Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort
Abstract
:1. Introduction
2. Uniqueness of the Irish Anti-D Cohort
3. What Has Been Learned from the Irish HCV Anti-D Cohort?
Study Type | Major Research Findings |
---|---|
Clinical and Molecular Epidemiology | The HCV sequence in Irish anti-D Ig recipients arose from a single strain, distinct from circulating HCV strains in Ireland, confirming single-source outbreaks due to the use of contaminated blood in the preparation of anti-D Ig [11,18]. |
The development of liver pathology and HCV disease progression is slow in the absence of additional lifestyle risk factors [8,19]. | |
There is a low risk of transmission to children born around the time of their mother’s infection, but transmission to other family contacts is less likely [20]. | |
Viral Genetics | Immune pressure is the dominant driver of viral evolution early in infection, while evolution towards a consensus ancestor sequence (with higher fitness) is dominant in the late stages of chronic infection [21]. |
The major HCV genotypes were estimated to have diverged between 500–2000 years ago, requiring the on-going transmission of HCV in historical human populations [22]. | |
Evasion of host immune pressure comes at a significant cost to viral fitness, and following transmission events the virus reverts to a consensus sequence with higher fitness [23]. | |
Infection and Immunity | The HLA-DRB1*01, -DQB1*0501, -DRB1*0401, HLA-DRB1*15, -A*03, -B*27, and -Cw*01 alleles are associated with spontaneous resolution of HCV infection [24,25]. |
Immune pressure requires both a protective host HLA allele and a specific viral immunodominant epitope—the HLA-B*27 allele is only protective in genotype 1 HCV infection and is neutral when the infectious strain harbours escape variants [26,27,28]. | |
Polymorphisms in innate immune genes (IFNL3, KIR2DS3, and IFIH1) are associated with the spontaneous resolution of HCV infection [29,30]. |
4. Clinical and Molecular Epidemiology Studies
5. Viral Genome Evolution Studies
6. Infection and Immunity Studies
7. Viral Resistance in Other Cohorts: What Has Been Learned and What Are the Opportunities?
Route of Exposure | Mechanisms of Resistance |
---|---|
Blood Transfusion | NK cell counts were reported to be increased, alongside an increase in NK cell functionality and increased NKp30, NKp80, and KIR2DL3 expression on both NK cell subsets. In response to IL-2, NK cells from ESNs have increased levels of cytotoxicity. Some reports of detectable IFNγ ELISpots in response to HCV peptides [49]. |
No enrichment for SNPs in HCV entry receptors in ESNs [65]. | |
Occupational Exposure | ESNs following needle stick injury had early NKT activation and increased serum cytokine responses. ESNs also had increased CD122, NKp44, NKp46, and NKG2A expression, cytotoxicity, and IFNγ production. This robust response correlated with a strong HCV-specific T cell response [66]. |
ESNs following needle stick injury in Germany had robust CD4+ T-cell response to HCV [68]. | |
Robust anti-HCV T-cell response also noted in needle stick injury ESN individuals as measured by ELISpot for IFNγ [66]. | |
People Who Inject Drugs | ESNs had distinct lipidomic profiles compared to HCV-susceptible individuals [69]. |
ESNs had increased counts of CD69 + CD56dim NK cells and an increased number of NKp30+ CD56bleft CD16+ NKs with greater IFNγ production, but less CD107a expression. ESNs had no difference in their ELISpot responses compared to CIs. There was no association between IL28B, HLA-C, or KIR2DL3 and resistance to HCV infection [50,70]. | |
PWID ESNs had robust HCV-specific T-cell responses as measured by ELISpot [52,54,56]. | |
ESNs had increased KIR2DL3 + NKG2A- NK cells compared to controls, CIs and SRs. These NKs are not inhibited by HLA-E ligation and therefore produce greater IFNγ in response to stimulation [57]. | |
The 1188A/C polymorphism of IL-12B, C allele, and CC genotype are associated with HCV resistance [58]. | |
Claudin-6 and occludin variants were found in an ESN individual but were not sufficient for resistance in vitro. CD81 appears to be very highly conserved with no genetic alterations found in a study of ESNs cases [62,63,64]. | |
The IL28B genotype rs12979860 CC is not associated with resistance to HCV, but ESNs have higher homozygosity for KIR2DL3 HLA-C-1 [53,58]. | |
