An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period
Abstract
:1. Introduction
2. Results
2.1. Clinical Presentation and PRRS Testing Results
2.2. Extraction and Real Time Polymerase Chain Reaction
2.3. Enzyme Linked Immunosorbent Assay
3. Discussion
4. Materials and Methods
4.1. Pig Source and Grouping
4.2. Inoculations
4.3. Sample Collection
4.4. Pain Management and Euthanasia
4.5. Diagnostics
4.6. Validation of Diagnostic Assay Results
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eustace Montgomery, R. On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- The Double Stranded DNA Viruses. In Virus Taxonomy; Fauquet, C.M.; Mayo, M.A.; Maniloff, J.; Desselberger, U.; Ball, L.A. (Eds.) Academic Press: San Diego, CA, USA, 2005; pp. 33–276. ISBN 978-0-12-249951-7. [Google Scholar]
- Njau, E.P.; Machuka, E.M.; Cleaveland, S.; Shirima, G.M.; Kusiluka, L.J.; Okoth, E.A.; Pelle, R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Mebus, C.A. African Swine Fever. Adv. Virus Res. 1988, 35, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Haresnape, J.M.; Lungu, S.A.; Mamu, F.D. A Four-Year Survey of African Swine Fever in Malawi. J. Hyg. 1985, 95, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Chang’a, J.S.; Mayenga, C.; Settypalli, T.B.K.; Achenbach, J.E.; Mwanandota, J.J.; Magidanga, B.; Cattoli, G.; Jeremiah, M.; Kamigwe, A.; Guo, S.; et al. Symptomatic and Asymptomatic Cases of African Swine Fever in Tanzania. Transbound. Emerg. Dis. 2019, 66, 2402–2410. [Google Scholar] [CrossRef]
- Rowlands, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African Swine Fever Virus Isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- World Organization for Animal Health (OIE). African Swine Fever Situation Report; World Organization for Animal Health (OIE): Paris, France, 2021. [Google Scholar]
- Gallardo, C.; Sánchez, E.G.; Pérez-Núñez, D.; Nogal, M.; de León, P.; Carrascosa, Á.L.; Nieto, R.; Soler, A.; Arias, M.L.; Revilla, Y. African Swine Fever Virus (ASFV) Protection Mediated by NH/P68 and NH/P68 Recombinant Live-Attenuated Viruses. Vaccine 2018, 36, 2694–2704. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and Non-haemadsorbing (Non-HAD) Genotype II African Swine Fever Virus (ASFV) Isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernández-Pinero, J.; Arias, M. African Swine Fever (ASF) Diagnosis, an Essential Tool in the Epidemiological Investigation. Virus Res. 2019, 271, 197676. [Google Scholar] [CrossRef]
- Sun, E.; Zhang, Z.; Wang, Z.; He, X.; Zhang, X.; Wang, L.; Wang, W.; Huang, L.; Xi, F.; Huangfu, H.; et al. Emergence and Prevalence of Naturally Occurring Lower Virulent African Swine Fever Viruses in Domestic Pigs in China in 2020. Sci. China Life Sci. 2021, 64, 752–765. [Google Scholar] [CrossRef]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African Swine Fever Viruses Emerged in Domestic Pigs in China and Caused Chronic Infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Vigário, J.D.; Terrinha, A.M.; Moura Nunes, J.F. Antigenic Relationships among Strains of African Swine Fecre Virus. Arch. Gesamte Virusforsch 1974, 45, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Patton, D. New China Swine Fever Strains Point to Unlicensed Vaccine. Reuters. 2021. Available online: https://www.reuters.com/article/us-china-swinefever-vaccines-insight-idUKKBN29R00X (accessed on 15 December 2021).
