Tuberculosis Treatment Response Monitoring by the Phenotypic Characterization of MTB-Specific CD4+ T-Cells in Relation to HIV Infection Status
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Participants
2.2. TB Treatment Reduces the Expression of Activation Markers on MTB-Specific CD4+ T-Cells but Not on Total CD4+ T-Cells, Regardless of HIV Status
2.3. Frequency of MTB-Specific CD4+ T-Cells Expressing the Activation Markers Reduces over 6 Months of TB Treatment Regardless of the Severity of Lung Impairment
3. Discussion
4. Materials and Methods
4.1. Study Populations
4.2. Assessment of Lung Function and Damage
4.3. Assessment of MTB-Specific T-Cell Activation and Maturation
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003702-1. [Google Scholar]
- Flynn, J.L.; Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, C.R.; Flynn, J.L. HIV-1/mycobacterium tuberculosis coinfection immunology: How does HIV-1 exacerbate tuberculosis? Infect. Immun. 2011, 79, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Geldmacher, C.; Zumla, A.; Hoelscher, M. Interaction between HIV and Mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis. Curr. Opin. HIV AIDS 2012, 7, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Geldmacher, C.; Schuetz, A.; Ngwenyama, N.; Casazza, J.P.; Sanga, E.; Saathoff, E.; Boehme, C.; Geis, S.; Maboko, L.; Singh, M.; et al. Early depletion of Mycobacterium tuberculosis-specific T helper 1 cell responses after HIV-1 infection. J. Infect. Dis. 2008, 198, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Geldmacher, C.; Ngwenyama, N.; Schuetz, A.; Petrovas, C.; Reither, K.; Heeregrave, E.J.; Casazza, J.P.; Ambrozak, D.R.; Louder, M.; Ampofo, W.; et al. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J. Exp. Med. 2010, 207, 2869–2881. [Google Scholar] [CrossRef]
- Esmail, H.; Riou, C.; du Bruyn, E.; Lai, R.P.-J.; Harley, Y.X.R.; Meintjes, G.; Wilkinson, K.A.; Wilkinson, R.J. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu. Rev. Immunol. 2018, 36, 603–638. [Google Scholar] [CrossRef]
- Bell, L.C.K.; Noursadeghi, M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat. Rev. Microbiol. 2018, 16, 80–90. [Google Scholar] [CrossRef]
- Autran, B.; Carcelain, G.; Li, T.S.; Blanc, C.; Mathez, D.; Tubiana, R.; Katlama, C.; Debré, P.; Leibowitch, J. Positive Effects of Combined Antiretroviral Therapy on CD4+ T Cell Homeostasis and Function in Advanced HIV Disease. Science 1997, 277, 112–116. [Google Scholar] [CrossRef]
- Mpande, C.A.M.; Musvosvi, M.; Rozot, V.; Mosito, B.; Reid, T.D.; Schreuder, C.; Lloyd, T.; Bilek, N.; Huang, H.; Obermoser, G.; et al. Antigen-Specific T-Cell Activation Distinguishes between Recent and Remote Tuberculosis Infection. Am. J. Respir. Crit. Care Med. 2021, 203, 1556–1565. [Google Scholar] [CrossRef]
- Ahmed, M.I.M.; Ntinginya, N.E.; Kibiki, G.; Mtafya, B.A.; Semvua, H.; Mpagama, S.; Mtabho, C.; Saathoff, E.; Held, K.; Loose, R.; et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific CD4 T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front. Immunol. 2018, 9, 2247. [Google Scholar] [CrossRef] [Green Version]