Increased IL-6, IL-8, and TNFα in the ESNs compared with controls, Cis, and SRs [49]. | |
Enhanced IFNγ, TNFα production, and degranulation by CD56dim NK cell subsets from ESNs [60]. No baseline differences in NK cells from ESN, SRs, and HCV CIs in Canadian IVDUs [53]. | |
Anti-D Cohorts | Decreased monocyte counts in ESNs. Increased IL-8 and IL-18 in ESNs. Enhanced NK cell function—greater IFNγ production [67]. |
No significant increase in NKp30, or changes in CD56bleft or CD56dim NK cell counts. No difference in degranulation, but CD56dim NK cells produced more IFNγ when stimulated [67]. |
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hajarizadeh, B.; Grebely, J.; Dore, G.J. Epidemiology and Natural History of HCV Infection. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Houghton, M. The Long and Winding Road Leading to the Identification of the Hepatitis C Virus. J. Hepatol. 2009, 51, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Choo, Q.L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a CDNA Clone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome. Science 1989, 244, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauri, A.M.; Armstrong, G.L.; Hutin, Y.J.F. The Global Burden of Disease Attributable to Contaminated Injections given in Health Care Settings. Int. J. STD AIDS 2004, 15, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hatia, R.I.; Dimitrova, Z.; Skums, P.; Teo, E.Y.-L.; Teo, C.-G. Nosocomial Hepatitis C Virus Transmission from Tampering with Injectable Anesthetic Opioids. Hepatology 2015, 62, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.J.; Ward, J.W. Hepatitis C in Injection-Drug Users—A Hidden Danger of the Opioid Epidemic. N. Engl. J. Med. 2018, 378, 1169–1171. [Google Scholar] [CrossRef]
- Llibre, A.; Shimakawa, Y.; Mottez, E.; Ainsworth, S.; Buivan, T.-P.; Firth, R.; Harrison, E.; Rosenberg, A.R.; Meritet, J.-F.; Fontanet, A.; et al. Development and Clinical Validation of the Genedrive Point-of-Care Test for Qualitative Detection of Hepatitis C Virus. Gut 2018, 67, 2017–2024. [Google Scholar] [CrossRef] [Green Version]
- Marcellin, P. Hepatitis C: The clinical spectrum of the disease. J. Hepatol. 1999, 31, 9–16. [Google Scholar] [CrossRef]
- Meisel, H.; Reip, A.; Faltus, B.; Lu, M.; Porst, H.; Wiese, M.; Roggendorf, M.; Krüger, D.H. Transmission of Hepatitis C Virus to Children and Husbands by Women Infected with Contaminated Anti-D Immunoglobulin. Lancet 1995, 345, 1209–1211. [Google Scholar] [CrossRef]
- Finlay, T.A. Report of the Tribunal of Inquiry into the Blood Transfusion Service Board (11.8 MB); The Stationery Office: Dublin, Ireland, 1997. [Google Scholar]
- Smith, D.B.; Lawlor, E.; Power, J.; O’Riordan, J.; McAllister, J.; Lycett, C.; Davidson, F.; Pathirana, S.; Garson, J.A.; Tedder, R.S.; et al. A Second Outbreak of Hepatitis C Virus Infection from Anti-D Immunoglobulin in Ireland. Vox Sang. 1999, 76, 175–180. [Google Scholar] [CrossRef]
- Power, J.P.; Lawlor, E.; Davidson, F.; Yap, P.L.; Kenny-Walsh, E.; Whelton, M.J.; Walsh, T.J. Hepatitis C Viraemia in Recipients of Irish Intravenous Anti-D Immunoglobulin. Lancet 1994, 344, 1166–1167. [Google Scholar] [CrossRef]
- Urbaniak, S.J.; Greiss, M.A. RhD Haemolytic Disease of the Fetus and the Newborn. Blood Rev. 2000, 14, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Sulmasy, D.P. Are SARS-CoV-2 Human Challenge Trials Ethical? JAMA Intern. Med. 2021, 181, 1031–1032. [Google Scholar] [CrossRef]
- Garvey, P.; Murphy, N.; Flanagan, P.; Brennan, A.; Courtney, G.; Crosbie, O.; Crowe, J.; Hegarty, J.; Lee, J.; McIver, M.; et al. Disease Outcomes in a Cohort of Women in Ireland Infected by Hepatitis C-Contaminated Anti-D Immunoglobulin during 1970s. J. Hepatol. 2017, 67, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, E.; Power, J.; Garson, J.; Yap, P.; Davidson, F.; Columb, G.; Smith, D.; Pomeroy, L.; O’Riordan, J.; Simmonds, P.; et al. Transmission Rates of Hepatitis C Virus by Different Batches of a Contaminated Anti-D Immunoglobulin Preparation. Vox Sang. 1999, 76, 138–143. [Google Scholar] [CrossRef] [PubMed]
- National Hepatitis C Database for Infection Acquired through Blood and Blood Products: 2012 Report; Health Protection Surveillance Centre: Dublin, Ireland, 2012.