- Veterinary Services. Swine Hemorrhagic Fevers: African and Classical Swine Fever Integrated Surveillance Plan; Animal Plant Health Inspection Service, Unites States Department of Agriculture: Fort Collins, CA, USA, 2019. [Google Scholar]
- Kittawornrat, A.; Prickett, J.; Chittick, W.; Wang, C.; Engle, M.; Johnson, J.; Patnayak, D.; Schwartz, T.; Whitney, D.; Olsen, C.; et al. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Serum and Oral Fluid Samples from Individual Boars: Will Oral Fluid Replace Serum for PRRSV Surveillance? Virus Res. 2010, 154, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bjustrom-Kraft, J.; Christopher-Hennings, J.; Daly, R. The Use of Oral Fluid Diagnostics in Swine Medicine. JSHAP 2018, 26, 262–269. [Google Scholar]
- Prickett, J.; Simer, R.; Christopher-Hennings, J.; Yoon, K.-J.; Evans, R.B.; Zimmerman, J.J. Detection of Porcine Reproductive and Respiratory Syndrome Virus Infection in Porcine Oral Fluid Samples: A Longitudinal Study under Experimental Conditions. J. Vet. Diagn. Investig. 2008, 20, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Prickett, J.; Kim, W.; Simer, R. Oral-Fluid Samples for Surveillance of Commercial Growing Pigs for Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 Infections. JSHAP 2008, 16, 86–91. [Google Scholar]
- Detmer, S.E.; Patnayak, D.P.; Jiang, Y.; Gramer, M.R.; Goyal, S.M. Detection of Influenza a Virus in Porcine Oral Fluid Samples. J. Vet. Diagn. Investig. 2011, 23, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Grau, F.R.; Schroeder, M.E.; Mulhern, E.L.; McIntosh, M.T.; Bounpheng, M.A. Detection of African Swine Fever, Classical Swine Fever, and Foot-and-Mouth Disease Viruses in Swine Oral Fluids by Multiplex Reverse Transcription Real-Time Polymerase Chain Reaction. J. Vet. Diagn. Investig. 2015, 27, 140–149. [Google Scholar] [CrossRef]
- Goonewardene, K.B.; Chung, C.J.; Goolia, M.; Blakemore, L.; Fabian, A.; Mohamed, F.; Nfon, C.; Clavijo, A.; Dodd, K.A.; Ambagala, A. Evaluation of Oral Fluid as an Aggregate Sample for Early Detection of African Swine Fever Virus Using Four Independent Pen-Based Experimental Studies. Transbound Emerg. Dis. 2021, 68, 2867–2877. [Google Scholar] [CrossRef]
- Mur, L.; Gallardo, C.; Soler, A.; Zimmermman, J.; Pelayo, V.; Nieto, R.; Sánchez-Vizcaíno, J.M.; Arias, M. Potential Use of Oral Fluid Samples for Serological Diagnosis of African Swine Fever. Vet. Microbiol. 2013, 165, 135–139. [Google Scholar] [CrossRef]
- Giménez-Lirola, L.G.; Mur, L.; Rivera, B.; Mogler, M.; Sun, Y.; Lizano, S.; Goodell, C.; Harris, D.L.H.; Rowland, R.R.R.; Gallardo, C.; et al. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (P30) Dual Matrix Indirect ELISA. PLoS ONE 2016, 11, e0161230. [Google Scholar] [CrossRef] [Green Version]
- Beemer, O.; Remmenga, M.; Gustafson, L.; Johnson, K.; Hsi, D.; Antognoli, M.C. Assessing the Value of PCR Assays in Oral Fluid Samples for Detecting African Swine Fever, Classical Swine Fever, and Foot-and-Mouth Disease in U.S. Swine. PLoS ONE 2019, 14, e0219532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinat, C.; Reis, A.L.; Netherton, C.L.; Goatley, L.; Pfeiffer, D.U.; Dixon, L. Dynamics of African Swine Fever Virus Shedding and Excretion in Domestic Pigs Infected by Intramuscular Inoculation and Contact Transmission. Vet. Res. 2014, 45, 93. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Ferreira, H.C.; Weesendorp, E.; Elbers, A.R.W.; Bouma, A.; Quak, S.; Stegeman, J.A.; Loeffen, W.L.A. African Swine Fever Virus Excretion Patterns in Persistently Infected Animals: A Quantitative Approach. Vet. Microbiol. 2012, 160, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.; Forth, J.H.; Zani, L.; Beer, M.; Blome, S. No Evidence for Long-Term Carrier Status of Pigs after African Swine Fever Virus Infection. Transbound Emerg. Dis. 2018, 65, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, C.; Soler, A.; Nurmoja, I.; Cano-Gómez, C.; Cvetkova, S.; Frant, M.; Woźniakowski, G.; Simón, A.; Pérez, C.; Nieto, R.; et al. Dynamics of African Swine Fever Virus (ASFV) Infection in Domestic Pigs Infected with Virulent, Moderate Virulent and Attenuated Genotype II ASFV European Isolates. Transbound. Emerg. Dis. 2021, 68, 2826–2841. [Google Scholar] [CrossRef]
