Sequencing-Based Genotyping of Pakistani Burkholderia mallei Strains: A Useful Way for Investigating Glanders Outbreaks
Abstract
:1. Introduction
2. Results
2.1. Strain Isolation and Identification
2.2. Genome Sequencing
2.3. SNP Typing of Pakistani Strains
2.4. cgMLST Scheme Development and Validation
2.5. Allele-Based Typing of Pakistani Strains
3. Discussion
4. Materials and Methods
4.1. Sampling and Identification
4.2. Cultivation and DNA Isolation
4.3. Library Preparation, Sequencing and Assembly
4.4. Raw Data Processing
4.5. Genotyping
4.6. cgMLST Scheme Generation and Validation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornstra, H.; Pearson, T.; Georgia, S.; Liguori, A.; Dale, J.; Price, E.; O’Neill, M.; Deshazer, D.; Muhammad, G.; Saqib, M.; et al. Molecular epidemiology of glanders, Pakistan. Emerg. Infect. Dis. 2009, 15, 2036–2039. [Google Scholar] [CrossRef] [PubMed]
- Timoney, P.J. Infectious diseases and international movement of horses. In Equine Infectious Diseases; Sellon, D.C., Long, M.T., Eds.; Elsevier Public Health Emergency Collection: St. Louis, MO, USA, 2014; pp. 544–551.e541. [Google Scholar]
- Fonseca-Rodriguez, O.; Pinheiro Junior, J.W.; Mota, R.A. Spatiotemporal analysis of glanders in Brazil. J. Equine Vet. Sci. 2019, 78, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Medina, S.; Toth, B.; Mawhinney, I. Surveillance focus: Glanders. Vet. Rec. 2015, 177, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Van Zandt, K.E.; Greer, M.T.; Gelhaus, H.C. Glanders: An overview of infection in humans. Orphanet J. Rare Dis. 2013, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, A.; Kraus, C.N.; DeShazer, D.; Becker, P.M.; Dick, J.D.; Spacek, L.; Bartlett, J.G.; Byrne, W.R.; Thomas, D.L. Glanders in a military research microbiologist. N. Engl. J. Med. 2001, 345, 256–258. [Google Scholar] [CrossRef]
- Saqib, M.; Muhammad, G.; Naureen, A.; Hussain, M.H.; Asi, M.N.; Mansoor, M.K.; Toufeer, M.; Khan, I.; Neubauer, H.; Sprague, L.D. Effectiveness of an antimicrobial treatment scheme in a confined glanders outbreak. BMC Vet. Res. 2012, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zarodkiewicz, P.; Valvano, M.A. Current advances in Burkholderia vaccines development. Cells 2020, 9, 2671. [Google Scholar] [CrossRef]
- Arun, S.; Neubauer, H.; Gurel, A.; Ayyildiz, G.; Kuscu, B.; Yesildere, T.; Meyer, H.; Hermanns, W. Equine glanders in Turkey. Vet. Rec. 1999, 144, 255–258. [Google Scholar] [CrossRef]
- Kettle, A.N.; Wernery, U. Glanders and the risk for its introduction through the international movement of horses. Equine Vet. J. 2016, 48, 654–658. [Google Scholar] [CrossRef]
- Elschner, M.C.; Klaus, C.U.; Liebler-Tenorio, E.; Schmoock, G.; Wohlsein, P.; Tinschmann, O.; Lange, E.; Kaden, V.; Klopfleisch, R.; Melzer, F.; et al. Burkholderia mallei infection in a horse imported from Brazil. Equine Vet. Educ. 2009, 21, 147–150. [Google Scholar] [CrossRef]
- Khan, I.; Wieler, L.H.; Melzer, F.; Elschner, M.C.; Muhammad, G.; Ali, S.; Sprague, L.D.; Neubauer, H.; Saqib, M. Glanders in animals: A review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound. Emerg. Dis. 2013, 60, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Glanders and farcy in India. Vet. J. 1877, 5, 424–427. [Google Scholar]
- Sial, A.U.R.; Saqib, M.; Muhammad, G.; Sajid, M.S. Seroprevalence and risk factors of equine glanders in selected districts of Khyber Pakhtunkhwa (KPK). Pak. Vet. J. 2020, 40, 504–508. [Google Scholar] [CrossRef]