- Power, J.P.; Davidson, F.; O’Riordan, J.; Simmonds, P.; Yap, P.L.; Lawlor, E. Hepatitis C Infection from Anti-D Immunoglobulin. Lancet 1995, 346, 372–373. [Google Scholar] [PubMed]
- Sheehan, M.M.; Doyle, C.T.; Whelton, M.; Kenny-Walsh, E. Hepatitis C Virus Liver Disease in Women Infected with Contaminated Anti-D Immunoglobulin. Histopathology 1997, 30, 512–517. [Google Scholar] [CrossRef]
- Power, J.P.; Lawlor, E.; Davidson, F.; Holmes, E.C.; Yap, P.L.; Simmonds, P. Molecular Epidemiology of an Outbreak of Infection with Hepatitis C Virus in Recipients of Anti-D Immunoglobulin. Lancet 1995, 345, 1211–1213. [Google Scholar] [CrossRef]
- Bailey, J.R.; Laskey, S.; Wasilewski, L.N.; Munshaw, S.; Fanning, L.J.; Kenny-Walsh, E.; Ray, S.C. Constraints on Viral Evolution during Chronic Hepatitis C Virus Infection Arising from a Common-Source Exposure. J. Virol. 2012, 86, 12582–12590. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.B.; Pathirana, S.; Davidson, F.; Lawlor, E.; Power, J.; Yap, P.L.; Simmonds, P. The Origin of Hepatitis C Virus Genotypes. J. Gen. Virol. 1997, 78 Pt 2, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.C.; Fanning, L.; Wang, X.-H.; Netski, D.M.; Kenny-Walsh, E.; Thomas, D.L. Divergent and Convergent Evolution after a Common-Source Outbreak of Hepatitis C Virus. J. Exp. Med. 2005, 201, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, S.; Ryan, E.; Crowe, J. Association of the HLA-DRB1*01 Allele with Spontaneous Viral Clearance in an Irish Cohort Infected with Hepatitis C Virus via Contaminated Anti-D Immunoglobulin. J. Hepatol. 1999, 30, 979–983. [Google Scholar] [CrossRef]
- McKiernan, S.M.; Hagan, R.; Curry, M.; McDonald, G.S.; Nolan, N.; Crowley, J.; Hegarty, J.; Lawlor, E.; Kelleher, D. The MHC Is a Major Determinant of Viral Status, but Not Fibrotic Stage, in Individuals Infected with Hepatitis C. Gastroenterology 2000, 118, 1124–1130. [Google Scholar] [CrossRef]
- Dazert, E.; Neumann-Haefelin, C.; Bressanelli, S.; Fitzmaurice, K.; Kort, J.; Timm, J.; McKiernan, S.; Kelleher, D.; Gruener, N.; Tavis, J.E.; et al. Loss of Viral Fitness and Cross-Recognition by CD8+ T Cells Limit HCV Escape from a Protective HLA-B27-Restricted Human Immune Response. J. Clin. Investig. 2009, 119, 376–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann-Haefelin, C.; Timm, J.; Schmidt, J.; Kersting, N.; Fitzmaurice, K.; Oniangue-Ndza, C.; Kemper, M.N.; Humphreys, I.; McKiernan, S.; Kelleher, D.; et al. Protective Effect of Human Leukocyte Antigen B27 in Hepatitis C Virus Infection Requires the Presence of a Genotype-Specific Immunodominant CD8+ T-Cell Epitope. Hepatology 2010, 51, 54–62. [Google Scholar] [CrossRef]
- Ziegler, S.; Ruhl, M.; Tenckhoff, H.; Wiese, M.; Heinemann, F.M.; Horn, P.A.; Spengler, U.; Neumann-Haefelin, C.; Nattermann, J.; Timm, J. Susceptibility to Chronic Hepatitis C Virus Infection Is Influenced by Sequence Differences in Immunodominant CD8+ T Cell Epitopes. J. Hepatol. 2013, 58, 24–30. [Google Scholar] [CrossRef]