- Renukaradhya, G.J.; Meng, X.-J.; Calvert, J.G.; Roof, M.; Lager, K.M. Live Porcine Reproductive and Respiratory Syndrome Virus Vaccines: Current Status and Future Direction. Vaccine 2015, 33, 4069–4080. [Google Scholar] [CrossRef]
- Leitão, A.; Cartaxeiro, C.; Coelho, R.; Cruz, B.; Parkhouse, R.M.E.; Portugal, F.C.; Vigário, J.D.; Martins, C.L.V. The Non-Haemadsorbing African Swine Fever Virus Isolate ASFV/NH/P68 Provides a Model for Defining the Protective Anti-Virus Immune Response. J. Gen. Virol. 2001, 82, 513–523. [Google Scholar] [CrossRef]
- King, K.; Chapman, D.; Argilaguet, J.M.; Fishbourne, E.; Hutet, E.; Cariolet, R.; Hutchings, G.; Oura, C.A.L.; Netherton, C.L.; Moffat, K.; et al. Protection of European Domestic Pigs from Virulent African Isolates of African Swine Fever Virus by Experimental Immunisation. Vaccine 2011, 29, 4593–4600. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Soler, A.; Nieto, R.; Sánchez, M.A.; Martins, C.; Pelayo, V.; Carrascosa, A.; Revilla, Y.; Simón, A.; Briones, V.; et al. Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transbound. Emerg. Dis. 2015, 62, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Atuhaire, D.K.; Afayoa, M.; Ochwo, S.; Mwesigwa, S.; Mwiine, F.N.; Okuni, J.B.; Olaho-Mukani, W.; Ojok, L. Prevalence of African Swine Fever Virus in Apparently Healthy Domestic Pigs in Uganda. BMC Vet. Res. 2013, 9, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uttenthal, Å.; Braae, U.C.; Ngowi, H.A.; Rasmussen, T.B.; Nielsen, J.; Johansen, M.V. ASFV in Tanzania: Asymptomatic Pigs Harbor Virus of Molecular Similarity to Georgia 2007. Vet. Microbiol. 2013, 165, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Roux, G.; Ravel, C.; Varlet-Marie, E.; Jendrowiak, R.; Bastien, P.; Sterkers, Y. Inhibition of Polymerase Chain Reaction: Pathogen-Specific Controls Are Better than Human Gene Amplification. PLoS ONE 2019, 14, e0219276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Toohey-Kurth, K.L.; Crossley, B.M.; Bai, J.; Glaser, A.L.; Tallmadge, R.L.; Goodman, L.B. Inhibition Monitoring in Veterinary Molecular Testing. J. Vet. Diagn. Investig. 2020, 32, 758–766. [Google Scholar] [CrossRef] [PubMed]
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.S.; Drew, T.W. Development of a TaqMan PCR Assay with Internal Amplification Control for the Detection of African Swine Fever Virus. J. Virol. Methods 2003, 107, 53–61. [Google Scholar] [CrossRef]
- Zsak, L.; Borca, M.V.; Risatti, G.R.; Zsak, A.; French, R.A.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Callahan, J.D.; Nelson, W.M.; et al. Preclinical Diagnosis of African Swine Fever in Contact-Exposed Swine by a Real-Time PCR Assay. J. Clin. Microbiol. 2005, 43, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gómez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular Diagnosis of African Swine Fever by a New Real-Time PCR Using Universal Probe Library. Transbound. Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef] [Green Version]
- World Organization for Animal Health (OIE). Chapter 3.9.1: African Swine Fever (Infection with African Swine Fever Virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2021; World Organization for Animal Health (OIE): Paris, France, 2021. [Google Scholar]
- Malogolovkin, A.; Burmakina, G.; Tulman, E.R.; Delhon, G.; Diel, D.G.; Shobogorov, N.; Morgunov, Y.; Morgunov, S.; Koltsov, A.; Kutish, G.F.; et al. Cross-Protective Immunity and African Swine Fever Virus Serotype-Specific Proteins. In Proceedings of the African swine fever—Recent research advances and strategies to combat the disease in Europe, Pulawy, Poland, 6–8 December 2016. [Google Scholar]
- Sereda, A.D.; Balyshev, V.M.; Kazakova, A.S.; Imatdinov, A.R.; Kolbasov, D.V. Protective Properties of Attenuated Strains of African Swine Fever Virus Belonging to Seroimmunotypes I–VIII. Pathogens 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Ashmarin, I.; Vorobyov, A. Statistical Methods in Microbiological Studies; Medgiz: Leningrad, Russia, 1962; p. 180. [Google Scholar]
- ID Screen® African Swine Fever Oral Fluids Indirect; Version 0119 EN; Innovative Diagnostics: Grabels, France, 2020.
- ID Screen® African Swine Fever Competition; Version 0217 EN; Innovative Diagnostics: Grabels, France, 2021.
