COVID-19. J. Pharm. Pract. 2022, 35, 626–637. [Google Scholar] [CrossRef]
- Kew, K.M.; Seniukovich, A. Inhaled Steroids and Risk of Pneumonia for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Rentsch, C.T.; Kidwai-Khan, F.; Tate, J.P.; Park, L.S.; King, J.T.; Skanderson, M.; Hauser, R.G.; Schultze, A.; Jarvis, C.I.; Holodniy, M.; et al. Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States Veterans Aged 54-75 Years. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk Factors for SARS-CoV-2 among Patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre Primary Care Network: A Cross-Sectional Study. Lancet Infect. Dis. 2020, 20, 1034–1042. [Google Scholar] [CrossRef]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.C.; Tan, P.S.; Clift, A.K.; Harrison, D.; et al. Association between Pre-Existing Respiratory Disease and Its Treatment, and Severe COVID-19: A Population Cohort Study. Lancet Respir. Med. 2021, 9, 909–923. [Google Scholar] [CrossRef]
- Choi, J.C.; Jung, S.-Y.; Yoon, U.A.; You, S.-H.; Kim, M.-S.; Baek, M.S.; Jung, J.-W.; Kim, W.-Y. Inhaled Corticosteroids and COVID-19 Risk and Mortality: A Nationwide Cohort Study. J. Clin. Med. 2020, 9, 3406. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Criner, G.J.; Papi, A.; Singh, D.; Anzueto, A.; Martinez, F.J.; Agusti, A.A. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit Care Med. 2021, 203, 24–36. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Community-Based Care of Patients with Chronic Obstructive Pulmonary Disease (COPD); National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (NICE): London, UK, 2020.
- Sen, P.; Majumdar, U.; Zein, J.; Hatipoğlu, U.; Attaway, A.H. Inhaled Corticosteroids Do Not Adversely Impact Outcomes in COVID-19 Positive Patients with COPD: An Analysis of Cleveland Clinic’s COVID-19 Registry. PLoS ONE 2021, 16, e0252576. [Google Scholar] [CrossRef]
- Furci, F.; Caminati, M.; Senna, G.; Gangemi, S. The Potential Protective Role of Corticosteroid Therapy in Patients with Asthma and COPD against COVID-19. Clin. Mol. Allergy 2021, 19, 19. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Singh, D.; Hadfield, R.M. Inhaled Corticosteroids and COVID-19: A Systematic Review and Clinical Perspective. Eur. Respir. J. 2020, 55, 2001009. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Griesel, M.; Wagner, C.; Mikolajewska, A.; Stegemann, M.; Fichtner, F.; Metzendorf, M.-I.; Nair, A.A.; Daniel, J.; Fischer, A.-L.; Skoetz, N. Inhaled Corticosteroids for the Treatment of COVID-19. Cochrane Database Syst. Rev. 2022, 2022. [Google Scholar] [CrossRef]
- McNicholas, W.; Kent; Mitchell. Hypoxemia in Patients with COPD: Cause, Effects, and Disease Progression. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 199. [Google Scholar] [CrossRef] [Green Version]
- Weekley, M.S.; Bland, L.E. Oxygen Administration. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Austin, M.A.; Wills, K.E.; Blizzard, L.; Walters, E.H.; Wood-Baker, R. Effect of High Flow Oxygen on Mortality in Chronic Obstructive Pulmonary Disease Patients in Prehospital Setting: Randomised Controlled Trial. BMJ 2010, 341, c5462. [Google Scholar] [CrossRef]
- Aubier, M.; Murciano, D.; Milic-Emili, J.; Touaty, E.; Daghfous, J.; Pariente, R.; Derenne, J.P. Effects of the Administration of O2 on Ventilation and Blood Gases in Patients with Chronic Obstructive Pulmonary Disease During Acute Respiratory Failure. Am. Rev. Respir. Dis. 1980, 122, 747–754. [Google Scholar] [CrossRef]
- Echevarria, C.; Steer, J.; Wason, J.; Bourke, S. Oxygen Therapy and Inpatient Mortality in COPD Exacerbation. Emerg. Med. J. 2021, 38, 170–177. [Google Scholar] [CrossRef]
- Celli, B.R.; MacNee, W.; Agusti, A.; Anzueto, A.; Berg, B.; Buist, A.S.; Calverley, P.M.A.; Chavannes, N.; Dillard, T.; Fahy, B.; et al. Standards for the Diagnosis and Treatment of Patients with COPD: A Summary of the ATS/ERS Position Paper. Eur. Respir. J. 2004, 23, 932–946. [Google Scholar] [CrossRef] [Green Version]
- UpToDate. Available online: https://www.uptodate.com/contents/long-term-supplemental-oxygen-therapy#H3194179371 (accessed on 29 November 2022).