- Dring, M.M.; Morrison, M.H.; McSharry, B.P.; Guinan, K.J.; Hagan, R.; O’Farrelly, C.; Gardiner, C.M. Innate Immune Genes Synergize to Predict Increased Risk of Chronic Disease in Hepatitis C Virus Infection. Proc. Natl. Acad. Sci. USA 2011, 108, 5736–5741. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, F.S.; Schmidt, A.; Dittmann Chevillotte, M.; Wisskirchen, C.; Hellmuth, J.; Willms, S.; Gilmore, R.H.; Glas, J.; Folwaczny, M.; Müller, T.; et al. Polymorphisms in Melanoma Differentiation-Associated Gene 5 Link Protein Function to Clearance of Hepatitis C Virus. Hepatology 2015, 61, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S.; Kieran, N.; Ryan, E.; O’keane, J.C.; Crowe, J. Intrahepatic Hepatitis C Viral RNA Status of Serum Polymerase Chain Reaction-Negative Individuals with Histological Changes on Liver Biopsy. Hepatology 2001, 33, 1496–1502. [Google Scholar] [CrossRef]
- Barrett, S.; Goh, J.; Coughlan, B.; Ryan, E.; Stewart, S.; Cockram, A.; O’Keane, J.C.; Crowe, J. The Natural Course of Hepatitis C Virus Infection after 22 Years in a Unique Homogenous Cohort: Spontaneous Viral Clearance and Chronic HCV Infection. Gut 2001, 49, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Kay, E.W.; O’Dowd, J.; Thomas, R.; Alyusuf, R.; Sachithanandan, S.; Robinson, R.; Walsh, C.B.; Fielding, J.F.; Leader, M.B. Mild Abnormalities in Liver Histology Associated with Chronic Hepatitis: Distinction from Normal Liver Histology. J. Clin. Pathol. 1997, 50, 929–931. [Google Scholar] [CrossRef]
- Kenny-Walsh, E. Clinical Outcomes after Hepatitis C Infection from Contaminated Anti-D Immune Globulin. Irish Hepatology Research Group. N. Engl. J. Med. 1999, 340, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Bakr, I.; Rekacewicz, C.; El Hosseiny, M.; Ismail, S.; El Daly, M.; El-Kafrawy, S.; Esmat, G.; Hamid, M.A.; Mohamed, M.K.; Fontanet, A. Higher Clearance of Hepatitis C Virus Infection in Females Compared with Males. Gut 2006, 55, 1183–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, R.R.; Parker, J.; Lemey, P.; Salemi, M.; Katzourakis, A.; Pybus, O.G. The Mode and Tempo of Hepatitis C Virus Evolution within and among Hosts. BMC Evol. Biol. 2011, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- McAllister, J.; Casino, C.; Davidson, F.; Power, J.; Lawlor, E.; Yap, P.L.; Simmonds, P.; Smith, D.B. Long-Term Evolution of the Hypervariable Region of Hepatitis C Virus in a Common-Source-Infected Cohort. J. Virol. 1998, 72, 4893–4905. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Aranday-Cortes, E.; Ip, C.L.C.; da Silva Filipe, A.; Lau, S.H.; Bamford, C.; Bonsall, D.; Trebes, A.; Piazza, P.; Sreenu, V.; et al. Interferon Lambda 4 Impacts the Genetic Diversity of Hepatitis C Virus. eLife 2019, 8, e42463. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.J.; Stevenson, N.J.; Hegarty, J.E.; O’Farrelly, C. Chronic Hepatitis C Infection Blocks the Ability of Dendritic Cells to Secrete IFN-α and Stimulate T-Cell Proliferation. J. Viral Hepat. 2011, 18, 840–851. [Google Scholar] [CrossRef]
- Golden-Mason, L.; Madrigal-Estebas, L.; McGrath, E.; Conroy, M.J.; Ryan, E.J.; Hegarty, J.E.; O’Farrelly, C.; Doherty, D.G. Altered Natural Killer Cell Subset Distributions in Resolved and Persistent Hepatitis C Virus Infection Following Single Source Exposure. Gut 2008, 57, 1121–1128. [Google Scholar] [CrossRef]