- Innoceleris ASFV ELISA Serum IgG (EIA-SP001); Innoceleris LLC: Ames, IA, USA, 2021.
- Innoceleris ASFV ELISA Oral Fluid IgG (EIA-OF002); Innoceleris LLC: Ames, IA, USA, 2021.
- Ingezim PPA Compaq; Product Reference 11.PPA.K3; Ingenasa: Madrid, Spain, 2018.
- Toohey-Kurth, K.L.; Mulrooney, D.M.; Hinkley, S.; Lea Killian, M.; Pedersen, J.C.; Bounpheng, M.A.; Pogranichniy, R.; Bolin, S.; Maes, R.; Tallmadge, R.L.; et al. Best Practices for Performance of Real-Time PCR Assays in Veterinary Diagnostic Laboratories. J. Vet. Diagn. Investig. 2020, 32, 815–825. [Google Scholar] [CrossRef]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval Estimation for a Binomial Proportion. Stat. Sci. 2001, 16, 101–117. [Google Scholar] [CrossRef]
- Byrt, T.; Bishop, J.; Carlin, J.B. Bias, Prevalence and Kappa. J. Clin. Epidemiol. 1993, 46, 423–429. [Google Scholar] [CrossRef]
- Brennan, R.L.; Prediger, D.J. Coefficient Kappa: Some Uses, Misuses, and Alternatives. Educ. Psychol. Meas. 1981, 41, 687–699. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Blood | Oral Fluid | Buccal Swab | Tonsillar Scraping | |||||
---|---|---|---|---|---|---|---|---|
# Tested | % Invalid (95% CI) | # Tested | % Invalid (95% CI) | # Tested | % Invalid (95% CI) | # Tested | % Invalid (95% CI) | |
IDEXX Extraction | ||||||||
IDEXX PCR | 373 | 0.3 (0, 1.7) | 281 * | 3.6 (1.9, 6.5) | 373 | 0.3 (0, 1.7) | 373 | 0.8 (0.2, 2.5) |
IDVet PCR | 373 | 7.8 (5.4, 11) | 373 | 0.8 (0.2, 2.5) | 373 | 0.3 (0, 1.7) | 373 | 0.8 (0.2, 2.5) |
MagMax Extraction | ||||||||
IDEXX PCR | 373 | 1.1 (0.3, 2.8) | 281 * | 2.1 (0.9, 4.7) | 373 | 1.1 (0.3, 2.8) | 373 | 2.1 (1, 4.2) |
IDVet PCR | 375 | 12.5 (9.5, 16.3) | 371 | 1.9 (0.8, 3.9) | 372 | 0.3 (0, 1.7) | 374 | 0.3 (0, 1.7) |
PCR Kit | IDEXX | Innovative Diagnostics | ||
---|---|---|---|---|
Extraction Kit | MagMax | IDEXX | MagMax | IDEXX |
GROUP 1 | % (95% Confidence Interval), n | % (95% Confidence Interval), n | ||
Blood | 48.7 (41.1, 56.5), n = 158 a | 45.9 (38.4, 53.7), n = 159 a | 46.4 (38.3, 54.7), n = 138 a | 44.2 (36.2, 52.5), n = 138 a |
0 < dpi ≤ 7 | 52.6 (31.7, 72.7), n = 19 | 36.8 (19.1, 59), n = 19 a | 30 (14.5, 51.9), n = 20 b | 33.3 (15.2, 58.3), n = 15 |
7 < dpi ≤ 21 | 62.1 (44, 77.3), n = 29 | 82.1 (64.4, 92.1), n = 28 a | 71.4 (52.9, 84.7), n = 28 a | 85.2 (67.5, 94.1), n = 27 a |
21 < dpi ≤ 42 | 64.6 (50.4, 76.6), n = 48 | 50 (36.4, 63.6), n = 48 | 53.5 (38.9, 67.5), n = 43 | 60 (44.6, 73.7), n = 40 a |
42 < dpi ≤ 63 | 31.3 (18, 48.6), n = 32 | 37.5 (22.9, 54.7), n = 32 | 37.5 (21.1, 57.3), n = 24 a | 24.1 (12.2, 42.1), n = 29 |
