Elevated Fasting Blood Glucose Levels Are Associated with Worse Clinical Outcomes in COVID-19 Patients Than in Pneumonia Patients with Bacterial Infections
Abstract
:1. Introduction
2. Methods
2.1. Participants, Inclusion and Exclusion Criteria, and Clinical Discharge Criteria
2.2. Clinical and Outcome Indicators, and Study Strata
2.3. Statistical Analysis
3. Results
3.1. Demographic and Baseline Characteristics of Patients
3.2. Comparison of FBG Levels among Pneumonia Groups
3.3. The Odds Ratios of Complications and Clinical Outcomes Stratified by Pneumonia Groups
3.4. FBG Levels at Admission Predict the Risk of ICU Admission during Hospitalisation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- What You Should Know about Pneumonia? Available online: https://www.medicalnewstoday.com/articles/151632 (accessed on 14 April 2021).
- Organisation WH. Pneumonia. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 14 April 2021).
- Healthline. Bacterial Pneumonia: Symptoms, Treatment, and Prevention. Available online: https://www.healthline.com/health/bacterial-pneumonia (accessed on 14 April 2021).
- Stacy Sampson, D.O. What to Know about Bacterial Pneumonia. Available online: https://www.medicalnewstoday.com/articles/312565#causes (accessed on 14 April 2021).
- De Wit, E.; Van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.; Dahly, D.L.; Damen, J.A.; Debray, T.P.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ Br. Med. J. 2020, 369, m1328. [Google Scholar] [CrossRef] [Green Version]
- WHO. Coronavirus Disease (COVID-19) Pandemic. Available online: www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 14 April 2021).
- Qiu, P.; Zhou, Y.; Wang, F.; Wang, H.; Zhang, M.; Pan, X.; Zhao, Q.; Liu, J. Clinical characteristics, laboratory outcome characteristics, comorbidities, and complications of related COVID-19 deceased: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2020, 32, 1869–1878. [Google Scholar] [CrossRef]
- Pneumonia. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/pneumonia (accessed on 14 April 2021).
- McAlister, F.; Majumdar, S.; Blitz, S.; Rowe, B.; Romney, J.; Marrie, T. The Relation Between Hyperglycemia and Outcomes in 2471 Patients Admitted to the Hospital with Community-Acquired Pneumonia. Diabetes Care 2005, 28, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Sathish, T.; Kapoor, N.; Cao, Y.; Tapp, R.J.; Zimmet, P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes. Metab. 2021, 23, 870–874. [Google Scholar] [CrossRef]
- Sourij, H.; Aziz, F.; Bräuer, A.; Ciardi, C.; Clodi, M.; Fasching, P.; Karolyi, M.; Kautzky-Willer, A.; Klammer, C.; Malle, O.; et al. COVID-19 fatality prediction in people with diabetes and prediabetes using a simple score upon hospital admission. Diabetes Obes. Metab. 2021, 23, 589–598. [Google Scholar] [CrossRef]
- Wang, W.; Shen, M.; Tao, Y.; Fairley, C.K.; Zhong, Q.; Li, Z.; Chen, H.; Ong, J.J.; Zhang, D.; Zhang, K.; et al. Elevated glucose level leads to rapid COVID-19 progression and high fatality. BMC Pulm. Med. 2021, 21, 64. [Google Scholar] [CrossRef]
- Rubino, F.; Amiel, S.A.; Zimmet, P.; Alberti, G.; Bornstein, S.; Eckel, R.H.; Mingrone, G.; Boehm, B.; Cooper, M.E.; Chai, Z.; et al. New-Onset Diabetes in COVID-19. N. Engl. J. Med. 2020, 383, 789–790. [Google Scholar] [CrossRef]
- Tikellis, C.; Wookey, P.J.; Candido, R.; Andrikopoulos, S.; Thomas, M.C.; Cooper, M.E. Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. Diabetes 2004, 53, 989–997. [Google Scholar] [CrossRef]
- Codo, A.C.; Davanzo, G.G.; de Brito Monteiro, L.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020, 32, 437–446. [Google Scholar] [CrossRef]
- Accili, D. Can COVID-19 cause diabetes? Nat. Metab. 2021, 3, 123–125. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Filatov, A.; Sharma, P.; Hindi, F.; Espinosa, P.S. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus 2020, 12, e7352. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Khan, M.I.; Nazir, M.S.; Ahmed, I.; Iqbal, H.M. Coronaviruses and COVID-19—Complications and Lessons Learned for the Future. J. Pure Appl. Microbiol. 2020, 14, 725–731. [Google Scholar] [CrossRef]
- Fraser, E. Long term respiratory complications of COVID-19. BMJ 2020, 370, m3001. [Google Scholar] [CrossRef]
- Greenberg, A.; Pemmasani, G.; Yandrapalli, S.; Frishman, W.H. Cardiovascular and Cerebrovascular Complications With COVID-19. Cardiol. Rev. 2021, 29, 143. [Google Scholar] [CrossRef]
- Monpara, J.D.; Sodha, S.J.; Gupta, P.K. COVID-19 associated complications and potential therapeutic targets. Eur. J. Pharmacol. 2020, 886, 173548. [Google Scholar] [CrossRef]
- WHO. Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 14 April 2021).
