High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania
Abstract
:1. Introduction
2. Results
2.1. Socio-Demographic and Clinical Characteristics of Enrolled Children
2.2. Isolated Bacteria Pathogens from Nasal, Oral and Rectal Swabs
2.3. Patterns of Resistance by Source of Bacteria
2.4. Comparison of Percentage Resistance of Gram-Negative Bacteria Colonizing Gastrointestinal Tract (GIT) of HIV Infected and Non-HIV Infected Children
2.5. Multidrug Resistance Patterns among HIV and No HIV Infected Children below Five Years of Age
2.6. Factors Associated with ESBL Colonization among HIV− and HIV+ Children below Five Years of Age
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design, Duration and Study Area
4.2. Study Population and Inclusion Criteria
4.3. Sample Size Estimation, Sampling Technique
4.4. Data Collection and Sampling Procedures
4.5. Sample Collection and Laboratory Procedures
4.5.1. Samples Collection
4.5.2. Screening of MDR Bacteria
4.5.3. Antibiotics Susceptibility Testing
4.5.4. ESBL Confirmation
4.6. Data Management and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIDS | Acquired Immunodeficiency Syndrome |
CD4 | Cluster of Differentiation 4 |
CSF | Cerebrospinal Fluid |
ESBL-PE | Extended –spectrum beta lactamase-producing Enterobacteriaceae |
FBP | Full Blood Picture |
HIC | High Income countries |
HIV | Human immunodeficiency virus |
IPC | Infection Prevention and Control |
IQR | Interquartile Range |
LMIC | Low- and Middle-Income Countries |
MDR | Multidrug resistant |
MRSA | Methicillin Resistant Staphylococcus aureus |
MUAC | Mid-Upper Arm Circumference |
NICU | Neonatal Intensive Care Unit |
OI | Opportunistic infection |
PICU | Pediatric Intensive Care Unit |
PIC | Prevention Infection Control |
SD | Standard Deviation |
SIM | Sulphur, Indole Motility |
TSI | Triple Sugar Iron Test |
WBC | White Blood Cells |
WHO | World Health Organization |
References
- CDC. Antibiotic Resistance Threats in the United States, 2019; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globallyss: Final Report and Recommendations; AMR Review: London, UK, 2016. [Google Scholar]
- Sanchez, G.V.; Fleming-Dutra, K.E.; Roberts, R.M.; Hicks, L.A. Core Elements of Outpatient Antibiotic Stewardship. MMWR Recomm. Rep. 2016, 65, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Thuy, N.D.T.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe–Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017; Surveillance Report; ECDC: Solna, Sweden, 2018. [Google Scholar]
- Boutayeb, A. The Burden of Communicable and Non-Communicable Diseases in Developing Countries. In Handbook of Disease Burdens and Quality of Life Measures; U.S. National Library of Medicine: Bethesda, MD, USA, 2010; pp. 531–546. [Google Scholar]
- Silago, V.; Kovacs, D.; Msanga, D.R.; Seni, J.; Matthews, L.; Oravcová, K.; Zadoks, R.N.; Lupindu, A.M.; Hoza, A.S.; Mshana, S.E. Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: The role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria. Antimicrob. Resist. Infect. Control 2020, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.P.; Chen, Y.C.; Chen, S.Y.; Chen, S.Y.; Chang, S.C. Risk for subsequent infection and mortality after hospitalization among patients with multidrug-resistant gram-negative bacteria colonization or infection. Antimicrob. Resist. Infect. Control 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, W.T.; Wang, C.C.; Lin, W.J.; Wang, S.R.; Teng, C.S.; Huang, C.F.; Chen, S.J. Changes in the nasal colonization with methicillin-resistant Staphylococcus aureus in children: 2004–2009. PLoS ONE 2010, 5, e15791. [Google Scholar] [CrossRef]