63 < dpi ≤ 93 | 26.7 (14.2, 44.4), n = 30 | 21.9 (11, 38.8), n = 32 | 26.1 (12.5, 46.5), n = 23 | 7.4 (2.1, 23.4), n = 27 |
Oral fluid | 44.3 (35.8, 53.1), n = 122 | 33 (25.1, 42.1), n = 115 | 34.6 (27.6, 42.3), n = 156 | 28.8 (22.3, 36.2), n = 160 |
0 < dpi ≤ 7 | 83.3 (60.8, 94.2), n = 18 b | 20 (7, 45.2), n = 15 | 76.5 (52.7, 90.4), n = 17 b | 57.9 (36.3, 76.9) b |
7 < dpi ≤ 21 | 48.1 (30.7, 66), n = 27 | 50 (31.4, 68.6), n = 24 | 51.7 (34.4, 68.6), n = 29 | 41.4 (25.5, 59.3), n = 29 a |
21 < dpi ≤ 42 | 37.5 (22.9, 54.7), n = 32 | 37.5 (22.9, 54.7), n = 32 | 39.6 (27, 53.7), n = 48 | 35.4 (23.4, 49.6), n = 48 |
42 < dpi ≤ 63 | 7.7 (1.4, 33.3), n = 13 | 23.1 (8.2, 50.3), n = 13 | 3.3 (1, 16.7), n = 30 a | 9.4 (3.2, 24.2), n = 32 |
63 < dpi ≤ 93 | 40.6 (25.5, 57.7), n = 32 | 25.8 (13.7, 43.2), n = 31 | 18.8 (8.9, 35.3), n = 32 | 9.4 (3.2, 24.2), n = 32 |
Buccal swab | 32.3 (25.5, 39.9), n = 158 a | 28.9 (22.4, 36.4), n = 159 a | 22 (16.2, 29.1), n = 159 a | 19.4 (14, 26.2), n = 160 a |
0 < dpi ≤ 7 | 36.8 (19.1, 59), n = 19 b | 15.8 (5.5, 37.6), n = 19 | 15.8 (5.5, 37.6), n = 19 b | 10.5 (2.9, 31.4), n = 19 b |
7 < dpi ≤ 21 | 35.7 (20.7, 54.2), n = 28 | 42.9 (26.5, 60.9), n = 28 a | 28.6 (15.3, 47.1), n = 28 a | 24.1 (12.2, 42.1), n = 29 a |
21 < dpi ≤ 42 | 43.8 (30.7, 57.7), n = 48 | 25 (14.9, 38.8), n = 48 d | 31.3 (19.9, 45.3), n = 48 | 22.9 (13.3, 36.5), n = 48 a |
42 < dpi ≤ 63 | 18.8 (8.9, 35.3), n = 32 | 43.8 (28.2, 60.7), n = 32 c | 18.8 (8.9, 35.3), n = 32 | 28.1 (15.6, 45.4), n = 32 |
63 < dpi ≤ 93 | 22.6 (11.4, 39.8), n = 31 | 15.6 (6.9, 31.8), n = 32 | 9.4 (3.2, 24.2), n = 32 | 6.3 (1.7, 20.1), n = 32 |
Tonsillar scraping | 37.6 (30.4, 45.4), n = 157 | 27.8 (21.4, 35.3), n = 158 a | 21.9 (16.1, 28.9), n = 160 a | 25.3 (19.2, 32.7), n = 158 a |
0 < dpi ≤ 7 | 27.8 (12.5, 50.9), n = 18 b | 0 (0, 16.8), n = 19 a | 15 (5.2, 36), n = 20 b | 15.8 (5.5, 37.6), n = 19 |
7 < dpi ≤ 21 | 41.4 (25.5, 59.3), n = 29 | 39.3 (23.6, 57.6), n = 28 a | 34.5 (19.9, 52.7), n = 29 a | 34.5 (19.9, 52.7), n = 29 a |
21 < dpi ≤ 42 | 51.1 (37.2, 64.7), n = 47 | 56.3 (42.2, 69.3), n = 48 d | 36.2 (24, 50.5), n = 47 | 42.6 (29.5, 56.7), n = 47 |
42 < dpi ≤ 63 | 21.9 (11, 38.8), n = 32 | 12.5 (5, 28.1), n = 32 c | 6.3 (1.7, 20.1), n = 32 a | 9.4 (3.2, 24.2), n = 32 |
63 < dpi ≤ 93 | 35.5 (21.1, 53.1), n = 31 | 6.5 (1.8, 20.7), n = 31 | 9.4 (3.2, 24.2), n = 32 | 12.9 (5.1, 28.9), n = 31 |
GROUP 2 | % (95% Confidence Interval), n | % (95% Confidence Interval), n | ||
Blood | 35.7 (28.2, 43.9), n = 140 a | 36.4 (28.9, 44.5), n = 143 a | 29.4 (22.4, 37.6), n = 136 a | 34.8 (27.3, 43.1), n = 138 a |
