Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Isolates
2.2. Microbiological Resuscitation of Listeria Isolates
2.3. DNA Extraction Using Cell-Lysis Boiling Method
2.4. Listeria Speciation Using PCR
2.5. PCR Serogrouping of L. monocytogenes
2.6. MLVA Typing of L. monocytogenes
Determination of MLVA Types
2.7. MLVA Typing of L. innocua
Determination of the MLVA Types
2.8. Data Analysis
3. Results
3.1. Determination of Listeria Species
3.2. Detection of Serogroups of L. monocytogenes Isolates
3.3. MLVA Typing of L. monocytogenes
3.4. MLVA Typing of L. innocua
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allerberger, F. Listeria: Growth, phenotypic differentiation and molecular microbiology. FEMS Immunol. Med. Microbiol. 2003, 35, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doijad, S.P.; Poharkar, K.V.; Kale, S.B.; Kerkar, S.; Kalorey, D.R.; Kurkure, N.V.; Rawool, D.B.; Malik, S.V.S.; Ahmad, R.Y.; Hudel, M.; et al. Listeria goaensis sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 3285–3291. [Google Scholar] [CrossRef] [PubMed]
- Khelef, N.; Lecuit, M.; Buchrieser, C.; Cabanes, D.; Dussurget, O.; Cossart, P. Listeria monocytogenes and the Genus Listeria. In The Prokaryotes; Springer: New York, NY, USA, 2006; Volume 4, pp. 404–476. [Google Scholar] [CrossRef]
- Momtaz, H.; Yadollahi, S. Molecular characterization of Listeria monocytogenes isolated from fresh seafood samples in Iran. Diagn. Pathol. 2013, 8, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.F.; Siow, C.C.; Dutta, A.; Mutha, N.V.; Wee, W.Y.; Heydari, H.; Tan, S.Y.; Ang, M.Y.; Wong, G.J.; Choo, S.W. Development of ListeriaBase and comparative analysis of Listeria monocytogenes. BMC Genom. 2015, 16, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongkamjan, K.; Fuangpaiboon, J.; Jirachotrapee, S.; Turner, M.P. Occurrence and diversity of Listeria spp. in seafood processing plant environments. Food Control 2015, 50, 265–272. [Google Scholar] [CrossRef]
- Atil, E.; Ertas, H.; Ozbey, G. Isolation and molecular characterization of Listeria spp. from animals, food and environmental samples. Vet. Med. 2011, 56, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, A.; Larsen, H. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran. J. Vet. 2019, 20, 241–254. [Google Scholar]
- Carlin, C.R.; Liao, J.; Weller, D.; Guo, X.; Orsi, R.; Wiedmann, M. Listeria cossartiae sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environments. Int. J. Syst. Evol. Microbiol. 2021, 71, 004795. [Google Scholar] [CrossRef]
- Rosimin, A.A.; Kim, M.-J.; Joo, I.-S.; Suh, S.-H.; Kim, K.-S. Simultaneous detection of pathogenic Listeria including atypical Listeria innocua in vegetables by a quadruplex PCR method. Lwt 2016, 69, 601–607. [Google Scholar] [CrossRef]
- Liao, J.; Wiedmann, M.; Kovac, J. Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference. Appl. Environ. Microbiol. 2017, 83, e00306-17. [Google Scholar] [CrossRef]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnowski, M.; Lachtara, B.; Wieczorek, K.; Osek, J. Antimicrobial resistance and genotypic characteristics of Listeria monocytogenes isolated from food in Poland. Int. J. Food Microbiol. 2018, 289, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rivoal, K.; Fablet, A.; Courtillon, C.; Bougeard, S.; Chemaly, M.; Protais, J. Detection of Listeria spp. in liquid egg products and in the egg breaking plants environment and tracking of Listeria monocytogenes by PFGE. Int. J. Food Microbiol. 2013, 166, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Jallewar, P.; Kalorey, D.; Kurkure, N.; Pande, V.; Barbuddhe, S. Genotypic characterization of Listeria spp. isolated from fresh water fish. Int. J. Food Microbiol. 2007, 114, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Hyden, P.; Pietzka, A.; Lennkh, A.; Murer, A.; Springer, B.; Blaschitz, M.; Indra, A.; Huhulescu, S.; Allerberger, F.; Ruppitsch, W.; et al. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates. J. Biotechnol. 2016, 235, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Nyhan, L.; Johnson, N.; Begley, M.; O’Leary, P.; Callanan, M. Comparison of predicted and impedance determined growth of Listeria innocua in complex food matrices. Food Microbiol. 2020, 87, 103381. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.; Disson, O.; Lavina, M.; Thouvenot, P.; Huang, L.; Leclercq, A.; Fredriksson-Ahomaa, M.; Eshwar, A.K.; Stephan, R.; Lecuit, M. Atypical Hemolytic Listeria innocua Isolates Are Virulent, albeit Less than Listeria monocytogenes. Infect. Immun. 2019, 87, e00758-18. [Google Scholar] [CrossRef] [Green Version]
