Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times
Abstract
:1. Introduction
2. Results
2.1. Seven Squirrel Monkeys Inoculated with Material Containing BSE Agent Developed a Similar Neurological Disease (SQ-BSE) after Significantly Different Incubation Times Compared to Four Uninfected Squirrel Monkeys (SQ-Uninfected)
2.2. PrPTSE in SQ-BSE Brains
2.3. Neuropathology of SQ-BSE
3. Discussion
4. Materials and Methods
4.1. BSE Agent and Bioassay
4.2. Histopathological and Immunohistochemical Analyses and Enzyme Immunoassays
4.3. Prion Protein Gene (PRNP) Analysis
- Pair A
- Pair B
- Sequencing primers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, D.M.; Gregori, L. Human transmissible spongiform encephalopathies: Historic view. Handb. Clin. Neurol. 2018, 153, 1–17. [Google Scholar] [PubMed]
- Barria, M.A.; Ironside, J.W.; Head, M.W. Exploring the zoonotic potential of animal prion diseases: In vivo and in vitro approaches. Prion 2014, 8, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Brandner, S.; Isenmann, S.; Raeber, A.; Fischer, M.; Sailer, A.; Kobayashi, Y.; Marino, S.; Weissmann, C.; Aguzzi, A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 1996, 379, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.C.; Millson, G.C. Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature 1976, 261, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Vorberg, I.; Raines, A.; Story, B.; Priola, S.A. Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J. Infect. Dis. 2004, 189, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Green, A.J.E.; Zanusso, G. Prion protein amplification techniques. Handb. Clin. Neurol. 2018, 153, 357–370. [Google Scholar]
- Hayashi, Y.; Iwasaki, Y.; Yoshikura, N.; Asano, T.; Mimuro, M.; Kimura, A.; Satoh, K.; Kitamoto, T.; Yoshida, M.; Inuzuka, T. An autopsy-verified case of steroid-responsive encephalopathy with convulsion and a false-positive result from the real-time quaking-induced conversion assay. Prion 2017, 11, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Diack, A.B.; Ritchie, D.L.; Bishop, M.; Pinion, V.; Brandel, J.-P.; Haik, S.; Tagliavini, F.; van Duijn, C.; Belay, E.D.; Gambetti, P.; et al. Constant transmission properties of variant Creutzfeldt-Jakob disease in 5 countries. Emerg. Infect. Dis. 2012, 18, 1574–1579. [Google Scholar] [CrossRef] [Green Version]
- Piccardo, P.; Cervenak, J.; Bu, M.; Miller, L.; Asher, D.M. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, alpha-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys. J. Gen. Virol. 2014, 95, 1612–1618. [Google Scholar] [CrossRef]
- Piccardo, P.; Cervenakova, L.; Vasilyeva, I.; Yakovleva, O.; Bacik, I.; Cervenak, J.; McKenzie, C.; Kurillova, L.; Gregori, L.; Pomeroy, K.; et al. Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies. Emerg. Infect. Dis. 2011, 17, 2262–2269. [Google Scholar] [CrossRef]
- Head, M.; Ironside, J.; Jeffrey, M.; Ghetti, B.; Piccardo, P. Prion diseases. In Greenfield’s Neuropathology, 9th ed.; Love, S., Budka, H., Perry, A., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Minor, P.; Newham, J.; Jones, N.; Bergeron, C.; Gregori, L.; Asher, D.; van Engelenburg, F.; Stroebel, T.; Vey, M.; Barnard, G.; et al. Standards for the assay of Creutzfeldt-Jakob disease specimens. J. Gen. Virol. 2004, 85, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Asher, D.M.; Piccardo, P.; Gregori, L. Nonhuman primates in research on transmissible spongiform encephalopathies. In Prion Diseases Neuromethods; Liberski, P.P., Ed.; Springer Science + Business Media LLC: Humana, NY, USA, 2017; pp. 49–63. [Google Scholar]
- Krasemann, S.; Sikorska, B.; Liberski, P.P.; Glatzel, M. Non-human primates in prion research. Folia Neuropathol. 2012, 50, 57–67. [Google Scholar] [PubMed]
- Piccardo, P.; Asher, D.M. Complex proteinopathies and neurodegeneration: Insights from the study of transmissible spongiform encephalopathies. Arq. Neuropsiquiatr. 2018, 76, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Reiniger, L.; Lukic, A.; Linehan, J.; Rudge, P.; Collinge, J.; Mead, S.; Brandner, S. Tau, prions and Abeta: The triad of neurodegeneration. Acta Neuropathol. 2011, 121, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Bautista, M.J.; Gutierrez, J.; Salguero, F.J.; de Marco, M.M.F.; Romero-Trevejo, J.L.; Gomez-Villamandos, J.C. BSE infection in bovine PrP transgenic mice leads to hyperphosphorylation of tau-protein. Vet. Microbiol. 2006, 115, 293–301. [Google Scholar] [CrossRef]
- Giaccone, G.; Mangieri, M.; Capobianco, R.; Limido, L.; Hauw, J.J.; Haik, S.; Fociani, P.; Bugiani, O.; Tagliavini, F. Tauopathy in human and experimental variant Creutzfeldt-Jakob disease. Neurobiol. Aging 2008, 29, 1864–1873. [Google Scholar] [CrossRef]