0 < dpi ≤ 7 | 42.1 (23.1, 63.7), n = 19 | 31.6 (15.4, 54), n = 19 | 31.6 (15.4, 54), n = 19 | 42.1 (23.1, 63.7), n = 19 |
7 < dpi ≤ 21 | 51.7 (34.4, 68.6), n = 29 | 60.7 (42.4, 76.4), n = 28 a | 55.2 (37.5, 71.6), n = 29 a | 50 (32.6, 67.4), n = 28 a |
21 < dpi ≤ 42 | 41.7 (28.8, 55.7), n = 48 | 35.4 (23.4, 49.6), n = 48 | 23.8 (13.5, 38.5), n = 42 | 34.8 (22.7, 49.2), n = 46 a |
42 < dpi ≤ 63 | 22.7 (10.1, 43.4), n = 22 | 29.2 (14.9, 49.2), n = 24 | 16.7 (6.7, 35.9), n = 24 | 19 (7.7, 40), n = 21 |
63 < dpi ≤ 93 | 9.1 (2.5, 27.8), n = 22 | 20.9 (9.2, 40.5), n = 24 | 18.2 (7.3, 38.9), n = 22 | 25 (12, 44.9), n = 24 |
Oral fluid | 33 (24.3, 43), n = 94 | 26.8 (19, 36.4), n = 97 | 20.1 (14.3, 27.6), n = 139 | 24.6 (18.3, 32.4), n = 142 b |
0 < dpi ≤ 7 | 36.8 (19.1, 59), n = 19 | 26.3 (11.8, 48.8), n = 19 | 26.3 (11.8, 48.8), n = 19 | 31.6 (15.4, 54), n = 19 |
7 < dpi ≤ 21 | 34.5 (19.9, 52.6), n = 29 | 27.6 (14.7, 45.7), n = 29 | 27.6 (14.7, 45.7), n = 29 | 27.6 (14.7, 45.7), n = 29 |
21 < dpi ≤ 42 | 37.5 (13.7, 69.4), n = 8 | 55.6 (26.7, 81.1), n = 9 | 23.4 (13.6, 37.2), n = 47 | 33.3 (21.7, 47.5), n = 48 |
42 < dpi ≤ 63 | 6.3 (1.1, 28.3), n = 16 | 25 (10.2, 49.5), n = 16 | 5 (1, 23.6), n = 20 | 9.1 (2.5, 27.8), n = 22 |
63 < dpi ≤ 93 | 45.5 (26.9, 65.3), n = 22 b | 16.7 (6.7, 35.9), n = 24 | 12.5 (4.3, 31), n = 24 | 12.5 (4.3, 31), n = 24 |
Buccal swab | 17.3 (11.8, 24.5), n = 139 a | 17.5 (12.1, 24.6), n = 143 a | 9.1 (5.3, 15), n = 143 a | 9 (5.2, 14.9), n = 144 a,b |
0 < dpi ≤ 7 | 5.6 (1, 25.8), n = 18 | 10.5 (2.9, 31.4), n = 19 | 5.3 (1, 24.6), n = 19 | 15.8 (5.5, 37.6), n = 19 |
7 < dpi ≤ 21 | 24.1 (12.2, 42.1), n = 29 | 27.6 (14.7, 45.7), n = 29 | 13.8 (5.5, 30.6), n = 29 a | 13.8 (5.5, 30.6), n = 29 a |
21 < dpi ≤ 42 | 25 (14.9, 38.8), n = 48 | 16.7 (8.7, 29.6), n = 48 | 14.6 (7.2, 27.2), n = 48 | 10.4 (4.5, 22.2), n = 48 a |
42 < dpi ≤ 63 | 8.7 (2.4, 26.8), n = 23 | 12.5 (4.3, 31), n = 24 | 4.2 (1, 20.2), n = 24 | 0 (0, 13.8), n = 24 |
63 < dpi ≤ 93 | 9.5 (2.7, 28.9), n = 21 | 17.4 (7, 37.1), n = 23 | 0 (0, 14.3), n = 23 | 4.2 (1, 20.2), n = 24 |
Tonsillar scraping | 22.3 (16.1, 30), n = 139 | 22.9 (16.8, 30.5), n = 144 | 14 (9.2, 20.7), n = 143 a | 15.5 (10.4, 22.4), n = 142 a |
0 < dpi ≤ 7 | 15.8 (5.5, 37.6), n = 19 | 36.8 (19.1, 59), n = 19 | 5.3 (1, 24.6), n = 19 | 36.8 (19.1, 59), n = 19 |
7 < dpi ≤ 21 | 32.1 (16.9, 50.7), n = 28 | 20.7 (9.8, 38.4), n = 29 a | 10.3 (3.6, 26.4), n = 29 a | 10.7 (3.7, 27.2), n = 28 a |
21 < dpi ≤ 42 | 27.7 (16.9, 41.8), n = 47 | 31.3 (19.9, 45.3), n = 48 | 25 (14.9, 38.8), n = 48 | 22.9 (13.3, 36.5), n = 48 |