- CMS; NCSH; Booklet. ICD-10-CM Official Guidelines for Coding and Reporting FY 2021; WHO: Washington, DC, USA, 2021. [Google Scholar]
- Society, C.D. Guidelines for the Prevention and Control of Type 2 Diabetes in China, 2017 ed.; CDS: Shanghai, China, 2018. [Google Scholar]
- Institute of Medicine (US) Committee on Assessing Interactions among Social, Behavioral, and Genetic Factors in Health. Hernandez, L.M., Blazer, D.G., Eds.; Genes, Behavior, and the Social Environment: Moving Beyond the Nature/Nurture Debate; Study Design and Analysis for Assessment of Interactions; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Jensen, A.V.; Egelund, G.B.; Andersen, S.B.; Petersen, P.T.; Benfield, T.; Faurholt-Jepsen, D.; Rohde, G.; Ravn, P. The impact of blood glucose on community-acquired pneumonia: A retrospective cohort study. ERJ Open Res. 2017, 3, 00114–02016. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ma, P.; Zhang, S.; Song, S.; Wang, Z.; Ma, Y.; Xu, J.; Wu, F.; Duan, L.; Yin, Z.; et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi-centre retrospective study. Diabetologia 2020, 63, 2102–2111. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; Mathews, C.E.; McCormick, J.B. Obesity, diabetes and pneumonia: The menacing interface of non-communicable and infectious diseases. Trop. Med. Int. Health 2013, 18, 1510–1519. [Google Scholar] [CrossRef]
- Barra, N.G.; Gillgrass, A.; Ashkar, A.A. Effective control of viral infections by the adaptive immune system requires assistance from innate immunity. Expert Rev. Vaccines 2010, 9, 1143–1147. [Google Scholar] [CrossRef]
- Kornum, J.B.; Thomsen, R.W.; Riis, A.; Lervang, H.H.; Schønheyder, H.C.; Sørensen, H.T. Diabetes, glycemic control, and risk of hospitalization with pneumonia: A population-based case-control study. Diabetes care 2008, 31, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- Green, W.D.; Beck, M.A. Obesity Impairs the Adaptive Immune Response to Influenza Virus. Ann. Am. Thorac. Soc. 2017, 14, S406–S409. [Google Scholar] [CrossRef]
- Moore, T.A.; Standiford, T.J. The role of cytokines in bacterial pneumonia: An inflammatory balancing act. Proc. Assoc. Am. Physicians 1998, 110, 297–305. [Google Scholar]
- Feldman, E.L.; Savelieff, M.G.; Hayek, S.S.; Pennathur, S.; Kretzler, M.; Pop-Busui, R. COVID-19 and Diabetes: A Collision and Collusion of Two Diseases. Diabetes 2020, 69, 2549–2565. [Google Scholar] [CrossRef]
- Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 303–310. [Google Scholar] [CrossRef]
- Gustine, J.N.; Jones, D. Immunopathology of Hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [Google Scholar] [CrossRef]
- Zhong, J.; Gong, Q.; Mima, A. Inflammatory Regulation in Diabetes and Metabolic Dysfunction. J. Diabetes Res. 2017, 2017, 5165268. [Google Scholar] [CrossRef]