- Curry, M.P.; Golden-Mason, L.; Nolan, N.; Parfrey, N.A.; Hegarty, J.E.; O’Farrelly, C. Expansion of Peripheral Blood CD5+ B Cells Is Associated with Mild Disease in Chronic Hepatitis C Virus Infection. J. Hepatol. 2000, 32, 121–125. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Duffy, M.; Brady, M.T.; McKiernan, S.; Hall, W.; Hegarty, J.; Curry, M.; Mills, K.H.G. CD4 T Helper Type 1 and Regulatory T Cells Induced against the Same Epitopes on the Core Protein in Hepatitis C Virus-Infected Persons. J. Infect. Dis. 2002, 185, 720–727. [Google Scholar] [CrossRef]
- Rowan, A.G.; Fletcher, J.M.; Ryan, E.J.; Moran, B.; Hegarty, J.E.; O’Farrelly, C.; Mills, K.H.G. Hepatitis C Virus-Specific Th17 Cells Are Suppressed by Virus-Induced TGF-Beta. J. Immunol. 2008, 181, 4485–4494. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, N.J.; Bourke, N.M.; Ryan, E.J.; Binder, M.; Fanning, L.; Johnston, J.A.; Hegarty, J.E.; Long, A.; O’Farrelly, C. Hepatitis C Virus Targets the Interferon-α JAK/STAT Pathway by Promoting Proteasomal Degradation in Immune Cells and Hepatocytes. FEBS Lett. 2013, 587, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKiernan, S.M.; Hagan, R.; Curry, M.; McDonald, G.S.A.; Kelly, A.; Nolan, N.; Walsh, A.; Hegarty, J.; Lawlor, E.; Kelleher, D. Distinct MHC Class I and II Alleles Are Associated with Hepatitis C Viral Clearance, Originating from a Single Source. Hepatology 2004, 40, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Nitschke K, Luxenburger H, Kiraithe M, M, Thimme R, Neumann-Haefelin C: CD8+ T-Cell Responses in Hepatitis B and C: The (HLA-) A, B, and C of Hepatitis B and C. Dig. Dis. 2016, 34, 396–409. [CrossRef]
- Fitzmaurice, K.; Petrovic, D.; Ramamurthy, N.; Simmons, R.; Merani, S.; Gaudieri, S.; Sims, S.; Dempsey, E.; Freitas, E.; Lea, S.; et al. Molecular Footprints Reveal the Impact of the Protective HLA-A*03 Allele in Hepatitis C Virus Infection. Gut 2011, 60, 1563–1571. [Google Scholar] [CrossRef] [Green Version]
- Merani, S.; Petrovic, D.; James, I.; Chopra, A.; Cooper, D.; Freitas, E.; Rauch, A.; di Iulio, J.; John, M.; Lucas, M.; et al. Effect of Immune Pressure on Hepatitis C Virus Evolution: Insights from a Single-Source Outbreak. Hepatology 2011, 53, 396–405. [Google Scholar] [CrossRef]
- Shawa, I.T.; Felmlee, D.J.; Hegazy, D.; Sheridan, D.A.; Cramp, M.E. Exploration of Potential Mechanisms of Hepatitis C Virus Resistance in Exposed Uninfected Intravenous Drug Users. J. Viral Hepat. 2017, 24, 1082–1088. [Google Scholar] [CrossRef]
- Sugden, P.B.; Cameron, B.; Mina, M.; Lloyd, A.R. Protection against Hepatitis C Infection via NK Cells in Highly-Exposed Uninfected Injecting Drug Users. J. Hepatol. 2014, 61, 738–745. [Google Scholar] [CrossRef]