- Adekambi, T.; Ibegbu, C.C.; Cagle, S.; Kalokhe, A.S.; Wang, Y.F.; Hu, Y.; Day, C.L.; Ray, S.M.; Rengarajan, J. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J. Clin. Investig. 2015, 125, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Riou, C.; Du Bruyn, E.; Ruzive, S.; Goliath, R.T.; Lindestam Arlehamn, C.S.; Sette, A.; Sher, A.; Barber, D.L.; Wilkinson, R.J. Disease extent and anti-tubercular treatment response correlates with Mycobacterium tuberculosis-specific CD4 T-cell phenotype regardless of HIV-1 status. Clin. Transl. Immunol. 2020, 9, e1176. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, A.; Haule, A.; Reither, K.; Ngwenyama, N.; Rachow, A.; Meyerhans, A.; Maboko, L.; Koup, R.A.; Hoelscher, M.; Geldmacher, C. Monitoring CD27 Expression to Evaluate Mycobacterium Tuberculosis Activity in HIV-1 Infected Individuals In Vivo. PLoS ONE 2011, 6, e27284. [Google Scholar] [CrossRef] [PubMed]
- Scriba, T.J.; Coussens, A.K.; Fletcher, H.A. Human Immunology of Tuberculosis. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Kroidl, I.; Ahmed, M.I.M.; Horn, S.; Polyak, C.; Esber, A.; Parikh, A.; Eller, L.A.; Kibuuka, H.; Semwogerere, M.; Mwesigwa, B.; et al. Assessment of tuberculosis disease activity in people infected with Mycobacterium tuberculosis and living with HIV: A longitudinal cohort study. eClinicalMedicine 2022, 49, 101470. [Google Scholar] [CrossRef]
- Mupfumi, L.; Mpande, C.A.M.; Reid, T.; Moyo, S.; Shin, S.S.; Zetola, N.; Mogashoa, T.; Musonda, R.M.; Kasvosve, I.; Scriba, T.J.; et al. Immune Phenotype and Functionality of Mtb-Specific T-Cells in HIV/TB Co-Infected Patients on Antiretroviral Treatment. Pathogens 2020, 9, 180. [Google Scholar] [CrossRef]
- Du Bruyn, E.; Peton, N.; Esmail, H.; Howlett, P.J.; Coussens, A.K.; Wilkinson, R.J. Recent progress in understanding immune activation in the pathogenesis in HIV-tuberculosis co-infection. Curr. Opin. HIV AIDS 2018, 13, 455–461. [Google Scholar] [CrossRef]
- Riou, C.; Berkowitz, N.; Goliath, R.; Burgers, W.A.; Wilkinson, R.J. Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals. Front. Immunol. 2017, 8, 968. [Google Scholar] [CrossRef]
- Chushkin, M.I.; Ots, O.N. Impaired pulmonary function after treatment for tuberculosis: The end of the disease? J. Bras. Pneumol. 2017, 43, 38–43. [Google Scholar] [CrossRef]
- Jung, J.-W.; Choi, J.-C.; Shin, J.-W.; Kim, J.-Y.; Choi, B.-W.; Park, I.-W. Pulmonary Impairment in Tuberculosis Survivors: The Korean National Health and Nutrition Examination Survey 2008–2012. PLoS ONE 2015, 10, e0141230. [Google Scholar] [CrossRef] [Green Version]
- Stek, C.; Allwood, B.; Walker, N.F.; Wilkinson, R.J.; Lynen, L.; Meintjes, G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front. Microbiol. 2018, 9, 2603. [Google Scholar] [CrossRef] [PubMed]
- Khosa, C.; Bhatt, N.; Massango, I.; Azam, K.; Saathoff, E.; Bakuli, A.; Riess, F.; Ivanova, O.; Hoelscher, M.; Rachow, A. Development of chronic lung impairment in Mozambican TB patients and associated risks. BMC Pulm. Med. 2020, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-P.; Chen, J.-Y.; Lee, C.-H.; Wu, H.-D.; Wang, J.-Y.; Lee, L.-N.; Yu, C.-J.; Yang, P.-C. Trends and predictors of changes in pulmonary function after treatment for pulmonary tuberculosis. Clinics 2011, 66, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xiao, H.; Mai, G.; Su, B.; Ernst, J.; Hu, Z. Impaired M. tuberculosis Antigen-Specific IFN-γ Response without IL-17 Enhancement in Patients with Severe Cavitary Pulmonary Tuberculosis. PLoS ONE 2015, 10, e0127087. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, Y.; Liu, J.; Yin, Y.; Pei, H. MTB-specific lymphocyte responses are impaired in tuberculosis patients with pulmonary cavities. Eur. J. Med. Res. 2017, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Lubaki, N.M.; Shepherd, M.E.; Brookmeyer, R.S.; Hon, H.; Quinn, T.C.; Kashamuka, M.; Johnson, M.; Gottle, R.; Devers, J.; Lederman, H.M.; et al. HIV-1–Specific Cytolytic T-Lymphocyte Activity Correlates With Lower Viral Load, Higher CD4 Count, and CD8+CD38−DR− Phenotype: Comparison of Statistical Methods for Measurement. J. Acquir. Immune Defic. Syndr. 1999, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.N.; Hultin, L.E.; Mitsuyasu, R.T.; Matud, J.L.; Hausner, M.A.; Bockstoce, D.; Chou, C.C.; O’Rourke, S.; Taylor, J.M.; Giorgi, J.V. Circulating HIV-specific CD8+ cytotoxic T cells express CD38 and HLA-DR antigens. J. Immunol. 1993, 150, 3070–3079. [Google Scholar]
- Giorgi, J.V.; Hultin, L.E.; McKeating, J.A.; Johnson, T.D.; Owens, B.; Jacobson, L.P.; Shih, R.; Lewis, J.; Wiley, D.J.; Phair, J.P.; et al. Shorter Survival in Advanced Human Immunodeficiency Virus Type 1 Infection Is More Closely Associated with T Lymphocyte Activation than with Plasma Virus Burden or Virus Chemokine Coreceptor Usage. J. Infect. Dis. 1999, 179, 859–870. [Google Scholar] [CrossRef]
- Liu, Z.; Cumberland, W.G.; Hultin, L.E.; Prince, H.E.; Detels, R.; Giorgi, J.V. Elevated CD38 Antigen Expression on CD8+ T Cells Is a Stronger Marker for the Risk of Chronic HIV Disease Progression to AIDS and Death in the Multicenter AIDS Cohort Study Than CD4+ Cell Count, Soluble Immune Activation Markers, or Combinations of HLA-DR and CD38 Expression. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 16, 83–92. [Google Scholar] [CrossRef]
- Yang, J.; Xu, K.; Zheng, J.; Wei, L.; Fan, J.; Li, L. Limited T cell receptor beta variable repertoire responses to ESAT-6 and CFP-10 in subjects infected with Mycobacterium tuberculosis. Tuberculosis 2013, 93, 529–537. [Google Scholar] [CrossRef]
- Bua, A.; Molicotti, P.; Ruggeri, M.; Madeddu, G.; Ferrandu, G.; Mura, M.S.; Zanetti, S. Interferon-γ release assay in people infected with immunodeficiency virus. Clin. Microbiol. Infect. 2011, 17, 402–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, M.; Menzies, D. Editorial Commentary: Interferon-γ Release Assays: What Is Their Role in the Diagnosis of Active Tuberculosis? Clin. Infect. Dis. 2007, 44, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Dewan, P.K.; Grinsdale, J.; Kawamura, L.M. Low Sensitivity of a Whole-Blood Interferon-γ Release Assay for Detection of Active Tuberculosis. Clin. Infect. Dis. 2007, 44, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Clerici, M.; Shearer, G.M. A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol. Today 1993, 14, 107–111. [Google Scholar] [CrossRef]
- Lindestam Arlehamn, C.S.; McKinney, D.M.; Carpenter, C.; Paul, S.; Rozot, V.; Makgotlho, E.; Gregg, Y.; van Rooyen, M.; Ernst, J.D.; Hatherill, M.; et al. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog. 2016, 12, e1005760. [Google Scholar] [CrossRef]