- Mozafari, N.; Azadi, S.; Mehdi-Alamdarlou, S.; Ashrafi, H.; Azadi, A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses 2020, 143, 110111. [Google Scholar] [CrossRef]
- Baden, L.R.; Rubin, E.J. Covid-19—The Search for Effective Therapy. N. Engl. J. Med. 2020, 382, 1851–1852. [Google Scholar] [CrossRef]
- Akbar, D.H. Bacterial pneumonia: Comparison between diabetics and non-diabetics. Acta Diabetol. 2001, 38, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, Y.; Dong, K.; Yan, Y.; Shi, X. Clinical characteristics of 28 patients with diabetes and COVID-19 in Wuhan, China. Endocr. Pract. 2020, 26, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015, 202, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Simmons, G.; Gosalia, D.; Rennekamp, A.; Reeves, J.; Diamond, S.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 2005, 102, 11876–11881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Han, Y.; Nilsson-Payant, B.E.; Gupta, V.; Wang, P.; Duan, X.; Tang, X.; Zhu, J.; Zhao, Z.; Jaffré, F.; et al. Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020, 27, 125–136. [Google Scholar] [CrossRef]
- Drucker, D.J. Coronavirus Infections and Type 2 Diabetes—Shared Pathways with Therapeutic Implications. Endocr. Rev. 2020, 3, bnaa011. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected: Interim Guidance; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Gaieski, D.F.; Mikkelsen, M. Definition, Classification, Etiology, and Pathophysiology of Shock in Adults; UpToDate: Waltham, MA, USA, 2016; Volume 8, p. 17. Available online: https://www.uptodate.com/contents/definition-classification-etiology-and-pathophysiology-of-shock-in-adults (accessed on 5 May 2022).
- Ponikowski, P.V.A.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- ISN. KDIGO Clinical Practice Guideline for Acute Kidney Injury. USA. 2012. Available online: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf (accessed on 5 May 2022).
- Gao, C.; Wang, Y.; Gu, X.; Shen, X.; Zhou, D.; Zhou, S.; Huang, J.-A.; Cao, B.; Guo, Q. Community-Acquired Pneumonia–China Network. Association between cardiac injury and mortality in hospitalized patients infected with avian influenza A (H7N9) virus. Crit. Care. Med. 2020, 48, 451–458. [Google Scholar] [CrossRef]
- Lotano, R. Nonpulmonary Causes of Respiratory Failure. In Critical Care Medicine, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Schaefer TJ JS (USA). Acute Hepatitis; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551570/ (accessed on 5 May 2022).
- Lukashyk, S.P.; Karpov, I.A. Acute Liver Failure in Adults: Etiology, Clinical Manifestations, Methods of Correction. The Russian Arch. Intern. Med. 2017, 7, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Prevention CfDCa. Symptoms of COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. (accessed on 14 April 2022).