- Rocha, L.C.; Carvalho, M.O.S.; Nascimento, V.M.L.; dos Santos, M.S.; Barros, T.F.; Adorno, E.V.; Reis, J.N.; da Guarda, C.C.; Santiago, R.P.; Gonçalves, M.d.S. Nasopharyngeal and Oropharyngeal Colonization by Staphylococcus aureus and Streptococcus pneumoniae and Prognostic Markers in Children with Sickle Cell Disease from the Northeast of Brazil. Front. Microbiol. 2017, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.; Kimari, J.; Gilks, C. Streptococcus pneumoniae resistant to penicillin and tetracycline associated with HIV seropositivity. Lancet 1995, 346, 1034–1035. [Google Scholar] [CrossRef]
- Seid, M.; Beyene, G.; Alemu, Y.; Workalemahu, B.; Delbo, M.; Taddesse, D.; Biresaw, G.; Manilal, A. Does cotrimoxazole prophylaxis in HIV patients increase the drug resistance of pneumococci? A comparative cross-sectional study in southern Ethiopia. PLoS ONE 2020, 15, e0243054. [Google Scholar]
- Iwuafor, A.A.; Ogunsola, F.T.; Oladele, R.O.; Oduyebo, O.O.; Desalu, I.; Egwuatu, C.C.; Nnachi, A.U.; Akujobi, C.N.; Ita, I.O.; Ogban, G.I. Incidence, clinical outcome and risk factors of intensive care unit infections in the Lagos University Teaching Hospital (LUTH), Lagos, Nigeria. PLoS ONE 2016, 11, e0165242. [Google Scholar] [CrossRef]
- Cenizal, M.J.; Hardy, R.D.; Anderson, M.; Katz, K.; Skiest, D.J. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization in HIV-infected ambulatory patients. JAIDS J. Acquir. Immune Defic. Syndr. 2008, 48, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, P.; Hassanzadeh, Y.; Mardaneh, J.; Rezai, E.; Motamedifar, M. Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from HIV patients referring to HIV referral center, Shiraz, Iran, 2011–2012. Iran. J. Med. Sci. 2015, 40, 526. [Google Scholar]
- Farley, J.E.; Hayat, M.J.; Sacamano, P.L.; Ross, T.; Carroll, K. Prevalence and risk factors for methicillin-resistant Staphylococcus aureus in an HIV-positive cohort. Am. J. Infect. Control 2015, 43, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Peng, Y.; Xu, P.; Zhang, T.; Bai, C.; Lin, D.; Ou, Q.; Yao, Z. Methicillin-Resistant Staphylococcus aureus Nasal Colonization in Chinese Children: A Prevalence Meta-Analysis and Review of Influencing Factors. PLoS ONE 2016, 11, e0159728. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.; Ip, M.; Tang, A.; Wei, V.W.; Wong, S.Y.; Riley, S.; Read, J.M.; Kwok, K.O. Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: A systematic review and meta-analysis. Clin. Epidemiol. 2018, 10, 1489–1501. [Google Scholar] [CrossRef] [Green Version]
- Herwaldt, L.A. Control of methicillin-resistant Staphylococcus aureus in the hospital setting. Am. J. Med. 1999, 106, 11S–18S; discussion 48S–52S. [Google Scholar] [CrossRef]
- Guo, H.-X.; Wei, W.-J.; Zhang, Q.; Wang, X.-G.; Cheng, X.-R.; Cheng, X.-Y. Prevalence and risk factor analysis of methicillin-resistant Staphylococcus aureus skin colonization in neonatal intensive care unit. Chin. J. Appl. Clin. Pediatrics 2013, 24, 752–755. [Google Scholar]
- Moremi, N.; Claus, H.; Vogel, U.; Mshana, S.E. Faecal carriage of CTX-M extended-spectrum beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania. PLoS ONE 2017, 12, e0184592. [Google Scholar] [CrossRef] [Green Version]