- Wilkinson, K.A.; Oni, T.; Gideon, H.P.; Goliath, R.; Wilkinson, R.J.; Riou, C. Activation Profile of Mycobacterium tuberculosis-Specific CD4(+) T Cells Reflects Disease Activity Irrespective of HIV Status. Am. J. Respir. Crit. Care Med. 2016, 193, 1307–1310. [Google Scholar] [CrossRef]
- Luo, Y.; Xue, Y.; Mao, L.; Lin, Q.; Tang, G.; Song, H.; Liu, W.; Tong, S.; Hou, H.; Huang, M.; et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front. Immunol. 2021, 12, 721013. [Google Scholar] [CrossRef]
- Barham, M.S.; Whatney, W.E.; Khayumbi, J.; Ongalo, J.; Sasser, L.E.; Campbell, A.; Franczek, M.; Kabongo, M.M.; Ouma, S.G.; Hayara, F.O.; et al. Activation-Induced Marker Expression Identifies Mycobacterium tuberculosis-Specific CD4 T Cells in a Cytokine-Independent Manner in HIV-Infected Individuals with Latent Tuberculosis. Immunohorizons 2020, 4, 573–584. [Google Scholar] [CrossRef]
- Chevalier, M.F.; Didier, C.; Girard, P.-M.; Manea, M.E.; Campa, P.; Barré-Sinoussi, F.; Scott-Algara, D.; Weiss, L. CD4 T-Cell Responses in Primary HIV Infection: Interrelationship with Immune Activation and Virus Burden. Front. Immunol. 2016, 7, 395. [Google Scholar] [CrossRef]
- Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev. 2018, 27, 170077. [Google Scholar] [CrossRef]
- Petruccioli, E.; Petrone, L.; Vanini, V.; Cuzzi, G.; Navarra, A.; Gualano, G.; Palmieri, F.; Girardi, E.; Goletti, D. Assessment of CD27 expression as a tool for active and latent tuberculosis diagnosis. J. Infect. 2015, 71, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Latorre, I.; Fernández-Sanmartín, M.A.; Muriel-Moreno, B.; Villar-Hernández, R.; Vila, S.; Souza-Galvão, M.L.D.; Stojanovic, Z.; Jiménez-Fuentes, M.Á.; Centeno, C.; Ruiz-Manzano, J.; et al. Study of CD27 and CCR4 Markers on Specific CD4+ T-Cells as Immune Tools for Active and Latent Tuberculosis Management. Front. Immunol. 2019, 9, 3094. [Google Scholar] [CrossRef] [PubMed]
- Streitz, M.; Tesfa, L.; Yildirim, V.; Yahyazadeh, A.; Ulrichs, T.; Lenkei, R.; Quassem, A.; Liebetrau, G.; Nomura, L.; Maecker, H.; et al. Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis. PLoS ONE 2007, 2, e735. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, I.Y.; Kondratuk, N.A.; Kosmiadi, G.A.; Amansahedov, R.B.; Vasilyeva, I.A.; Ganusov, V.V.; Lyadova, I.V. Mtb-Specific CD27low CD4 T Cells as Markers of Lung Tissue Destruction during Pulmonary Tuberculosis in Humans. PLoS ONE 2012, 7, e43733. [Google Scholar] [CrossRef] [PubMed]
- Acharya, M.P.; Pradeep, S.P.; Murthy, V.S.; Chikkannaiah, P.; Kambar, V.; Narayanashetty, S.; Burugina Nagaraja, S.; Gangadhar, N.; Yoganand, R.; Satchidanandam, V. CD38+CD27–TNF-α + on Mtb-specific CD4+ T Cells Is a Robust Biomarker for Tuberculosis Diagnosis. Clin. Infect. Dis. 2021, 73, 793–801. [Google Scholar] [CrossRef]
- Kaveh, D.A.; Whelan, A.O.; Hogarth, P.J. The Duration of Antigen-Stimulation Significantly Alters the Diversity of Multifunctional CD4 T Cells Measured by Intracellular Cytokine Staining. PLoS ONE 2012, 7, e38926. [Google Scholar] [CrossRef] [PubMed]