- Jeffrey, M.; Piccardo, P.; Ritchie, D.L.; Ironside, J.W.; Green, A.J.; McGovern, G. A naturally occurring bovine tauopathy Is geographically widespread in the UK. PLoS ONE 2015, 10, e0129499. [Google Scholar] [CrossRef] [Green Version]
- Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-directed post-translational modifications of tau protein in Alzheimer’s Disease and related tauopathies. Front. Mol. Biosci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Grinberg, L.T.; Rueb, U.; Heinsen, H. Brainstem: Neglected locus in neurodegenerative diseases. Front. Neurol. 2011, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- Tokutake, T.; Kasuga, K.; Yajima, R.; Sekine, Y.; Tezuka, T.; Nishizawa, M.; Ikeuchi, T. Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J. Biol. Chem. 2012, 287, 35222–35233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, B.; Stancu, I.C.; Buist, A.; Bird, M.; Wang, P.; Vanoosthuyse, A.; van Kolen, K.; Verheyen, A.; Kienlen-Campard, P.; Octave, J.-N.; et al. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol. 2016, 131, 549–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Zaidi, T.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA 2001, 98, 6923–6928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bett, C.; Piccardo, P.; Cervenak, J.; Torres, J.M.; Asher, D.M.; Gregori, L. Both murine host and inoculum modulate expression of experimental variant Creutzfeldt-Jakob disease. J. Gen. Virol. 2018, 99, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, P.; King, D.; Brown, D.; Barron, R.M. Variable tau accumulation in murine models with abnormal prion protein deposits. J. Neurol. Sci. 2017, 383, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, H.; Dickinson, A.G. Distribution of experimentally induced scrapie lesions in the brain. Nature 1967, 216, 1310–1311. [Google Scholar] [CrossRef]
- Goldmann, W.; Ryan, K.; Stewart, P.; Parnham, D.; Xicohtencatl, R.; Fernandez, N.; Saunders, G.; Windl, O.; González, L.; Bossers, A.; et al. Caprine prion gene polymorphisms are associated with decreased incidence of classical scrapie in goat herds in the United Kingdom. Vet. Res. 2011, 42, 110. [Google Scholar] [CrossRef] [Green Version]
SQ-Uninfected | SQ-BSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SQ-BSE Identification | 659 | 707 | 718 | 723 | 721 | 722 | 735 ** | 736 * | 737 | 738 | 739 |
IP/Y(M) | n/a | n/a | n/a | n/a | 3.5 (42) | 3.8 (45.6) | 3.3 (39.6) | 8.1 (94.8) | 3.1 (37.2) | 3.1 (37.2) | 2.4 (28.8) |
CD/M | n/a | n/a | n/a | n/a | 4 | 3 | 2 | 2 | 5 | 2 | 5 |
C-BSE 1 | n/a | n/a | n/a | n/a | n/a | n/a | 10−1 | 10−1 | 10−1 | 10−1 | 10−1 |
C-BSE 2 | n/a | n/a | n/a | n/a | 10−2 | 10−2 | n/a | n/a | n/a | n/a | n/a |
Vero | 9 × 108 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
R9ab | n/a | 2 × 108 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
MDCK | n/a | n/a | 1.3 × 109 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
HEK293 | n/a | n/a | n/a | 2 × 109 | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
ataxia | − | − | − | − | + | + | + | + | + | + | + |
tremor | − | − | − | − | − | + | + | − | + | + | + |
weakness | − | − | − | − | + | + | + | + | − | − | − |
bradykinesia | − | − | − | − | + | − | − | + | + | + | + |
myoclonus | − | − | − | − | + | − | + | − | + | + | − |
SD | 0 | 0 | 0 | 0 | 2–3 | 2–3 | 2–3 | 3 | 2–3 | 2–3 | 2–3 |
astrogliosis | 0 | 0 | 0 | 0 | 2–3 | 2–3 | 2–3 | 3 | 2–3 | 2–3 | 2–3 |
PrPTSE | 0 | 0 | 0 | 0 | 2–3 | 2–3 | 2–3 | 3 | 2–3 | 2–3 | 2–3 |
p-tau | 0 | 0 | 0 | 0 | 2–3 | 2–3 | 2–3 | 3 | 2–3 | 2–3 | 2–3 |
α-syn | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccardo, P.; Cervenak, J.; Goldmann, W.; Stewart, P.; Pomeroy, K.L.; Gregori, L.; Yakovleva, O.; Asher, D.M. Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times. Pathogens 2022, 11, 597. https://doi.org/10.3390/pathogens11050597
Piccardo P, Cervenak J, Goldmann W, Stewart P, Pomeroy KL, Gregori L, Yakovleva O, Asher DM. Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times. Pathogens. 2022; 11(5):597. https://doi.org/10.3390/pathogens11050597
Chicago/Turabian StylePiccardo, Pedro, Juraj Cervenak, Wilfred Goldmann, Paula Stewart, Kitty L. Pomeroy, Luisa Gregori, Oksana Yakovleva, and David M. Asher. 2022. "Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times" Pathogens 11, no. 5: 597. https://doi.org/10.3390/pathogens11050597
APA StylePiccardo, P., Cervenak, J., Goldmann, W., Stewart, P., Pomeroy, K. L., Gregori, L., Yakovleva, O., & Asher, D. M. (2022). Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times. Pathogens, 11(5), 597. https://doi.org/10.3390/pathogens11050597