- Ow, M.M.; Hegazy, D.; Warshow, U.M.; Cramp, M.E. Enhanced Natural Killer Cell Activity Is Found in Exposed Uninfected Recipients of Hepatitis C-Contaminated Blood. J. Viral Hepat. 2018, 25, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.J.; Ffrench, R.A.; Post, J.J.; Harvey, C.E.; Gilmour, S.J.; White, P.A.; Marinos, G.; van Beek, I.; Rawlinson, W.D.; Lloyd, A.R. Prevalence of Production of Virus-Specific Interferon-γ among Seronegative Hepatitis C-Resistant Subjects Reporting Injection Drug Use. J. Infect. Dis. 2004, 190, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.; Drouin, C.; Bédard, N.; Khakoo, S.I.; Bruneau, J.; Shoukry, N.H. Increased Degranulation of Natural Killer Cells during Acute HCV Correlates with the Magnitude of Virus-Specific T Cell Responses. J. Hepatol. 2010, 53, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizukoshi, E.; Eisenbach, C.; Edlin, B.R.; Newton, K.P.; Raghuraman, S.; Weiler-Normann, C.; Tobler, L.H.; Busch, M.P.; Carrington, M.; McKeating, J.A.; et al. Hepatitis C Virus (HCV)-Specific Immune Responses of Long-Term Injection Drug Users Frequently Exposed to HCV. J. Infect. Dis. 2008, 198, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Zeremski, M.; Shu, M.A.; Brown, Q.; Wu, Y.; Des Jarlais, D.C.; Busch, M.P.; Talal, A.H.; Edlin, B.R. Hepatitis C Virus-Specific T-Cell Immune Responses in Seronegative Injection Drug Users. J. Viral Hepat. 2009, 16, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Thurairajah, P.H.; Hegazy, D.; Chokshi, S.; Shaw, S.; Demaine, A.; Kaminski, E.R.; Naoumov, N.V.; Cramp, M.E. Hepatitis C Virus (HCV)-Specific T Cell Responses in Injection Drug Users with Apparent Resistance to HCV Infection. J. Infect. Dis. 2008, 198, 1749–1755. [Google Scholar] [CrossRef] [Green Version]
- Thoens, C.; Berger, C.; Trippler, M.; Siemann, H.; Lutterbeck, M.; Broering, R.; Schlaak, J.; Heinemann, F.M.; Heinold, A.; Nattermann, J.; et al. KIR2DL3+NKG2A− Natural Killer Cells Are Associated with Protection from Productive Hepatitis C Virus Infection in People Who Inject Drugs. J. Hepatol. 2014, 61, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Knapp, S.; Warshow, U.; Ho, K.M.A.; Hegazy, D.; Little, A.; Fowell, A.; Alexander, G.; Thursz, M.; Cramp, M.; Khakoo, S.I. A Polymorphism in IL28B Distinguishes Exposed, Uninfected Individuals From Spontaneous Resolvers of HCV Infection. Gastroenterology 2011, 141, 320–325.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, D.; Thurairajah, P.; Metzner, M.; Houldsworth, A.; Shaw, S.; Kaminski, E.; Demaine, A.G.; Cramp, M.E. Interleukin 12B Gene Polymorphism and Apparent Resistance to Hepatitis C Virus Infection. Clin. Exp. Immunol. 2008, 152, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.M.; Luciani, F.; Cameron, B.; Bull, R.A.; Beard, M.R.; Booth, D.; Lloyd, A.R. Resistance to Hepatitis C Virus: Potential Genetic and Immunological Determinants. Lancet Infect. Dis. 2015, 15, 451–460. [Google Scholar] [CrossRef]
- Gupta, R.K.; Abdul-Jawad, S.; McCoy, L.E.; Mok, H.P.; Peppa, D.; Salgado, M.; Martinez-Picado, J.; Nijhuis, M.; Wensing, A.M.J.; Lee, H.; et al. HIV-1 Remission Following CCR5Δ32/Δ32 Haematopoietic Stem-Cell Transplantation. Nature 2019, 568, 244–248. [Google Scholar] [CrossRef]
- Houldsworth, A.; Metzner, M.M.; Demaine, A.; Hodgkinson, A.; Kaminski, E.; Cramp, M. CD81 Sequence and Susceptibility to Hepatitis C Infection. J. Med. Virol. 2014, 86, 162–168. [Google Scholar] [CrossRef]