- Sculley, J.A.; Corbridge, S.J.; Prieto-Centurion, V.; Kallstrom, T.J.; Lewarski, J.; Tan, A.-Y.M.; Krishnan, J.A. Home Oxygen Therapy for Patients With COPD: Time for a Reboot. Respir. Care 2019, 64, 1574–1585. [Google Scholar] [CrossRef]
- Treatment of Acute COPD Exacerbation—Pulmonary Disorders. Merck Manuals Professional Edition. Available online: https://www.merckmanuals.com/professional/pulmonary-disorders/chronic-obstructive-pulmonary-disease-and-related-disorders/treatment-of-acute-copd-exacerbation (accessed on 29 November 2022).
- Chaney, J.C.; Jones, K.; Grathwohl, K.; Olivier, K.N. Implementation of an Oxygen Therapy Clinic to Manage Users of Long-Term Oxygen Therapy. Chest 2002, 122, 1661–1667. [Google Scholar] [CrossRef] [Green Version]
- Oba, Y.; Salzman, G.A.; Willsie, S.K. Reevaluation of Continuous Oxygen Therapy after Initial Prescription in Patients with Chronic Obstructive Pulmonary Disease. Respir. Care 2000, 45, 401–406. [Google Scholar]
- Górecka, D.; Gorzelak, K.; Sliwiński, P.; Tobiasz, M.; Zieliński, J. Effect of Long-Term Oxygen Therapy on Survival in Patients with Chronic Obstructive Pulmonary Disease with Moderate Hypoxaemia. Thorax 1997, 52, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Lipworth, B.; Skinner, D.; Devereux, G.; Thomas, V.; Ling Zhi Jie, J.; Martin, J.; Carter, V.; Price, D.B. Underuse of β-Blockers in Heart Failure and Chronic Obstructive Pulmonary Disease. Heart 2016, 102, 1909–1914. [Google Scholar] [CrossRef] [Green Version]
- Gulea, C.; Zakeri, R.; Alderman, V.; Morgan, A.; Ross, J.; Quint, J.K. Beta-Blocker Therapy in Patients with COPD: A Systematic Literature Review and Meta-Analysis with Multiple Treatment Comparison. Respir. Res. 2021, 22, 64. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Y.; Ding, N.; Lu, L.; Chen, Y. Beta-Blockers Reduced the Risk of Mortality and Exacerbation in Patients with COPD: A Meta-Analysis of Observational Studies. PLoS ONE 2014, 9, e113048. [Google Scholar] [CrossRef] [Green Version]
- The BRONCHIOLE investigators; Sundh, J.; Magnuson, A.; Montgomery, S.; Andell, P.; Rindler, G.; Fröbert, O. Beta-BlockeRs to PatieNts with CHronIc Obstructive PuLmonary DiseasE (BRONCHIOLE)—Study Protocol from a Randomized Controlled Trial. Trials 2020, 21, 123. [Google Scholar] [CrossRef]
- Dransfield, M.T.; Voelker, H.; Bhatt, S.P.; Brenner, K.; Casaburi, R.; Come, C.E.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Han, M.K.; et al. Metoprolol for the Prevention of Acute Exacerbations of COPD. N. Engl. J. Med. 2019, 381, 2304–2314. [Google Scholar] [CrossRef]
- Malinovschi, A.; Masoero, M.; Bellocchia, M.; Ciuffreda, A.; Solidoro, P.; Mattei, A.; Mercante, L.; Heffler, E.; Rolla, G.; Bucca, C. Severe Vitamin D Deficiency Is Associated with Frequent Exacerbations and Hospitalization in COPD Patients. Respir. Res. 2014, 15, 131. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Mathyssen, C.; Rafiq, R.; de Jongh, R.T.; Camargo, C.A.; Griffiths, C.J.; Janssens, W.; Martineau, A.R. Vitamin D to Prevent Exacerbations of COPD: Systematic Review and Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Thorax 2019, 74, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Caram, L.M.O.; Tanni, S.E.; Godoy, I.; Rupp de Paiva, S.A. The Relationship between Vitamin D Status and Exacerbation in COPD Patients– a Literature Review. Respir. Med. 2018, 139, 34–38. [Google Scholar] [CrossRef]