42 < dpi ≤ 63 | 19 (7.7, 40), n = 21 | 12.5 (4.3, 31), n = 24 | 8.3 (2.3, 25.8), n = 24 | 0 (0, 13.8), n = 24 |
63 < dpi ≤ 93 | 8.3 (2.3, 25.8), n = 24 b | 8.3 (2.3, 35.8), n = 24 | 8.7 (2.4, 26.8), n = 23 | 4.2 (1, 20.2), n = 24 |
Kappa Statistic | Correlation of Cycle Threshold Value | Positive Sample Cycle Threshold IDEXX | Positive Sample Cycle Threshold IDVet | |
---|---|---|---|---|
Kappa (95% Conf. Interval) | Median (Range) | Median (Range) | ||
GROUP 1 | ||||
MagMax Core Extraction | ||||
Blood | 48.6 (33.9, 63.4) | 0.78 | 37.1 (30.1, 39.4) | 35.2 (27.5, 39.3) |
Oral fluid | 49.6 (33.8, 65.4) | −0.2 * | 38.1 (35.5, 39.8) | 36.9 (31.1, 39.7) |
Buccal swab | 43.9 (30, 57.8) | 0.81 | 37.8 (31.2, 39.8) | 37.2 (30.3, 39.8) |
Tonsillar scraping | 54.6 (41.5, 67.7) | 0.64 | 37.3 (31, 39.9) | 36.6 (31.0, 38.5) |
IDEXX Extraction | ||||
Blood | 66.9 (54, 79.8) | 0.83 | 36.4 (28.6, 39.7) | 34.8 (28.9, 39) |
Oral fluid | 40.5 (23.6, 57.4) | −0.1 * | 38 (33.8, 39.9) | 37.1 (28.3, 39) |
Buccal swab | 55.7 (42.9, 68.4) | 0.87 | 37.8 (31.7, 39.8) | 37 (30.5, 39.2) |
Tonsillar scraping | 57.3 (44.6, 70.1) | 0.67 | 37.1 (30.4, 39.8) | 37 (30.6, 39.3) |
GROUP 2 | ||||
MagMax Core Extraction | ||||
Blood | 64.4 (51.5, 77.3) | 0.72 | 36.2 (31, 39.5) | 34.9 (27.6, 38.1) |
Oral fluid | 56.4 (39.7, 73) | 0.52 + | 38.2 (34.1, 39.8) | 37.1 (32.4, 39.8) |
Buccal swab | 68.8 (57.1, 80.6) | 0.83 | 37.2 (29.9, 39.9) | 36.4 (31.7, 38.3) |
Tonsillar scraping | 62.1 (49.4, 74.8) | 0.91 | 37.1 (28.4, 38.7) | 36.4 (28.1, 38.9) |
IDEXX Extraction | ||||
Blood | 61 (48.3, 73.8) | 0.86 | 37 (31.7, 39.4) | 35.9 (29.6, 39.1) |
Oral fluid | 62.2 (46.1, 78.2) | 0.495 + | 38 (33.2, 39.6) | 36.9 (32.8, 39.4) |
Buccal swab | 67.3 (55.6, 79) | 0.86 | 38.2 (33.4, 39.3) | 37 (33, 38.1) |
Tonsillar scraping | 65.8 (53.9, 77.7) | 0.95 | 38 (28.7, 39.8) | 37.4 (28.3, 39.2) |
IDVet | Innoceleris | Ingenasa | |
---|---|---|---|
% (95% Confidence Interval) | % (95% Confidence Interval) | % (95% Confidence Interval) | |
GROUP 1 | n = 152 | n = 96 | n = 152 |
Serum, day ≥ 7 | 84.2 (22.5, 89.2) | 84.4 (75.7, 90.4) | 84.2 (22.5, 89.2) |
Oral fluid, day ≥ 7 | 61.2 (53.2, 68.6) | 46.9 (37.2, 56.8) | 0.7 (0, 4) |
n = 144 | n = 88 | n = 144 | |
Serum, day ≥ 12 | 88.9 (82.6, 93.1) | 90.9 (82.8, 95.5) | 88.9 (82.6, 93.1) |
Oral fluid, day ≥ 12 | 68.4 (60.1, 75.6) | 51.1 (40.9, 61.3) | 0.7 (0, 4.2) |
n = 136 | n = 88 | n = 136 | |
Serum, day ≥ 17 | 90.4 (84.2, 94.4) | 90.9 (82.8, 95.5) | 91.1 (85.1, 95) |
Oral fluid, day ≥ 17 | 68.4 (60.1, 75.6) | 51.1 (40.9, 61.3) | 0.7 (0, 4.5) |
GROUP 2 | n = 136 | n = 48 | n = 136 |