- Isendahl, J.; Turlej-Rogacka, A.; Manjuba, C.; Rodrigues, A.; Giske, C.G.; Nauclér, P. Fecal carriage of ESBL-producing E. coli and K. pneumoniae in children in Guinea-Bissau: A hospital-based cross-sectional study. PLoS ONE 2012, 7, e51981. [Google Scholar] [CrossRef]
- Tellevik, M.; Blomberg, B.; Kommedal, O.; Maselle, S.; Langeland, N.; Moyo, S. High Prevalence of Faecal Carriage of ESBL-Producing Enterobacteriaceae among Children in Dar es Salaam, Tanzania. PLoS ONE 2016, 11, e0168024. [Google Scholar] [CrossRef] [Green Version]
- Woerther, P.L.; Angebault, C.; Jacquier, H.; Hugede, H.C.; Janssens, A.C.; Sayadi, S.; El Mniai, A.; Armand-Lefèvre, L.; Ruppé, E.; Barbier, F.; et al. Massive increase, spread, and exchange of extended spectrum β-lactamase-encoding genes among intestinal Enterobacteriaceae in hospitalized children with severe acute malnutrition in Niger. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2011, 53, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoesser, N.; Xayaheuang, S.; Vongsouvath, M.; Phommasone, K.; Elliott, I.; del Ojo Elias, C.; Crook, D.W.; Newton, P.N.; Buisson, Y.; Lee, S.J.; et al. Colonization with Enterobacteriaceae producing ESBLs in children attending pre-school childcare facilities in the Lao People’s Democratic Republic. J. Antimicrob. Chemother. 2015, 70, 1893–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunbosi, B.O.; Moodley, C.; Naicker, P.; Nuttall, J.; Bamford, C.; Eley, B. Colonisation with extended spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales in children admitted to a paediatric referral hospital in South Africa. PLoS ONE 2020, 15, e0241776. [Google Scholar] [CrossRef] [PubMed]
- Blanc, V.; Leflon-Guibout, V.; Blanco, J.; Haenni, M.; Madec, J.Y.; Rafignon, G.; Bruno, P.; Mora, A.; Lopez, C.; Dahbi, G.; et al. Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J. Antimicrob. Chemother. 2014, 69, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.M.; Lester, R.; Garner, P.; Feasey, N.A. Gut mucosal colonisation with extended-spectrum beta-lactamase producing Enterobacteriaceae in sub-Saharan Africa: A systematic review and meta-analysis. Wellcome Open Res. 2019, 4, 160. [Google Scholar] [CrossRef]
- Johnson, K.; Frei, R.; Heininger, U. Prospective, cross-sectional study on MSSA and MRSA colonisation in hospitalised children. Eur. J. Pediatr. 2015, 174, 1255–1262. [Google Scholar] [CrossRef]
- Datta, F.; Erb, T.; Heininger, U.; Gervaix, A.; Schaad, U.B.; Berger, C.; Vaudaux, B.; Aebi, C.; Hitzler, M.; Kind, C. A multicenter, cross-sectional study on the prevalence and risk factors for nasal colonization with Staphylococcus aureus in patients admitted to children’s hospitals in Switzerland. Clin. Infect. Dis. 2008, 47, 923–926. [Google Scholar] [CrossRef] [Green Version]
- Moremi, N.; Claus, H.; Rutta, L.; Frosch, M.; Vogel, U.; Mshana, S. High carriage rate of extended-spectrum beta-lactamase-producing Enterobacteriaceae among patients admitted for surgery in Tanzanian hospitals with low rate of endogenous surgical site infections. J. Hosp. Infect. 2018, 100, 47–53. [Google Scholar] [CrossRef]
- Elvers, K.T.; Wilson, V.J.; Hammond, A.; Duncan, L.; Huntley, A.L.; Hay, A.D.; van der Werf, E.T. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review. BMJ Open 2020, 10, e035677. [Google Scholar] [CrossRef]
- Vincent, J.L. The Clinical Challenge of Sepsis Identification and Monitoring. PLoS Med. 2016, 13, e1002022. [Google Scholar] [CrossRef] [Green Version]