- Rachow, A.; Ivanova, O.; Wallis, R.; Charalambous, S.; Jani, I.; Bhatt, N.; Kampmann, B.; Sutherland, J.; Ntinginya, N.E.; Evans, D.; et al. TB sequel: Incidence, pathogenesis and risk factors of long-term medical and social sequelae of pulmonary TB–a study protocol. BMC Pulm. Med. 2019, 19, 4. [Google Scholar] [CrossRef]
- Ralph, A.P.; Ardian, M.; Wiguna, A.; Maguire, G.P.; Becker, N.G.; Drogumuller, G.; Wilks, M.J.; Waramori, G.; Tjitra, E.; Sandjaja; et al. A simple, valid, numerical score for grading chest x-ray severity in adult smear-positive pulmonary tuberculosis. Thorax 2010, 65, 863–869. [Google Scholar] [CrossRef] [Green Version]
HIV+/TB+ | TB+ | p-Value | |
---|---|---|---|
N | 27 | 17 | |
Median of age (range), years | 37.01 (20.66–61.73) | 38.57 (23.78–52.70) | 0.7117 |
Gender (Male/Female) | 19/8 | 12/5 | |
BMI 1 at BL (95% CI) | 18.40 (17.54–20.34) | 18.85 (17.94–20.35) | 0.6127 |
Number of HIV-positive patients ART naïve | 8 | ||
Median CD4+ T-cells counts at BL (Min-Max), cells/mm3 | 279 (1–812) | ------ 6 | |
Median CD4+ T-cells counts at BL on HIV ART naïve (range), cells/mm3 | 156 (66–365) | ------- 6 | |
Median ratio monocytes/lymphocytes at BL (95% CI) | 0.47 (0.37–0.88) | 0.41 (0.38–0.63) | 0.9901 |
Median AST 2 level at BL (95% CI), in U/L | 22.0 (21.96–37.24) | 20.0 (16.81–58.52) | 0.9041 |
Median ALT 3 level at BL (95% CI), in U/L | 31.0 (29.13–46.50) | 26.0 (24.43–45.46) | 0.6041 |
TB culture positivity at month 2, N | 3 | 3 | |
Median ralph score at BL (Min-Max) | 15.0 (5–85) | 15.0 (7–55) | 0.9557 |
Median ralph score at M6 (Min-Max) | 6.0 (2–60) | 10.0 (3–58) | 0.1038 |
Presence of lung cavities at M0/M6, N | 8/1 | 4/3 | |
Any lung impaired spirometry at Month 0, in % | 69.57% (16/23 4) | 81.25% (13/16 5) | |
Any lung impaired spirometry at Month 6, in % | 65.22% (15/23 1) | 76.47% (13/17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitoe, N.; Ahmed, M.I.M.; Enosse, M.; Bakuli, A.; Chissumba, R.M.; Held, K.; Hoelscher, M.; Nhassengo, P.; Khosa, C.; Rachow, A.; et al. Tuberculosis Treatment Response Monitoring by the Phenotypic Characterization of MTB-Specific CD4+ T-Cells in Relation to HIV Infection Status. Pathogens 2022, 11, 1034. https://doi.org/10.3390/pathogens11091034
Sitoe N, Ahmed MIM, Enosse M, Bakuli A, Chissumba RM, Held K, Hoelscher M, Nhassengo P, Khosa C, Rachow A, et al. Tuberculosis Treatment Response Monitoring by the Phenotypic Characterization of MTB-Specific CD4+ T-Cells in Relation to HIV Infection Status. Pathogens. 2022; 11(9):1034. https://doi.org/10.3390/pathogens11091034
Chicago/Turabian StyleSitoe, Nádia, Mohamed I. M. Ahmed, Maria Enosse, Abhishek Bakuli, Raquel Matavele Chissumba, Kathrin Held, Michael Hoelscher, Pedroso Nhassengo, Celso Khosa, Andrea Rachow, and et al. 2022. "Tuberculosis Treatment Response Monitoring by the Phenotypic Characterization of MTB-Specific CD4+ T-Cells in Relation to HIV Infection Status" Pathogens 11, no. 9: 1034. https://doi.org/10.3390/pathogens11091034
APA StyleSitoe, N., Ahmed, M. I. M., Enosse, M., Bakuli, A., Chissumba, R. M., Held, K., Hoelscher, M., Nhassengo, P., Khosa, C., Rachow, A., Geldmacher, C., & on behalf of TB Sequel Consortium. (2022). Tuberculosis Treatment Response Monitoring by the Phenotypic Characterization of MTB-Specific CD4+ T-Cells in Relation to HIV Infection Status. Pathogens, 11(9), 1034. https://doi.org/10.3390/pathogens11091034