Late Diagnosis of Disseminated Sporothrix brasiliensis Infection with Bone Marrow Involvement in an HIV-Negative Patient
Abstract
:1. Introduction
2. Case Report
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gremião, I.D.F.; Miranda, L.H.M.; Reis, E.G.; Rodrigues, A.M.; Pereira, S.A. Zoonotic Epidemic of Sporotrichosis: Cat to Human Transmission. PLoS Pathog 2017, 13, e1006077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifaz, A.; Tirado-Sánchez, A. Cutaneous Disseminated and Extracutaneous Sporotrichosis: Current Status of a Complex Disease. J. Fungi 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossow, J.A.; Queiroz-Telles, F.; Caceres, D.H.; Beer, K.D.; Jackson, B.R.; Pereira, J.G.; Ferreira Gremião, I.D.; Pereira, S.A. A One Health Approach to Combatting Sporothrix Brasiliensis: Narrative Review of an Emerging Zoonotic Fungal Pathogen in South America. J. Fungi 2020, 6, 247. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Gonçalves, S.S.; de Carvalho, J.A.; Borba-Santos, L.P.; Rozental, S.; de Camargo, Z.P. Current Progress on Epidemiology, Diagnosis, and Treatment of Sporotrichosis and Their Future Trends. J. Fungi 2022, 8, 776. [Google Scholar] [CrossRef] [PubMed]
- Rabello, V.B.S.; Almeida, M.A.; Bernardes-Engemann, A.R.; Almeida-Paes, R.; de Macedo, P.M.; Zancopé-Oliveira, R.M. The Historical Burden of Sporotrichosis in Brazil: A Systematic Review of Cases Reported from 1907 to 2020. Braz. J. Microbiol. 2022, 53, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Telles, F.; Buccheri, R.; Benard, G. Sporotrichosis In Immunocompromised Hosts. J. Fungi 2019, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schechtman, R.C.; Falcão, E.M.M.; Carard, M.; García, M.S.C.; Mercado, D.S.; Hay, R.J. Sporotrichosis: Hyperendemic by Zoonotic Transmission, with Atypical Presentations, Hypersensitivity Reactions and Greater Severity. An. Bras. Dermatol. 2022, 97, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Molecular Diagnosis of Pathogenic Sporothrix Species. PLoS Negl. Tropical Dis. 2015, 9, e0004190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A Multigene Phylogeny of the Gibberella Fujikuroi Species Complex: Detection of Additional Phylogenetically Distinct Species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- CLSI M27-A3—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. Available online: https://webstore.ansi.org/standards/clsi/clsim27a3 (accessed on 5 December 2022).
- Orofino-Costa, R.; Freitas, D.F.S.; Bernardes-Engemann, A.R.; Rodrigues, A.M.; Talhari, C.; Ferraz, C.E.; Veasey, J.V.; Quintella, L.; de Sousa, M.S.L.A.; Vettorato, R.; et al. Human Sporotrichosis: Recommendations from the Brazilian Society of Dermatology for the Clinical, Diagnostic and Therapeutic Management. An. Bras. Dermatol. 2022, 97, 757–777. [Google Scholar] [CrossRef] [PubMed]