- Whitley, E.; Ball, J. Statistics review 4: Sample size calculations. Crit. Care 2002, 6, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorentino, M.; Sophonneary, P.; Laillou, A.; Whitney, S.; de Groot, R.; Perignon, M.; Kuong, K.; Berger, J.; Wieringa, F.T. Current MUAC Cut-Offs to Screen for Acute Malnutrition Need to Be Adapted to Gender and Age: The Example of Cambodia. PLoS ONE 2016, 11, e0146442. [Google Scholar] [CrossRef]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology; Jones & Bartlett Publishers: Burlington, MA, USA, 2020. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Mshana, S.E.; Kamugisha, E.; Mirambo, M.; Chakraborty, T.; Lyamuya, E.F. Prevalence of multiresistant gram-negative organisms in a tertiary hospital in Mwanza, Tanzania. BMC Res. Notes 2009, 2, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silago, V.; Kovacs, D.; Samson, H.; Seni, J.; Matthews, L.; Oravcová, K.; Lupindu, A.M.; Hoza, A.S.; Mshana, S.E. Existence of Multiple ESBL Genes among Phenotypically Confirmed ESBL Producing Klebsiella pneumoniae and Escherichia coli Concurrently Isolated from Clinical, Colonization and Contamination Samples from Neonatal Units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics 2021, 10, 476. [Google Scholar] [PubMed]
HIV− (N = 255) | HIV+ (N = 144) | p-Value | ||||
---|---|---|---|---|---|---|
Characteristics | Frequency (n)/ Median [IQR] | Percentages (%) | Frequency (n)/ Median [IQR] | Percentages (%) | ||
Median [IQR] age in months | 14 (9–22) | 34 (22–44) | <0.001 ** | |||
Gender | Male | 139 | 44.5 | 73 | 49.3 | 0.463 |
Female | 116 | 45.5 | 71 | 50.7 | ||
Residence | Urban | 250 | 98.0 | 130 | 90.3 | <0.001 ** |
Rural | 5 | 2 | 14 | 9.7 | ||
Immunization schedule | Completed | 203 | 79.6 | 139 | 96.5 | <0.001 ** |
Not Completed | 52 | 20.4 | 5 | 3.5 | ||
Source of water | Tap water | 241 | 94.5 | 122 | 84.7 | 0.001 ** |
Pond/lake water | 14 | 5.5 | 22 | 15.3 | ||
Type of toilet | Modern toilet | 244 | 95.7 | 120 | 83.3 | <0.001 ** |
Pit latrine | 11 | 4.3 | 24 | 16.7 | ||
Family size | Median | 4 (3–5) | 5 (3.5–6) | 0.068 | ||
Care taker leve of edication | Primary | 168 | 65.9 | 111 | 77.1 | 0.019 |
Secondary | 87 | 34.1 | 33 | 22.9 | ||
Type of house | Brick | 226 | 88.6 | 108 | 75 | <0.001 ** |
Mud | 29 | 11.4 | 36 | 25 | ||
Animal keeping | Yes | 55 | 21.6 | 30 | 20.8 | 0.863 |
No | 200 | 78.4 | 114 | 79.2 | ||
Duration of breastfeeding | Median [IQR] months | 6 (5–6) | 6 (6–6) | 0.002 ** | ||
Use of antimalaria in the last month | Yes | 26 | 10.2 | 8 | 5.6 | 0.111 |
No | 229 | 89.2 | 136 | 94.4 | ||
Relative hospital admission in same household past 3 months | Yes | 7 | 2.7 | 5 | 3.5 | 0.683 |
No | 248 | 97.3 | 139 | 96.5 | ||
Antibiotics use over the past one month | Yes | 227 | 89.0 | 130 | 90.3 | 0.694 |
No | 28 | 11.0 | 14 | 9.7 | ||
ART us | Yes | NA | NA | 143 | 99.7 | NA |
No | NA | NA | 1 | 0.3 | ||
MUAC | SAM | 34 | 13.3 | 3 | 2.1 | <0.001 ** |
MAM | 221 | 86.7 | 141 | 97.9 |
Isolate | Oral (N = 27) | Nasal (27) | Rectal (N = 278) | |||
---|---|---|---|---|---|---|
HIV− | HIV+ | HIV− | HIV+ | HIV− | HIV+ | |
K. pneumoniae complex | 3 | 8 | NA | 12 | 17 | |
E. coli | 4 | 1 | NA | 136 | 41 | |
S. aureus | NA | 21 | 6 | NA | ||
MRSA | NA | 13 | 3 | NA | ||
S. pneumoniae | 2 | 2 | NA | NA | ||
Others | 3 * | 4 * | NA | 45 ** | 27 ** | |
Total | 12 | 15 | 21 | 6 | 193 | 85 |
Antibiotic | ORAL SWAB N = 18 (%) | RECTAL SWAB N = 278 (%) | p Value |