- Yang, I.V.; Schwartz, D.A. Epigenetic control of gene expression in the lung. Am. J. Resp. Crit. Care Med. 2011, 183, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Tzortzaki, E.G.; Papi, A.; Neofytou, E. Immune and genetic mechanisms in COPD: Possible targets for therapeutic interventions. Curr. Drug Targets. 2013, 14, 141–148. [Google Scholar] [CrossRef]
- Qiu, W.; Baccarelli, A.; Carey, V.J. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 2012, 185, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.; Schikowski, T.; Carsin, A.E. Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Heaney, L.G.; Mcgarvey, L.P. Personalised medicine for asthma and chronic obstructive pulmonary disease. Respiration 2017, 93, 153–161. [Google Scholar] [CrossRef]
MIC90 of Indicated Drug (μg/mL) | |||
---|---|---|---|
Bacterial Organism: | Gemifloxacin | Moxifloxacin | Levofloxacin |
Haemophilus influenzae | 0.03 | 0.06 | 0.06 |
Moraxella catarrhalis | 0.015 | 0.03 | 0.03 |
Streptococcus pneumoniae | 0.03 | 0.12 | 1.0 |
Pseudomonas aeruginosa | >8.0 | 8 | 32 |
Study Author | Viral Infection Detected | Detection Technique | Comments |
---|---|---|---|
Ruiz-González et al. [23] | Influenza A (n = 34; 39.5%) Rhinovirus (n = 20; 23.3%) Coronavirus (n = 10; 11.6%) Respiratory syncytial virus (n = 9; 10.5%) | RT-PCR | Out of 127 patients included in the study, 57 patients (44.9%) had a viral infection detected via PCR, and 29 patients (22.8%) had both bacterial and viral infections detected via PCR. The four most prevalent viral isolates are listed. |
Kim et al. [24] | Influenza virus (n = 34; 14.1%): Influenza A (n = 33; 13.7%) Influenza B (n = 1; 0.4%) Rhinovirus (n = 25; 10.4%) Parainfluenza (n = 23; 9.5%) Human coronavirus (n = 15; 6.2%) | RT-PCR | Notably, 101 (41.9%) of the included patients with acute COPD exacerbations had respiratory viral infections detected. The four most prevalent isolates are listed. [Note: this study was published in 2016, before the identification of SARS-CoV-2, COVID-19] |
Vanspauwen et al. [25] | Zero cases of mimivirus detected | PCR | The presence of mimivirus antibodies in patients with pneumonia suggests a possibility that this virus is a respiratory pathogen and may potentially play a role in respiratory infections. PCR tests performed on the sputum samples of 220 patients with stable COPD, and those experiencing acute exacerbation indicate that this virus does not play a role in COPD as none of the PCR tests detected cases of mimivirus. |
Perotin et al. [26] | Human rhinovirus (n = 9; 20%) human metapneumovirus (n = 8; 18%) Influenza A (n = 2; 4%) Influenza B (n = 1; 2%) | Multiplex PCR | Of the 45 patients included in this study, 20 patients (44%) had a viral respiratory infection associated with their AECOPD. The four most prevalent isolates are listed. |
Chen et al. [27] | Influenza-positive cases (n = 90) Influenza A (n = 68) Influenza B (n = 22) | PCR | PCR only tested for influenza, and 925 patients were included in the study. |
Biancardi et al. [28] | In hospitalized patients: Influenza A (31%) Rhinovirus (27%) Respiratory syncytial virus A/B (10%) Non-hospitalized patients: Influenza A (n = 642; 31%) Rhinovirus (n = 565; 27%) RSV A/B (n = 209; 10%) | Multiplex PCR | In 102 patients hospitalized for COPD exacerbation, 59 patients (58%) had a respiratory viral infection. The four most prevalent isolates are listed. Out of 8811 non-hospitalized patients experiencing COPD exacerbation, 5599 of those patients (64%) had viral respiratory pathogens identified via PCR. The four most prevalent isolates are listed. |
