Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France
Abstract
:1. Introduction
2. Results
2.1. Bacterial Species
2.2. ESBL-Producing Enterobacterales (ESBL-E)
2.3. Resistance to β-Lactams
2.4. Resistance to Other Classes of Antibiotics
2.5. Associated Resistance
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Larramendy, S.; Gaultier, A.; Fournier, J.P.; Caillon, J.; Moret, L.; Beaudeau, F. Local characteristics associated with higher prevalence of ESBL-producing Escherichia coli in community-acquired urinary tract infections: An observational, cross-sectional study. J. Antimicrob. Chemother. 2021, 76, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, N.P.; Maharjan, P.; Parajuli, H.; Joshi, G.; Paudel, D.; Sayami, S.; Khanal, P.R. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal. Antimicrob. Resist. Infect. 2017, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flokas, M.E.; Alevizakos, M.; Shehadeh, F.; Andreatos, N.; Mylonakis, E. Extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in long-term care facilities: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 649–656. [Google Scholar] [CrossRef]
- Kang, C.-I.; Kim, J.; Park, D.W.; Kim, B.-N.; Ha, U.-S.; Lee, S.-J.; Yeo, J.K.; Min, S.K.; Lee, H.; Wie, S.-H. Clinical Practice Guidelines for the Antibiotic Treatment of Community-Acquired Urinary Tract Infections. Infect. Chemother. 2018, 50, 67. [Google Scholar] [CrossRef]
- Caron, F.; Galperine, T.; Flateau, C.; Azria, R.; Bonacorsi, S.; Bruyère, F.; Cariou, G.; Clouqueur, E.; Cohen, R.; Doco-Lecompte, T.; et al. Practice guidelines for the management of adult community-acquired urinary tract infections. Med. Mal. Infect. 2018, 48, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Magliano, E.; Grazioli, V.; Deflorio, L.; Leuci, A.I.; Mattina, R.; Romano, P.; Cocuzza, C.E. Gender and age-dependent etiology of community-acquired urinary tract infections. Sci. World J. 2012, 2012, 349597. [Google Scholar] [CrossRef] [Green Version]
- Maraki, S.; Mantadakis, E.; Michailidis, L.; Samonis, G. Changing antibiotic susceptibilities of community-acquired uropathogens in Greece, 2005–2010. J. Microbiol. Immunol. Infect. 2013, 46, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soubra, L.; Kabbani, S.; Anwar, M.F.; Dbouk, R. Spectrum and patterns of antimicrobial resistance of uropathogens isolated from a sample of hospitalised Lebanese patients with urinary tract infections. J. Glob. Antimicrob. Resist. 2014, 2, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Larramendy, S.; Deglaire, V.; Dusollier, P.; Fournier, J.-P.; Caillon, J.; Beaudeau, F.; Moret, L. Risk Factors of Extended-Spectrum Beta-Lactamases-Producing Escherichia coli Community Acquired Urinary Tract Infections: A Systematic Review. Infect. Drug Resist. 2020, 13, 3945–3955. [Google Scholar] [CrossRef] [PubMed]
- Søraas, A.; Sundsfjord, A.; Sandven, I.; Brunborg, C.; Jenum, P.A. Risk Factors for Community-Acquired Urinary Tract Infections Caused by ESBL-Producing Enterobacteriaceae—A Case-Control Study in a Low Prevalence Country. PLoS ONE 2013, 8, e69581. [Google Scholar] [CrossRef] [Green Version]
- Gundogan, N. Encyclopedia of Food Microbiology|ScienceDirect. Available online: https://www.sciencedirect.com/referencework/9780123847331/encyclopedia-of-food-microbiology (accessed on 3 October 2021).
- Martin, D.; Fougnot, S.; Grobost, F.; Thibaut-Jovelin, S.; Ballereau, F.; Gueudet, T.; de Mouy, D.; Robert, J. Prevalence of extended-spectrum beta-lactamase producing Escherichia coli in community-onset urinary tract infections in France in 2013. J. Infect. 2016, 72, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senard, O.; Lafaurie, M.; Lesprit, P.; Nguyen, Y.; Lescure, X.; Therby, A.; Fihman, V.; Oubaya, N.; Lepeule, R. Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase–producing Escherichia coli: A multicenter retrospective cohort study with propensity score analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Demonchy, E.; Courjon, J.; Ughetto, E.; Durand, M.; Risso, K.; Garraffo, R.; Roger, P.M. Cefoxitin-based antibiotic therapy for extended-spectrum β-lactamase-producing Enterobacteriaceae prostatitis: A prospective pilot study. Int. J. Antimicrob. Agents 2018, 51, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Farfour, E.; Larbi, A.-G.S.; Cattoir, V.; Corvec, S.; Guillard, T.; Grillon, A.; Isnard, C.; Mérens, A.; Degand, N.; Billard-Pomares, T.; et al. Temocillin susceptibility among Enterobacterales isolates recovered from blood culture in France. Diagn. Microbiol. Infect. Dis. 2021, 100, 115368. [Google Scholar] [CrossRef]
- Giske, C.G. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin. Microbiol. Infect. 2015, 21, 899–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colomb-Cotinat, M.; Soing-Altrach, S.; Leon, A.; Savitch, Y.; Poujol, I.; Naas, T.; Cattoir, V.; Berger-Carbonne, A.; Dortet, L. Emerging extensively drug-resistant bacteria (eXDR) in France in 2018. Med. Mal. Infect. 2020, 50, 715–722. [Google Scholar] [CrossRef]