- Fouquet, B.; Ghosn, J.; Quertainmont, Y.; Salmon, D.; Rioux, C.; Duvivier, C.; Delfraissy, J.-F.; Misrahi, M. Identification of Variants of Hepatitis C Virus (HCV) Entry Factors in Patients Highly Exposed to HCV but Remaining Uninfected: An ANRS Case-Control Study. PLoS ONE 2015, 10, e0142698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fénéant, L.; Ghosn, J.; Fouquet, B.; Helle, F.; Belouzard, S.; Vausselin, T.; Séron, K.; Delfraissy, J.-F.; Dubuisson, J.; Misrahi, M.; et al. Claudin-6 and Occludin Natural Variants Found in a Patient Highly Exposed but Not Infected with Hepatitis C Virus (HCV) Do Not Confer HCV Resistance In Vitro. PLoS ONE 2015, 10, e0142539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felmlee, D.P.S. of M. and D. Seeking Genetic Determinants of Resistance to Hepatitis C Virus Infection in a Highly Resistant Cohort. J. Hepatol. 2018, 11, 124. [Google Scholar] [CrossRef]
- Heller, T.; Werner, J.M.; Rahman, F.; Mizukoshi, E.; Sobao, Y.; Gordon, A.M.; Sheets, A.; Sherker, A.H.; Kessler, E.; Bean, K.S.; et al. Occupational Exposure to Hepatitis C Virus: Early T-Cell Responses in the Absence of Seroconversion in a Longitudinal Cohort Study. J. Infect. Dis. 2013, 208, 1020–1025. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.W.; Keane, C.; Needham, M.; Roche, G.; Wallace, E.; Connell, J.; de Gascun, C.F.; Naik, A.; Fanning, L.J.; Gardiner, C.; et al. Enhanced Cytokine Responsiveness in Natural Killer Cells from a Pilot Cohort of Uninfected Seronegative Women Exposed to Hepatitis C Virus Contaminated Anti-D Immunoglobulin. bioRxiv 2019, 13, 747436. [Google Scholar] [CrossRef]
- Ravens, S.; Hengst, J.; Schlapphoff, V.; Deterding, K.; Dhingra, A.; Schultze-Florey, C.; Koenecke, C.; Cornberg, M.; Wedemeyer, H.; Prinz, I. Human Γδ T Cell Receptor Repertoires in Peripheral Blood Remain Stable Despite Clearance of Persistent Hepatitis C Virus Infection by Direct-Acting Antiviral Drug Therapy. Front. Immunol. 2018, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Shawa, I.T.; Sheridan, D.A.; Felmlee, D.J.; Cramp, M.E. Lipid Interactions Influence Hepatitis C Virus Susceptibility and Resistance to Infection. Clin. Liver Dis. 2017, 10, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Golden-Mason, L.; Cox, A.L.; Randall, J.A.; Cheng, L.; Rosen, H.R. Increased Natural Killer Cell Cytotoxicity and NKp30 Expression Protects against Hepatitis C Virus Infection in High-Risk Individuals and Inhibits Replication in Vitro. Hepatology 2010, 52, 1581–1589. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L. Sex Influences Immune Responses to Viruses, and Efficacy of Prophylaxis and Treatments for Viral Diseases. Bioessays 2012, 34, 1050–1059. [Google Scholar] [CrossRef] [Green Version]
- Sugrue, J.A.; Bourke, N.M.; O’Farrelly, C. Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Front. Immunol. 2021, 12, 757249. [Google Scholar] [CrossRef]