---|---|---|---|
Amoxicillin/clavulanic acid | 4 (22.2%) | 135 (48.7%) | 0.025 * |
Ceftriaxone | 3 (16.7%) | 132 (47.5%) | 0.009 * |
Sulfamethoxazole/Trimethoprim | 15 (83.3%) | 233 (83.8%) | 0.583 ** |
Tetracycline | 10 (55.6%) | 186 (66.9%) | 0.230 ** |
Gentamicin | 2 (11.1%) | 40 (14.4%) | 0.516 ** |
Ciprofloxacin | 3 (16.7%) | 135 (48.6%) | 0.007 * |
Ceftazidime | 2 (11.1%) | 103 (25.8%) | 0.019 * |
Meropenem | 2 (11.1%) | 20 (7.2%) | 0.394 ** |
ESBL | 2 (11.1%) | 92 (33.1%) | 0.039 * |
Antibiotic Agents | HIV− (n = 193) | HIV+ (n = 85) | p Value | Overall Resistance |
---|---|---|---|---|
Sulfamethoxazole/Trimethoprim | 158 (81.9%) | 75 (88.2%) | 0.184 | 233 (83.8%) |
Tetracycline | 125 (64.8%) | 61 (71.8%) | 0.253 | 186 (66.9%) |
Ciprofloxacin | 92 (47.7%) | 43 (50.6%) | 0.654 | 135 (48.6%) |
Gentamicin | 16 (8.3%) | 24 (28.2%) | 0.000 ** | 40 (14.4%) |
Ceftriaxone | 87 (45.1%) | 45 (52.9%) | 0.226 | 132 (47.5%) |
Amoxicillin/clavulanic acid | 82 (42.5%) | 53 (62.4%) | 0.002 ** | 135 (48.6%) |
Ceftazidime | 66 (34.2%) | 37 (43.5%) | 0.138 | 103 (37.1%) |
Meropenem | 6 (3.1%) | 14 (16.5%) | 0.000 ** | 20 (7.2%) |
ESBL | 59 (30.6%) | 36 (42.4%) | 0.056 | 95 (34.2%) |
Variable (N) | ESBL Colonization (n, %) | Univariate OR (95%CI) | p Value | Multivariable OR (95%CI) | p Value |
---|---|---|---|---|---|
A: Child factors | |||||
Age (months) | * 19, IQR (10–29) | 0.98 (0.97, 1.00) | 0.154 | 0.98 (0.96, 1.00) | 0.091 |
Sex | |||||
Male (212) | 56 (26.4) | 1 | |||
Female (187) | 39 (20.9) | 1.36 (0.85, 2.17) | 0.194 | ||
HIV status | |||||
Negative (255) | 59(23.1) | 1 | |||
Positive (144) | 36(25.0) | 1.11 (0.69, 1.78) | 0.675 | 1.43 (0.81–2.52) | 0.212 |
Residence | |||||
Urban (380) | 89(23.4) | 1 | |||
Rural (19) | 6(31.6) | 1.51 (0.56, 4.09) | 0.418 | ||
Antibiotics usage last month | |||||
No (357) | 79 (22.1) | 1 | |||
Yes (42) | 16 (38.1) | 3.45 (1.39, 8.58) | 0.007 | 2.62 (1.1, 6.9) | 0.04 |
B: Family factors | |||||
Caretaker Education level | |||||
Secondary (120) | 30 (25.0) | 1 | |||
Primary (279) | 65 (23.3) | 0.91 (0.55, 1.50) | 0.714 | ||
Relative Admitted | |||||
No (387) | 88 (22.7) | 1 | |||
Yes (12) | 7 (58.3) | 4.8 (1.47, 15.36) | 0.009 | 3.7 (1.1, 13.2) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msanga, D.R.; Silago, V.; Massoza, T.; Kidenya, B.R.; Balandya, E.; Mirambo, M.M.; Sunguya, B.; Mmbaga, B.T.; Lyamuya, E.; Bartlet, J.; et al. High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania. Pathogens 2022, 11, 379. https://doi.org/10.3390/pathogens11030379
Msanga DR, Silago V, Massoza T, Kidenya BR, Balandya E, Mirambo MM, Sunguya B, Mmbaga BT, Lyamuya E, Bartlet J, et al. High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania. Pathogens. 2022; 11(3):379. https://doi.org/10.3390/pathogens11030379
Chicago/Turabian StyleMsanga, Delfina R., Vitus Silago, Tulla Massoza, Benson R. Kidenya, Emmanuel Balandya, Mariam M. Mirambo, Bruno Sunguya, Blandina Theophil Mmbaga, Eligius Lyamuya, John Bartlet, and et al. 2022. "High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania" Pathogens 11, no. 3: 379. https://doi.org/10.3390/pathogens11030379
APA StyleMsanga, D. R., Silago, V., Massoza, T., Kidenya, B. R., Balandya, E., Mirambo, M. M., Sunguya, B., Mmbaga, B. T., Lyamuya, E., Bartlet, J., & Mshana, S. E. (2022). High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania. Pathogens, 11(3), 379. https://doi.org/10.3390/pathogens11030379