- Glaser, P.; Frangeul, L.; Buchrieser, C.; Rusniok, C.; Amend, A.; Baquero, F.; Berche, P.; Bloecker, H.; Brandt, P.; Chakraborty, T.; et al. Comparative genomics of Listeria species. Science 2001, 294, 849–852. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, J.; Lim, Z.Y.; Lai, S.; Lee, N.; Yang, H. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. Int. J. Food Microbiol. 2018, 271, 24–32. [Google Scholar] [CrossRef]
- dos Reis, C.M.; Ramos, G.L.d.P.; Pereira, R.D.C.L.; Vallim, D.C.; Costa, L.E.D.O. Evaluation of VITEK® 2 and MALDI-TOF/MS automated methodologies in the identification of atypical Listeria spp. isolated from food in different regions of Brazil. J. Microbiol. Methods 2022, 194, 106434. [Google Scholar] [CrossRef]
- Kaszoni-Rückerl, I.; Mustedanagic, A.; Muri-Klinger, S.; Brugger, K.; Wagner, K.-H.; Wagner, M.; Stessl, B. Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms 2020, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A Review of the Ecology, Genomics, and Stress Response of Listeria innocua and Listeria monocytogenes. Crit. Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Abay, S.; Aydin, F.; Sümerkan, A.B. Molecular typing of Listeria spp. isolated from different sources. Vet. Fak. Dergis 2012, 59, 183–190. [Google Scholar]
- Chen, J.; Chen, Q.; Jiang, L.; Cheng, C.; Bai, F.; Wang, J.; Mo, F.; Fang, W. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 2010, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Clayton, E.M.; Daly, K.M.; Guinane, C.M.; Hill, C.; Cotter, P.D.; Ross, P.R. Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiol. 2014, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, D.; Anderegg, J.; Lacroix, C.; Meile, L.; Stevens, M.J. pDB2011, a 7.6kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. Plasmid 2013, 70, 284–287. [Google Scholar] [CrossRef]
- Silva-Angulo, A.B.; Zanini, S.F.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martínez, A. Comparative Study of the Effects of Citral on the Growth and Injury of Listeria innocua and Listeria monocytogenes Cells. PLoS ONE 2015, 10, e0114026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.; Corcoran, D.; Buckley, J.F.; O’Mahony, M.; Whyte, P.; Fanning, S. Development and application of Multiple-Locus Variable Number of tandem repeat Analysis (MLVA) to subtype a collection of Listeria monocytogenes. Int. J. Food Microbiol. 2007, 115, 187–194. [Google Scholar] [CrossRef]
- Nyarko, E.B.; Donnelly, C.W. Listeria monocytogenes: Strain Heterogeneity, Methods, and Challenges of Subtyping. J. Food Sci. 2015, 80, M2868–M2878. [Google Scholar] [CrossRef]
- Martín, B.; Bover-Cid, S.; Aymerich, T. MLVA subtyping of Listeria monocytogenes isolates from meat products and meat processing plants. Food Res. Int. 2018, 106, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Du, X.-J.; Zhang, X.; Wang, X.-Y.; Su, Y.-L.; Li, P.; Wang, S. Isolation and characterization of Listeria monocytogenes in Chinese food obtained from the central area of China. Food Control 2016, 74, 9–16. [Google Scholar] [CrossRef]
- Laksanalamai, P.; Huang, B.; Sabo, J.; Burall, L.S.; Zhao, S.; Bates, J.; Datta, A.R. Genomic Characterization of Novel Listeria monocytogenes Serotype 4b Variant Strains. PLoS ONE 2014, 9, e89024. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, A.; Zhu, R.; Lan, R.; Jin, D.; Cui, Z.; Wang, Y.; Li, Z.; Wang, Y.; Xu, J.; et al. Genetic diversity and molecular typing of Listeria monocytogenes in China. BMC Microbiol. 2012, 12, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunabovic, M.; Domig, K.J.; Kneifel, W. Practical relevance of methodologies for detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture environments—A review. Lwt 2011, 44, 351–362. [Google Scholar] [CrossRef]
- Jadhav, S.; Bhave, M.; Palombo, E.A. Methods used for the detection and subtyping of Listeria monocytogenes. J. Microbiol. Methods 2012, 88, 327–341. [Google Scholar] [CrossRef]