- Saeed, L.; Weber, R.J.; Puryear, S.B.; Bahrani, E.; Peluso, M.J.; Babik, J.M.; Haemel, A.; Coates, S.J. Disseminated Cutaneous and Osteoarticular Sporotrichosis Mimicking Pyoderma Gangrenosum. Open Forum Infect. Dis. 2019, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, F.; Jakubovic, H.; Alabdulrazzaq, S.; Alavi, A. A Case of Sporotrichosis Infection Mimicking Pyoderma Gangrenosum and the Role of Tissue Culture in Diagnosis: A Case Report. SAGE Open Med. Case Rep. 2020, 8, 2050313X2091960. [Google Scholar] [CrossRef] [PubMed]
- White, M.; Adams, L.T.; Phan, C.; Erdag, G.; Totten, M.; Lee, R.; Lu, X.; Mehta, S.; Miller, L.S.; Zhang, S.X. Disseminated Sporotrichosis Following Iatrogenic Immunosuppression for Suspected Pyoderma Gangrenosum. Lancet Infect. Dis. 2019, 19, e385–e391. [Google Scholar] [CrossRef] [PubMed]
- Janka, G.E.; Lehmberg, K. Hemophagocytic Syndromes—An Update. Blood Rev. 2014, 28, 135–142. [Google Scholar] [CrossRef] [PubMed]
- George, M. Hemophagocytic Lymphohistiocytosis: Review of Etiologies and Management. J. Blood Med. 2014, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, B.; Caligiorne, R.B.; Coutinho, D.M.; Gomes, R.R.; Rocha-Silva, F.; Machado, A.S.; la Santrer, E.F.R.; Assunção, C.B.; Guimarães, C.F.; Laborne, M.S.; et al. A Case of Disseminated Sporotrichosis Caused by Sporothrix Brasiliensis. Med. Mycol. Case Rep. 2018, 21, 34–36. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.A.; Monteiro, R.C.; Hagen, F.; de Camargo, Z.P.; Rodrigues, A.M. Trends in Molecular Diagnostics and Genotyping Tools Applied for Emerging Sporothrix Species. J. Fungi 2022, 8, 809. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, A.C.P.; de Oliveira, A.L.G.; Guimarães, N.S.; Mendoza, L.; Fujiwara, R.T.; Menezes, C.A.D.S.; Vilela, R.V.R. Serological Tests Using Sporothrix Species Antigens for the Accurate Diagnosis of Sporotrichosis: A Meta-Analysis. Diagn. Microbiol. Infect. Dis. 2020, 98, 115131. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.; Zhang, P.; Bagby, G.; Happel, K.; Raasch, C. Alcohol Abuse, Immunosuppression, and Pulmonary Infection. Curr. Drug Abus. Rev. 2008, 1, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Daoud, A.K.; Tayyar, M.A.; Fouda, I.M.; Harfeil, N.A. Effects of Diabetes Mellitus vs. in Vitro Hyperglycemia on Select Immune Cell Functions. J. Immunotoxicol. 2009, 6, 36–41. [Google Scholar] [CrossRef] [PubMed]
Laboratory Findings | Hospitalization Day | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 8 | 18 | 20 | 22 | 24 | 26 | 28 | 29 | 31 | |
Leukocytes (/mm3) | 4600 | 3770 | 2310 | 1670 | 2730 | 2900 | 2650 | 2230 | 2020 | 1700 |
Young neutrophils (%) | 0 | 0 | 6 | 17 | 8 | 4 | 6 | 8 | 26 | 33 |
Erythrocytes (10⁶/mm3) | 3.38 | 3.16 | 2.86 | 2.64 | 2.54 | 2.5 | 2.71 | 2.83 | 2.66 | 2.71 |
Hemoglobin (g/dL) | 10.5 | 9.7 | 8.7 | 7.8 | 7.7 | 7.5 | 8.3 | 8.6 | 8.3 | 8.2 |
Thrombocyte (/mm3) | 65,000 | 73,000 | 49,000 | 36,000 | 43,000 | 45,000 | 52,000 | 31,000 | 40,000 | 28,000 |
C-reactive protein (mg/L) | 54 | 37.2 | 49.1 | 40 | 47.1 | 31.5 | 33 | 39.5 | NP | 57.9 |