- Khan, I.; Ali, S.; Gwida, M.; Elschner, M.; Ijaz, A.; Neubauer, H. Prevalence of Burkholderia mallei in equids of remount depot, Sargodha, Pakistan. Pak. J. Zool. 2013, 45, 1751–1756. [Google Scholar]
- Khan, I.; Wieler, L.H.; Butt, M.A.; Elschner, M.C.; Cheema, A.H.; Sprague, L.D.; Neubauer, H. On the current situation of glanders in various districts of the Pakistani Punjab. J. Equine Vet. Sci. 2012, 32, 783–787. [Google Scholar] [CrossRef]
- Malik, P.; Singha, H.; Khurana, S.; Kumar, R.; Kumar, S.; Raut, A.; Riyesh, T.; Vaid, R.K.; Virmani, N.; Singh, B.; et al. Emergence and re-emergence of glanders in India: A description of outbreaks from 2006 to 2011. Vet. Ital. 2012, 48, 167–178. [Google Scholar]
- Verma, A.K.; Saminathan, M.; Tiwari, R.; Dhama, K.; Singh, S.V. Glanders—A re-emerging zoonotic disease: A review. J. Biol. Sci. 2014, 14, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, G.; Khan, M.Z.; Athar, M. Clinico-microbiological and therapeutic aspects of glanders in equines. J. Equine Sci. 1998, 9, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Losada, L.; Ronning, C.M.; DeShazer, D.; Woods, D.; Fedorova, N.; Kim, H.S.; Shabalina, S.A.; Pearson, T.R.; Brinkac, L.; Tan, P.; et al. Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol. Evol. 2010, 2, 102–116. [Google Scholar] [CrossRef]
- Godoy, D.; Randle, G.; Simpson, A.J.; Aanensen, D.M.; Pitt, T.L.; Kinoshita, R.; Spratt, B.G. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 2003, 41, 2068–2079. [Google Scholar] [CrossRef] [Green Version]
- U’Ren, J.M.; Schupp, J.M.; Pearson, T.; Hornstra, H.; Friedman, C.L.; Smith, K.L.; Daugherty, R.R.; Rhoton, S.D.; Leadem, B.; Georgia, S.; et al. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping. BMC Microbiol. 2007, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keim, P.; Van Ert, M.N.; Pearson, T.; Vogler, A.J.; Huynh, L.Y.; Wagner, D.M. Anthrax molecular epidemiology and forensics: Using the appropriate marker for different evolutionary scales. Infect. Genet. Evol. 2004, 4, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Girault, G.; Wattiau, P.; Saqib, M.; Martin, B.; Vorimore, F.; Singha, H.; Engelsma, M.; Roest, H.J.; Spicic, S.; Grunow, R.; et al. High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei. Infect. Genet. Evol. 2018, 63, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Laroucau, K.; Lucia de Assis Santana, V.; Girault, G.; Martin, B.; Miranda da Silveira, P.P.; Brasil Machado, M.; Joseph, M.; Wernery, R.; Wernery, U.; Zientara, S.; et al. First molecular characterisation of a Brazilian Burkholderia mallei strain isolated from a mule in 2016. Infect. Genet. Evol. 2018, 57, 117–120. [Google Scholar] [CrossRef]
- Scholz, H.C.; Pearson, T.; Hornstra, H.; Projahn, M.; Terzioglu, R.; Wernery, R.; Georgi, E.; Riehm, J.M.; Wagner, D.M.; Keim, P.S.; et al. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events. PLoS Negl. Trop. Dis. 2014, 8, e3195. [Google Scholar] [CrossRef] [Green Version]
- De Been, M.; Pinholt, M.; Top, J.; Bletz, S.; Mellmann, A.; van Schaik, W.; Brouwer, E.; Rogers, M.; Kraat, Y.; Bonten, M.; et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J. Clin. Microbiol. 2015, 53, 3788–3797. [Google Scholar] [CrossRef] [Green Version]
- Pearce, M.E.; Alikhan, N.F.; Dallman, T.J.; Zhou, Z.; Grant, K.; Maiden, M.C.J. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int. J. Food Microbiol. 2018, 274, 1–11. [Google Scholar] [CrossRef]