Variable | COVID-19 | Pneumonia Patients with Bacterial Infections | Pneumonia Patients with Concurrent Infections | p-Value |
---|---|---|---|---|
(n = 2761) | (n = 1686) | (n = 2035) | ||
Demographic characteristics at admission | ||||
Age (years)—median (IQR) | 60 (50, 68) | 59 (47, 69) | 65 (52, 79) | <0.001 ** |
<45—no. (%) | 470 (17.0) | 348 (20.6) | 306 (15.0) | <0.001 ** |
45–59—no. (%) | 865 (31.3) | 520 (30.8) | 461 (22.7) | |
60–74—no. (%) | 1133 (41.0) | 529 (31.4) | 575 (28.3) | |
>74—no. (%) | 293 (10.6) | 289 (17.1) | 693 (34.01) | |
Male gender—no. (%) | 1401 (50.7) | 1170 (69.5) | 1396 (68.7) | <0.001 ** |
Respiratory rate > 20 min—no. (%) | 822 (29.9) | 149 (9.6) | 331 (17.6) | <0.001 ** |
Pulse rate > 100 per min—no. (%) | 420 (15.3) | 202 (12.9) | 361 (19.1) | <0.001 ** |
Systolic blood pressure ≥140 mmHg—no. (%) | 645 (25.4) | 451 (29.0) | 513 (27.3) | 0.041 * |
Diastolic blood pressure ≥90 mmHg—no. (%) | 562 (22.1) | 240 (15.4) | 223 (11.9) | <0.001 ** |
Signs and symptoms—no. (%) | ||||
Cough | 1555 (56.6) | 451 (26.8) | 715 (35.1) | <0.001 ** |
Fatigue | 1097 (39.7) | 49 (2.9) | 69 (3.4) | <0.001 ** |
Diarrhoea | 79 (2.9) | 12 (0.7) | 24 (1.2) | <0.001 ** |
Chest tightness | 331 (12.0) | 134 (8.0) | 178 (8.8) | <0.001 ** |
Shortness of breath | 706 (25.6) | 131 (7.8) | 189 (9.3) | <0.001 ** |
Pre-existing comorbidities—no. (%) | ||||
Coronary heart disease | 160 (5.8) | 292 (17.3) | 492 (24.2) | <0.001 ** |
Cancer | 47 (1.7) | 549 (32.6) | 539 (26.5) | <0.001 ** |
Chronic bronchitis | 55 (2.0) | 197 (11.7) | 308 (15.1) | <0.001 ** |
Cerebrovascular disease | 95 (3.4) | 211 (12.5) | 471 (23.1) | <0.001 ** |
Chronic kidney disease | 64 (2.3) | 391 (23.2) | 551 (27.1) | <0.001 ** |
Chronic obstructive pulmonary disease | 24 (0.9) | 78 (4.6) | 169 (8.3) | <0.001 ** |
Diabetes | 375 (13.6) | 333 (19.8) | 467 (23.0) | 0.020 * |
Hepatitis | 37 (1.3) | 47 (2.8) | 61 (3.0) | <0.001 ** |
Hypertension | 810 (29.3) | 571 (33.9) | 837 (41.1) | <0.001 ** |
Laboratory findings—median (IQR) | ||||
C-reactive protein (mg/L) | 2.2 (0.8,8.5) | 18.3 (3.5,70.0) | 32.0 (8.6,87.8) | <0.001 ** |
D-dimer (mg/L) | 0.4 (0.2,0.8) | 0.9 (0.4,2.2) | 1.6 (0.8,3.3) | <0.001 ** |
White blood cell count (109/L) | 5.7 (4.7,7.0) | 7.1 (5.4,9.7) | 8.2 (5.7,11.6) | <0.001 ** |
Lymphocyte ratio (%) | 27.0 (20.3,32.9) | 16.3 (7.2,27.4) | 10.2 (4.0,18.9) | <0.001 ** |
Neutrophils ratio (%) | 62.1 (55.7,69.5) | 67.7(53.1,79.5) | 74.5 (54.0,84.7) | <0.001 ** |
Monocyte ratio (%) | 7.6 (6.2,9.0) | 6.0 (3.8,7.8) | 5.1 (2.1,7.3) | <0.001 ** |
Lactate dehydrogenase (IU/L) | 176.5 (151.1,215.1) | 183.2 (148.2,242.3) | 210.7 (162.8,294.1) | <0.001 ** |
Thrombinogen time (s) | 12.8 (12.2,13.5) | 15.8 (15.0,16.6) | 15.7 (14.9,16.7) | <0.001 ** |
Total bilirubin (μmol/L) | 9.5 (7.3,12.3) | 10.0 (7.1,14.5) | 10.0 (7.1,15.2) | <0.001 ** |
Direct bilirubin (μmol/L) | 3.3 (2.5,4.5) | 3.1 (2.1,5.0) | 3.5 (2.3,5.7) | <0.001 ** |