Lactate (mmol/L) | NP | 3 | 1.7 | 1.8 | 2.4 | NP | NP | NP | NP | 3.5 |
Glucose (mg/dL) | 188 | 197 | 124 | 147 | 240 | NP | NP | NP | NP | 71 |
Urea (mg/dL) | 19 | 30 | 39 | 25 | 24 | NP | 25 | NP | NP | 60 |
Creatinine (mg/dL) | 0.48 | 0.31 | 0.34 | 0.37 | 0.43 | NP | 0.45 | NP | NP | 0.77 |
Aspartate aminotransferase (U/L) | 55 | NP | NP | NP | NP | NP | NP | NP | 114 | 118 |
Alanine aminotransferase (U/L) | 36 | NP | NP | NP | NP | NP | NP | NP | 50 | 48 |
Gamma-glutamyl transferase (U/L) | 417 | 417 | NP | NP | NP | NP | NP | NP | NP | NP |
Alkaline phosphatase (U/L) | NP | 223 | NP | NP | NP | NP | NP | NP | NP | NP |
Bilirubin (mg/dL) | 0.75 | NP | NP | NP | NP | NP | 0.79 | NP | 1.04 | 1.8 |
Ferritin (ng/mL) | NP | 422.2 | NP | NP | NP | NP | NP | 294 | NP | NP |
Iron (mcg/dL) | NP | 47 | NP | NP | NP | NP | NP | NP | NP | NP |
Reticulocytes (%) | NP | 5.3 | NP | NP | NP | NP | NP | NP | NP | NP |
Transferrin Saturation Index | NP | 21% | NP | NP | NP | NP | NP | NP | NP | NP |
Albumin g/dL | 3.1 | 2.8 | NP | NP | NP | NP | NP | NP | NP | NP |
Fibrinogen (mg/dL) | NP | NP | NP | NP | NP | NP | NP | 125 | NP | NP |
Blood culture | Negative | NP | NP | Positive * | NP | NP | NP | NP | NP | Negative |
Serum Protein Electrophoresis | |
---|---|
Total proteins g/dL | 6.9 |
Albumin (%) | 34.6 |
Alpha-1 (%) | 5.9 |
Alpha-2(%) | 9.7 |
Beta-1 (%) | 5.5 |
Beta-2 (%) | 7 |
Gamma (%) | 37.3 |
Albumin/globulin ratio (%) | 0.53 |
Monoclonal protein g% | Absent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, V.C.R.; Colombo, S.A.; Freitas, G.J.C.; Moura, A.S.; Vieira, F.C.L.; Lyon, A.C.; Azevedo, M.I.; Peres, N.T.d.A.; Santos, D.A. Late Diagnosis of Disseminated Sporothrix brasiliensis Infection with Bone Marrow Involvement in an HIV-Negative Patient. Pathogens 2022, 11, 1516. https://doi.org/10.3390/pathogens11121516
Magalhães VCR, Colombo SA, Freitas GJC, Moura AS, Vieira FCL, Lyon AC, Azevedo MI, Peres NTdA, Santos DA. Late Diagnosis of Disseminated Sporothrix brasiliensis Infection with Bone Marrow Involvement in an HIV-Negative Patient. Pathogens. 2022; 11(12):1516. https://doi.org/10.3390/pathogens11121516
Chicago/Turabian StyleMagalhães, Vanessa Caroline Randi, Salene Angelini Colombo, Gustavo José Cota Freitas, Alexandre Sampaio Moura, Flávia Cardoso Lopez Vieira, Ana Cláudia Lyon, Maria Isabel Azevedo, Nalu Teixeira de Aguiar Peres, and Daniel Assis Santos. 2022. "Late Diagnosis of Disseminated Sporothrix brasiliensis Infection with Bone Marrow Involvement in an HIV-Negative Patient" Pathogens 11, no. 12: 1516. https://doi.org/10.3390/pathogens11121516
APA StyleMagalhães, V. C. R., Colombo, S. A., Freitas, G. J. C., Moura, A. S., Vieira, F. C. L., Lyon, A. C., Azevedo, M. I., Peres, N. T. d. A., & Santos, D. A. (2022). Late Diagnosis of Disseminated Sporothrix brasiliensis Infection with Bone Marrow Involvement in an HIV-Negative Patient. Pathogens, 11(12), 1516. https://doi.org/10.3390/pathogens11121516