- Higgins, P.G.; Prior, K.; Harmsen, D.; Seifert, H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS ONE 2017, 12, e0179228. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Glil, M.Y.; Thomas, P.; Linde, J.; Jolley, K.A.; Harmsen, D.; Wieler, L.H.; Neubauer, H.; Seyboldt, C. Establishment of a publicly available core genome multilocus sequence typing scheme for Clostridium perfringens. Microbiol. Spectr. 2021, 9, e0053321. [Google Scholar] [CrossRef]
- Ruppitsch, W.; Pietzka, A.; Prior, K.; Bletz, S.; Fernandez, H.L.; Allerberger, F.; Harmsen, D.; Mellmann, A. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015, 53, 2869–2876. [Google Scholar] [CrossRef] [Green Version]
- Lichtenegger, S.; Trinh Trung, T.; Assig, K.; Prior, K.; Harmsen, D.; Pesl, J.; Zauner, A.; Lipp, M.; Que Tram, A.; Mutsam, B.; et al. Development and validation of a Burkholderia pseudomallei core genome multilocus sequence typing scheme to facilitate molecular surveillance. J. Clin. Microbiol. 2021, 59, e00093-21. [Google Scholar] [CrossRef] [PubMed]
- Sahl, J.W.; Vazquez, A.J.; Hall, C.M.; Busch, J.D.; Tuanyok, A.; Mayo, M.; Schupp, J.M.; Lummis, M.; Pearson, T.; Shippy, K.; et al. The effects of signal erosion and core genome reduction on the identification of diagnostic markers. MBio 2016, 7, e00846-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghori, M.T.; Khan, M.S.; Khan, J.A.; Rabbani, M.; Shabbir, M.Z.; Chaudhry, H.R.; Ali, M.A.; Muhammad, J.; Elschner, M.C.; Jayarao, B.M. Seroprevalence and risk factors of glanders in working equines—Findings of a cross-sectional study in Punjab province of Pakistan. Acta Trop. 2017, 176, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.M.; DeShazer, D.; Feldblyum, T.; Ravel, J.; Woods, D.; Kim, H.S.; Yu, Y.; Ronning, C.M.; Nierman, W.C. Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts. BMC Genom. 2006, 7, 228. [Google Scholar] [CrossRef] [Green Version]
- Laroucau, K.; Aaziz, R.; Vorimore, F.; Varghese, K.; Deshayes, T.; Bertin, C.; Delannoy, S.; Sami, A.M.; Al Batel, M.; El Shorbagy, M.; et al. A genetic variant of Burkholderia mallei detected in Kuwait: Consequences for the PCR diagnosis of glanders. Transbound. Emerg. Dis. 2021, 68, 960–963. [Google Scholar] [CrossRef]
- Ulrich, R.L.; Ulrich, M.P.; Schell, M.A.; Kim, H.S.; DeShazer, D. Development of a polymerase chain reaction assay for the specific identification of Burkholderia mallei and differentiation from Burkholderia pseudomallei and other closely related Burkholderiaceae. Diagn. Microbiol. Infect. Dis. 2006, 55, 37–45. [Google Scholar] [CrossRef]
- Moore, D. Preparation and analysis of DNA. In Current Protocols in Molecular Biology; Absubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Siedman, J.G., Smith, J.A., Struhl, K., Eds.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, N.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Jünemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013, 31, 294–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Year | Source | Host | Population | Region | Purpose |
---|---|---|---|---|---|---|
Pak2018H3 | 2018 | Blood | Horse | Private farm | Islamabad | Polo |
Pak2018M4 | 2018 | Pus | Mule | Sample received for confirmation | Azad Jammu and Kashmir | Draught |
Pak2019H6 | 2019 | Pus | Horse | Private owner having total 28 imported polo ponies | Islamabad | Polo |
Pak2017H7 | 2017 | Blood | Horse | Private | Islamabad | Polo |
Pak2020M8 | 2020 | Blood | Mule | For hauling | Faisalabad | Draught |
Pak2019H9 | 2019 | Blood | Horse | Owner has 40 polo ponies | Lahore | Polo |
Pak2018H10 | 2018 | Blood | Horse | Cart horse | Faisalabad | Draught |
Pak2020M11 | 2020 | Blood | Mule | For hauling | Faisalabad | Draught |
PRL1 | 2002 | Pus | Donkey | For hauling | Faisalabad | Draught |