Serum, day ≥ 7 | 75 (67.1, 81.6) | 75 (61.1, 85.2) | 69.1 (60.9, 76.3) |
Oral fluid, day ≥ 7 | 64.6 (56.5, 71.9) | 43.8 (30.7, 57.7) | 0 (0, 3.3) |
n = 128 | n = 48 | n = 128 | |
Serum, day ≥ 12 | 78.1 (70.2, 84.5) | 75 (61.1, 85.2) | 71.9 (63.5, 79) |
Oral fluid, day ≥ 12 | 68.4 (60.1, 75.6) | 51.1 (40.9, 61.3) | 0 (0, 3.7) |
n = 120 | n = 40 | n = 120 | |
Serum, day ≥ 17 | 80 (71.9, 86.2) | 82.5 (68.1, 91.3) | 74.2 (65.6, 81.2) |
Oral fluid, day ≥ 17 | 65 (56.1, 73) | 50 (35.2, 64.8) | 0 (0, 3.7) |
Kappa Agreement Overall | Agreement between IDVet & Ingenasa | Agreement between IDVet & Innoceleris | Agreement between Ingenasa & Innoceleris | |
---|---|---|---|---|
GROUP 1 | % (95% Conf. Interval) | % (95% Conf. Interval) | % (95% Conf. Interval) | % (95% Conf. Interval) |
Serum | 79 (71.9, 86.1) | 74.4 (66, 82.85) | 95.7 (82.8, 100) | 75.5 (61.2, 89.75) |
Oral Fluid | 34.1 (24.6, 43.6) | −4.55 (−19.45, 10.4) | 75.5 (61.2, 89.75) | 26.4 (11.5, 41.4) |
GROUP 2 | ||||
Serum | 61.3 (51.8, 70.8) | 58.9 (48.7, 69.15) | 89.3 (67.45, 100) | 62.5 (40.6, 84.4 |
Oral Fluid | 35.7 (25.2, 46.2) | 3.6 (−11.7, 18.8) | 78.6 (56.6, 100) | 38.4 (17.2, 59.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havas, K.A.; Gogin, A.E.; Basalaeva, J.V.; Sindryakova, I.P.; Kolbasova, O.L.; Titov, I.A.; Lyska, V.M.; Morgunov, S.Y.; Vlasov, M.E.; Sevskikh, T.A.; et al. An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period. Pathogens 2022, 11, 404. https://doi.org/10.3390/pathogens11040404
Havas KA, Gogin AE, Basalaeva JV, Sindryakova IP, Kolbasova OL, Titov IA, Lyska VM, Morgunov SY, Vlasov ME, Sevskikh TA, et al. An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period. Pathogens. 2022; 11(4):404. https://doi.org/10.3390/pathogens11040404
Chicago/Turabian StyleHavas, Karyn A., Andrey E. Gogin, Julia V. Basalaeva, Irina P. Sindryakova, Olga L. Kolbasova, Ilya A. Titov, Valentina M. Lyska, Sergey Y. Morgunov, Mikhail E. Vlasov, Timofey A. Sevskikh, and et al. 2022. "An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period" Pathogens 11, no. 4: 404. https://doi.org/10.3390/pathogens11040404
APA StyleHavas, K. A., Gogin, A. E., Basalaeva, J. V., Sindryakova, I. P., Kolbasova, O. L., Titov, I. A., Lyska, V. M., Morgunov, S. Y., Vlasov, M. E., Sevskikh, T. A., Pivova, E. Y., Kudrjashov, D. A., Doolittle, K., Zimmerman, S., Witbeck, W., Gimenez-Lirola, L. G., Nerem, J., Spronk, G. D., Zimmerman, J. J., & Sereda, A. D. (2022). An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period. Pathogens, 11(4), 404. https://doi.org/10.3390/pathogens11040404