Kan-O et al. [29] | hMPV (n = 7; 15.9%) Parainfluenza virus (n = 4; 9.1%) HRV/enterovirus (n = 2; 4.5%) coronavirus (n = 2; 4.5%) respiratory syncytial virus (n = 2; 4.5%) | Multiplex PCR | In patients experiencing acute COPD exacerbations, 17 of those patients (38.6%) had respiratory viral infections identified via PCR. |
Yormaz et al. [30] | Rhinovirus (25%) Influenza A (13.1%) Coronavirus (11.8%) | PCR | In a study that included 110 patients, 50 of those patients (45.5%) had respiratory viral infections identified via PCR. |
Koul et al. [31] | Influenza (n = 18; 7.7%) Rhinovirus (n = 11; 4.7%) RSV-A (n = 5; 2.1%) Parainfluenza virus (n = 4; 1.7%) | PCR | In a study conducted in India, which included 233 patients, 46 of those patients (19.7%) had respiratory viral infections identified via PCR. |
McManus et al. [32] | Rhinovirus (n = 32) Adenovirus (n = 10) Parainfluenza-3 (n = 5) Influenza A-H3 (n = 3) | Multiplexed, nested PCR | Of the 136 patients included in this study, 37% had respiratory viral infections identified via PCR. |
Yin et al. [33] | Influenza A (9.5%) Human rhinovirus (8%) Influenza B (5.7%) | RT-PCR | A total of 264 patients were included in a study that was conducted in Shanghai, and 72 of those patients (27.3%) had respiratory viral infections identified via PCR. |
Van Rijn et al. [34] | Rhinovirus (n = 14; 61%) Influenza A (n = 3; 13%) coronavirus NL63 (n = 2; 9%) Coronavirus OC43 (n = 1; 4%) Parainfluenza virus 3 (n = 2; 9%) Parainfluenza virus 4 (n = 1; 4%) | qPCR | A total of 88 patients from the Bergen COPD exacerbation study were included, and 23 of those patients (26%) had viral respiratory infections identified via qPCR. |
Camargo et al. [35] | Respiratory syncytial virus (8%) Rhinovirus (4%) Influenza A (3%) Human metapneumovirus (3%) | PCR | Out of 76 patients included in this study, 19 patients (25%) had respiratory viral infections identified via PCR. The four most prevalent isolates are listed. |
Beckham et al. [36] | Picornavirus (n = 22) Coronavirus 229E/OC43 (n = 10) Influenza A/B (n = 3) Parainfluenza virus types 1–3 (n = 3) | RT-PCR | Out of the 96 patients included, 35 patients had a respiratory viral infection identified via PCR. The four most prevalent isolates are listed. |
Ko et al. [37] | Influenza A (7.3%) Coronavirus OC43 (4.6%) Rhinovirus (3.1%) Influenza B (2.7%) Respiratory syncytial virus (2.3%) | PCR | A total of 196 patients were included in this study, which was conducted in Hong Kong; 58 of those patients (22.1%) yielded positive viral PCR results. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenwasser, Y.; Berger, I.; Loewy, Z.G. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022, 11, 1513. https://doi.org/10.3390/pathogens11121513
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens. 2022; 11(12):1513. https://doi.org/10.3390/pathogens11121513
Chicago/Turabian StyleRosenwasser, Yehudis, Irene Berger, and Zvi G. Loewy. 2022. "Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations" Pathogens 11, no. 12: 1513. https://doi.org/10.3390/pathogens11121513
APA StyleRosenwasser, Y., Berger, I., & Loewy, Z. G. (2022). Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens, 11(12), 1513. https://doi.org/10.3390/pathogens11121513