PRL2 | 1999 | Nasal swab | Horse | Police service | Faisalabad | Mounted Police Horse |
PRL3 | 2005 | Pus | Horse | Private | Sargodha | Farm |
PRL4 | 2005 | Pus | Horse | Private | Sargodha | Farm |
PRL7 | 2000 | Pus | Horse | For hauling | Faisalabad | Draught |
PRL11 | 1999 | Pus | Horse | Police service | Faisalabad | Mounted Police Horse |
PRL34 | 2007 | Nasal swab | Donkey | Work in brick factory | Faisalabad | Draught |
PRL41 | 2006 | Pus | Mule | For hauling | Faisalabad | Draught |
PRL42 | 2007 | Pus | Mule | For hauling | Faisalabad | Draught |
PRL43 | NA | NA | NA | NA | NA | NA |
PRL44 | 2007 | Nasal swab | Mule | Private | Sargodha | Farm |
Strain | Coverage | Bases | Contigs | GC (%) | L50 | N50 | GF * (%) | CDS |
---|---|---|---|---|---|---|---|---|
Pak2018H3 | 100 | 5,526,644 | 295 | 68.68 | 44 | 43,202 | 92.86 | 4614 |
Pak2018M4 | 118 | 5,526,233 | 269 | 68.68 | 41 | 46,366 | 92.95 | 4615 |
Pak2019H6 | 79 | 5,526,261 | 262 | 68.69 | 40 | 46,511 | 92.98 | 4631 |
Pak2017H7 | 86 | 5,528,440 | 272 | 68.69 | 42 | 46,377 | 92.97 | 4623 |
Pak2020M8 | 98 | 5,593,509 | 284 | 68.22 | 41 | 46,937 | 92.64 | 4639 |
Pak2019H9 | 68 | 5,305,987 | 266 | 68.60 | 40 | 44,187 | 89.23 | 4442 |
Pak2018H10 | 75 | 5,536,192 | 307 | 68.65 | 45 | 43,210 | 92.91 | 4630 |
Pak2020M11 | 127 | 5,530,694 | 379 | 68.59 | 61 | 30,209 | 92.59 | 4667 |
PRL1 | 121 | 5,523,415 | 294 | 68.66 | 43 | 43,660 | 92.95 | 4610 |
PRL2 | 112 | 5,512,370 | 302 | 68.67 | 43 | 42,887 | 92.54 | 4595 |
PRL3 | 116 | 5,599,466 | 279 | 68.69 | 40 | 46,978 | 92.50 | 4680 |
PRL4 | 120 | 5,517,077 | 287 | 68.68 | 41 | 43,747 | 92.54 | 4605 |
PRL7 | 114 | 5,282,618 | 281 | 68.58 | 41 | 43,782 | 88.62 | 4432 |
PRL11 | 124 | 5,509,016 | 290 | 68.68 | 41 | 45,145 | 92.56 | 4600 |
PRL34 | 90 | 5,559,549 | 287 | 68.73 | 42 | 45,246 | 92.51 | 4623 |
PRL41 | 82 | 5,589,007 | 272 | 68.71 | 39 | 46,976 | 92.87 | 4666 |
PRL42 | 78 | 5,575,591 | 270 | 68.70 | 38 | 48,213 | 93.81 | 4652 |
PRL43 | 82 | 5,579,744 | 271 | 68.69 | 41 | 46,808 | 93.82 | 4658 |
PRL44 | 171 | 5,527,185 | 294 | 68.69 | 42 | 43,055 | 92.95 | 4613 |
Strain | Bases | Contigs | L50 | N50 | GF * (%) | CDS |
---|---|---|---|---|---|---|
34 | 5,647,473 | 1 | 1 | 5,647,473 | 94.62 | 4812 |
Mukteswar | 5,760,320 | 11 | 1 | 3,539,038 | 96.27 | 4909 |
BfR 242 | 5,375,480 | 18 | 1 | 3,503,053 | 90.00 | 4632 |
NCTC 120 | 5,401,604 | 19 | 1 | 4,027,971 | 89.47 | 4668 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brangsch, H.; Saqib, M.; Sial, A.u.R.; Melzer, F.; Linde, J.; Elschner, M.C. Sequencing-Based Genotyping of Pakistani Burkholderia mallei Strains: A Useful Way for Investigating Glanders Outbreaks. Pathogens 2022, 11, 614. https://doi.org/10.3390/pathogens11060614
Brangsch H, Saqib M, Sial AuR, Melzer F, Linde J, Elschner MC. Sequencing-Based Genotyping of Pakistani Burkholderia mallei Strains: A Useful Way for Investigating Glanders Outbreaks. Pathogens. 2022; 11(6):614. https://doi.org/10.3390/pathogens11060614
Chicago/Turabian StyleBrangsch, Hanka, Muhammad Saqib, Awais ur Rehman Sial, Falk Melzer, Jörg Linde, and Mandy Carolina Elschner. 2022. "Sequencing-Based Genotyping of Pakistani Burkholderia mallei Strains: A Useful Way for Investigating Glanders Outbreaks" Pathogens 11, no. 6: 614. https://doi.org/10.3390/pathogens11060614
APA StyleBrangsch, H., Saqib, M., Sial, A. u. R., Melzer, F., Linde, J., & Elschner, M. C. (2022). Sequencing-Based Genotyping of Pakistani Burkholderia mallei Strains: A Useful Way for Investigating Glanders Outbreaks. Pathogens, 11(6), 614. https://doi.org/10.3390/pathogens11060614