Albumin (g/L) | 38.2 (35.3,40.5) | 53.4 (48.0,57.9) | 50.9 (46.1,56.0) | <0.001 ** |
Alkaline phosphatase (IU/L) | 69.7 (58.3,84.7) | 68.9 (54.8,87.9) | 71.1 (55.6,91.2) | 0.145 |
Fibrinogen (g/L) | 3.0 (2.6,3.4) | 4.4 (3.4,5.8) | 4.7 (3.6,5.9) | <0.001 ** |
Creatinine (μmol/L) | 64.1 (54.7,75.3) | 73.5 (60.1,94.2) | 72.1 (55.1,97.4) | <0.001 ** |
Creatine kinase (U/L) | 50.6 (36.4,72.5) | 62.9 (38.2,113.1) | 53.4 (29.4,107.2) | <0.001 ** |
Creatine kinase-MB (IU/L) | 8.6 (7.0,11.0) | 2.1 (0.9,11.3) | 1.8 (1.0,4.4) | <0.001 ** |
Fasting blood glucose (mmol/L) | 4.9 (4.5,5.7) | 5.5 (4.7,7.2) | 6.1 (5.0,8.0) | <0.001 ** |
Cystatin C (mg/L) | 0.9 (0.8,1.1) | 1.1 (0.9,1.8) | 1.2 (0.9,1.7) | <0.001 ** |
Platelets count (109/L) | 222.0 (181.0,272.0) | 212.0 (161.0,274.0) | 199.0 (141.0,267.8) | <0.001 ** |
Complications—no. (%) | ||||
Acute respiratory distress syndrome | 21 (0.8) | 3 (0.2) | 5 (0.3) | 0.005 * |
Acute myocardial injury/failure | 45 (1.6) | 494 (29.3) | 834 (41.0) | <0.001 ** |
Acute hepatitis/liver failure | 44 (1.6) | 386 (22.9) | 655 (32.2) | <0.001 ** |
Respiratory failure | 46 (1.7) | 86 (5.1) | 331 (16.3) | <0.001 ** |
Shock | 15 (0.5) | 11 (0.7) | 61 (3.0) | <0.001 ** |
Acute kidney injury | 8 (0.3) | 401 (23.8) | 622 (30.6) | <0.001 ** |
Clinical outcomes | ||||
Length of stay (days)—median (IQR) | 14.0 (9.0,20.0) | 14.0 (9.0,20.0) | 20.0 (13.0,29.0) | <0.001 ** |
Intensive care unit—no. (%) | 108 (3.9) | 90 (5.3) | 159 (7.8) | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chai, Z.; Cooper, M.E.; Zimmet, P.Z.; Guo, H.; Ding, J.; Yang, F.; Lin, X.; Chen, X.; Wang, X.; et al. Elevated Fasting Blood Glucose Levels Are Associated with Worse Clinical Outcomes in COVID-19 Patients Than in Pneumonia Patients with Bacterial Infections. Pathogens 2022, 11, 902. https://doi.org/10.3390/pathogens11080902
Wang W, Chai Z, Cooper ME, Zimmet PZ, Guo H, Ding J, Yang F, Lin X, Chen X, Wang X, et al. Elevated Fasting Blood Glucose Levels Are Associated with Worse Clinical Outcomes in COVID-19 Patients Than in Pneumonia Patients with Bacterial Infections. Pathogens. 2022; 11(8):902. https://doi.org/10.3390/pathogens11080902
Chicago/Turabian StyleWang, Wenjun, Zhonglin Chai, Mark E Cooper, Paul Z Zimmet, Hua Guo, Junyu Ding, Feifei Yang, Xixiang Lin, Xu Chen, Xiao Wang, and et al. 2022. "Elevated Fasting Blood Glucose Levels Are Associated with Worse Clinical Outcomes in COVID-19 Patients Than in Pneumonia Patients with Bacterial Infections" Pathogens 11, no. 8: 902. https://doi.org/10.3390/pathogens11080902
APA StyleWang, W., Chai, Z., Cooper, M. E., Zimmet, P. Z., Guo, H., Ding, J., Yang, F., Lin, X., Chen, X., Wang, X., Zhong, Q., Li, Z., Zhang, P., Wu, Z., Guan, X., Zhang, L., & He, K. (2022). Elevated Fasting Blood Glucose Levels Are Associated with Worse Clinical Outcomes in COVID-19 Patients Than in Pneumonia Patients with Bacterial Infections. Pathogens, 11(8), 902. https://doi.org/10.3390/pathogens11080902