- Flury, B.B.; Ellington, M.J.; Hopkins, K.L.; Turton, J.F.; Doumith, M.; Loy, R.; Staves, P.; Hinic, V.; Frei, R.; Woodford, N. Association of novel nonsynonymous single nucleotide polymorphisms in ampD with cephalosporin resistance and phylogenetic variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae isolates that are highly resistant to carbapenems. Antimicrob. Agents Chemother. 2016, 60, 2383–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewski, P.; Wieczorek, P.; Ojdana, D.; Sienko, A.; Kowalczuk, O.; Sacha, P.; Niklinski, J.; Tryniszewska, E. Altered outer membrane transcriptome balance with AmpC overexpression in carbapenem-resistant enterobacter cloacae. Front. Microbiol. 2016, 7, 2054. [Google Scholar] [CrossRef] [PubMed]
- de Lastours, V.; Goulenok, T.; Guérin, F.; Jacquier, H.; Eyma, C.; Chau, F.; Cattoir, V.; Fantin, B. Ceftriaxone promotes the emergence of AmpC-overproducing enterobacteriaceae in gut microbiota from hospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Jiang, O.; Mizrahi, A.; Nguyen Van, J.C.; Lourtet-Hascoët, J.; Voisin, O.; Le Lorc’h, E.; Hubert, S.; Ménage, E.; Azria, P.; et al. No significant difference between ceftriaxone and cefotaxime in the emergence of antibiotic resistance in the gut microbiota of hospitalized patients: A pilot study. Int. J. Infect. Dis. 2021, 104, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Jarlier, V.; Acar, J.; Debaere, O.; Dehaumont, P.; Grandbastien, B.; Le Coz, P.; Lina, G.; Pean, Y.; Rambaud, C.; et al. Trends in Antibiotic Consumption and Resistance in France over 20 Years: Large and Continuous Efforts but Contrasting Results. Open Forum Infect. Dis. 2020, 7, ofaa452. [Google Scholar] [CrossRef]
- CA-SFM Comité de L’antibiogramme de la Société Française de Microbiologie: Recommandations 2019v2.0 Mai. 2019. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2019/02/CASFM2019_V1.0.pdf (accessed on 3 January 2022).
- Farfour, E.; Degand, N.; Riverain, E.; Fihman, V.; Le Brun, C.; Péan-de-Ponfilly, G.; Muggeo, A.; Jousset, A.; Piau, C.; Lesprit, P. Fosfomycin, from susceptibility to resistance: Impact of the new guidelines on breakpoints. Méd. Mal. Infect. 2020, 50, 611–616. [Google Scholar] [CrossRef]
- Lo, D.S.; Shieh, H.H.; Ragazzi, S.L.B.; Koch, V.H.K.; Martinez, M.B.; Gilio, A.E. Community-acquired urinary tract infection: Age and gender-dependent etiology. J. Bras. Nefrol. 2013, 35, 93–98. [Google Scholar] [CrossRef]
- CA-SFM Commité de l’antibiogramme de la société Française de Microbiologie Recommandations 2017 v1.0 Janvier. 2017. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2019/02/CASFM-V2.0.Mai2017.pdf (accessed on 3 January 2022).
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 3 January 2022).
E. coli | K. pneumoniae | E. cloacae complex | M. morganii | K. oxytoca | P. mirabilis | C. koseri | |
---|---|---|---|---|---|---|---|
3GC + SXT + CIP | 3.0% | 16.6% | 26.1% | 3.8% | 1.6% | 0.5% | 0.5% |
PTZ + SXT + CIP | 2.1% | 12.1% | 23.9% | 0.8% | 1.4% | 0.2% | 0.1% |
TEM + SXT + CIP | 2.3% | 6.9% | 15.0% | 1.1% | 1.3% | 0.1% | 0.2% |
3GC + AMI | 0.7% | 2.3% | 4.7% | 0.7% | 0.6% | 0.0% | 0.2% |
3GC + GENTA | 1.7% | 12.8% | 23.4% | 1.6% | 1.8% | 0.3% | 0.3% |
AZT + AMI | 2.6% | 3.8% | 3.4% | 0.5% | 0.8% | 0.0% | 0.1% |
AZT + GENTA | 5.7% | 17.4% | 26.5% | 1.1% | 2.3% | 0.2% | 0.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farfour, E.; Dortet, L.; Guillard, T.; Chatelain, N.; Poisson, A.; Mizrahi, A.; Fournier, D.; Bonnin, R.A.; Degand, N.; Morand, P.; et al. Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens 2022, 11, 356. https://doi.org/10.3390/pathogens11030356
Farfour E, Dortet L, Guillard T, Chatelain N, Poisson A, Mizrahi A, Fournier D, Bonnin RA, Degand N, Morand P, et al. Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens. 2022; 11(3):356. https://doi.org/10.3390/pathogens11030356
Chicago/Turabian StyleFarfour, Eric, Laurent Dortet, Thomas Guillard, Nicolas Chatelain, Agathe Poisson, Assaf Mizrahi, Damien Fournier, Rémy A. Bonnin, Nicolas Degand, Philippe Morand, and et al. 2022. "Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France" Pathogens 11, no. 3: 356. https://doi.org/10.3390/pathogens11030356
APA StyleFarfour, E., Dortet, L., Guillard, T., Chatelain, N., Poisson, A., Mizrahi, A., Fournier, D., Bonnin, R. A., Degand, N., Morand, P., Janvier, F., Fihman, V., Corvec, S., Broutin, L., Le Brun, C., Yin, N., Héry-Arnaud, G., Grillon, A., Bille, E., ... on behalf of the GMC Study Group. (2022). Antimicrobial Resistance in Enterobacterales Recovered from Urinary Tract Infections in France. Pathogens, 11(3), 356. https://doi.org/10.3390/pathogens11030356