- Micallef, J.M.; Kaldor, J.M.; Dore, G.J. Spontaneous Viral Clearance Following Acute Hepatitis C Infection: A Systematic Review of Longitudinal Studies. J. Viral Hepat. 2006, 13, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Grebely, J.; Page, K.; Sacks-Davis, R.; van der Loeff, M.S.; Rice, T.M.; Bruneau, J.; Morris, M.D.; Hajarizadeh, B.; Amin, J.; Cox, A.L.; et al. The Effects of Female Sex, Viral Genotype, and IL28B Genotype on Spontaneous Clearance of Acute Hepatitis C Virus Infection. Hepatology 2014, 59, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Kohara, M.; Tanaka, T.; Tsukiyama-Kohara, K.; Tanaka, S.; Mizokami, M.; Lau, J.Y.; Hattori, N. Hepatitis C Virus Genotypes 1 and 2 Respond to Interferon-Alpha with Different Virologic Kinetics. J. Infect. Dis. 1995, 172, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.; Mondelli, M.U. Hepatitis C: Is Eradication Possible? Liver Int. Off. J. Int. Assoc. Study Liver 2019, 39, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Hamdane, N.; Jühling, F.; Crouchet, E.; El Saghire, H.; Thumann, C.; Oudot, M.A.; Bandiera, S.; Saviano, A.; Ponsolles, C.; Roca Suarez, A.A.; et al. HCV-Induced Epigenetic Changes Associated With Liver Cancer Risk Persist After Sustained Virologic Response. Gastroenterology 2019, 156, 2313–2329.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jühling, F.; Hamdane, N.; Crouchet, E.; Li, S.; El Saghire, H.; Mukherji, A.; Fujiwara, N.; Oudot, M.A.; Thumann, C.; Saviano, A.; et al. Targeting Clinical Epigenetic Reprogramming for Chemoprevention of Metabolic and Viral Hepatocellular Carcinoma. Gut 2021, 70, 157–169. [Google Scholar] [CrossRef]
- Khera, T.; Du, Y.; Todt, D.; Deterding, K.; Strunz, B.; Hardtke, S.; Aregay, A.; Port, K.; Hardtke-Wolenski, M.; Steinmann, E.; et al. Long-Lasting Imprint in the Soluble Inflammatory Milieu despite Early Treatment of Acute Symptomatic Hepatitis C. J. Infect. Dis. 2021, 12, jiab048. [Google Scholar] [CrossRef]
- Strunz, B.; Hengst, J.; Deterding, K.; Manns, M.P.; Cornberg, M.; Ljunggren, H.-G.; Wedemeyer, H.; Björkström, N.K. Chronic Hepatitis C Virus Infection Irreversibly Impacts Human Natural Killer Cell Repertoire Diversity. Nat. Commun. 2018, 9, 2275. [Google Scholar] [CrossRef]
Details | 1977–1979 Outbreak |
---|---|
No. of contaminated batches | 12 (4062 vials) |
No. of high-risk batches (>30% Ab+) | 6 |
Genotype of HCV involved | 1b |
No. of chronically infected women from HR batches | 356 |
No. of spontaneous resolvers from HR batches | 326 |
No. of potentially resistant (ESN) women from HR batches | 611 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugrue, J.A.; O’Farrelly, C. Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens 2022, 11, 306. https://doi.org/10.3390/pathogens11030306
Sugrue JA, O’Farrelly C. Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens. 2022; 11(3):306. https://doi.org/10.3390/pathogens11030306
Chicago/Turabian StyleSugrue, Jamie A., and Cliona O’Farrelly. 2022. "Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort" Pathogens 11, no. 3: 306. https://doi.org/10.3390/pathogens11030306
APA StyleSugrue, J. A., & O’Farrelly, C. (2022). Uncovering Resistance to Hepatitis C Virus Infection: Scientific Contributions and Unanswered Questions in the Irish Anti-D Cohort. Pathogens, 11(3), 306. https://doi.org/10.3390/pathogens11030306