- Saleh-Lakha, S.; Allen, V.G.; Li, J.; Pagotto, F.; Odumeru, J.; Taboada, E.; Lombos, M.; Tabing, K.C.; Blais, B.; Ogunremi, D.; et al. Subtyping of a Large Collection of Historical Listeria monocytogenes Strains from Ontario, Canada, by an Improved Multilocus Variable-Number Tandem-Repeat Analysis (MLVA). Appl. Environ. Microbiol. 2013, 79, 6472–6480. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Ohshima, C.; Nakagawa, M.; Thanatsang, K.; Phraephaisarn, C.; Chaturongkasumrit, Y.; Keeratipibul, S.; Kuda, T.; Kimura, B. Development of New Multilocus Variable Number of Tandem Repeat Analysis (MLVA) for Listeria innocua and Its Application in a Food Processing Plant. PLoS ONE 2014, 9, e105803. [Google Scholar] [CrossRef] [Green Version]
- Lindstedt, B.-A.; Tham, W.; Danielsson-Tham, M.-L.; Vardund, T.; Helmersson, S.; Kapperud, G. Multiple-locus variable-number tandem-repeats analysis of Listeria monocytogenes using multicolour capillary electrophoresis and comparison with pulsed-field gel electrophoresis typing. J. Microbiol. Methods 2008, 72, 141–148. [Google Scholar] [CrossRef]
- Sperry, K.E.V.; Kathariou, S.; Edwards, J.S.; Wolf, L.A. Multiple-Locus Variable-Number Tandem-Repeat Analysis as a Tool for Subtyping Listeria monocytogenes Strains. J. Clin. Microbiol. 2008, 46, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Miya, S.; Kimura, B.; Sato, M.; Takahashi, H.; Ishikawa, T.; Suda, T.; Takakura, C.; Fujii, T.; Wiedmann, M. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. Int. J. Food Microbiol. 2008, 124, 239–249. [Google Scholar] [CrossRef]
- Gana, J.; Gcebe, N.; Pierneef, R.; Moerane, R.; Adesiyun, A.A. Multiple-Locus Variable-Number Tandem Repeat Analysis Genotypes of Listeria monocytogenes Isolated from Farms, Abattoirs, and Retail in Gauteng Province, South Africa. J. Food Prot. 2022, 85, 1249–1257. [Google Scholar] [CrossRef]
- Matle, I.; Pierneef, R.; Mbatha, K.R.; Magwedere, K.; Madoroba, E. Genomic Diversity of Common Sequence Types of Listeria monocytogenes Isolated from Ready-to-Eat Products of Animal Origin in South Africa. Genes 2019, 10, 1007. [Google Scholar] [CrossRef] [Green Version]
- Madoroba, E.; Kapeta, D.; Gelaw, A.K. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Veter.-Res. 2016, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Park, S.H.; Yeom, Y.S.; Shrivastav, A.; Lee, S.-H.; Kim, Y.-R.; Kim, H.-Y. Simultaneous detection of Listeria species isolated from meat processed foods using multiplex PCR. Food Control 2013, 32, 659–664. [Google Scholar] [CrossRef]
- Liu, H.; Lu, L.; Pan, Y.; Sun, X.; Hwang, C.-A.; Zhao, Y.; Wu, V.C. Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control 2015, 52, 78–84. [Google Scholar] [CrossRef]
- Gebretsadik, S.; Kassa, T.; Alemayehu, H.; Huruy, K.; Kebede, N. Isolation and characterization of Listeria monocytogenes and other Listeria species in foods of animal origin in Addis Ababa, Ethiopia. J. Infect. Public Health 2011, 4, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, M.; Conrad, N.L.; Conceição, F.R.; Moreira, N.; da Silva, W.P.; Aleixo, J.A.; Bhunia, A.K. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol. 2012, 12, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebremedhin, E.Z.; Hirpa, G.; Borana, B.M.; Sarba, E.J.; Marami, L.M.; Kelbesa, K.A.; Tadese, N.D.; Ambecha, H.A. Listeria Species Occurrence and Associated Factors and Antibiogram of Listeria monocytogenes in Beef at Abattoirs, Butchers, and Restaurants in Ambo and Holeta in Ethiopia. Infect. Drug Resist. 2021, 14, 1493–1504. [Google Scholar] [CrossRef]
- Ismaiel, A.A.-R.; Ali, A.E.-S.; Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 2013, 23, 179–185. [Google Scholar] [CrossRef]
- Kérouanton, A.; Marault, M.; Petit, L.; Grout, J.; Dao, T.T.; Brisabois, A. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. J. Microbiol. Methods 2010, 80, 134–137. [Google Scholar] [CrossRef]
- Amajoud, N.; Leclercq, A.; Soriano, J.M.; Bracq-Dieye, H.; El Maadoudi, M.; Senhaji, N.S.; Kounnoun, A.; Moura, A.; Lecuit, M.; Abrini, J. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control 2018, 84, 436–441. [Google Scholar] [CrossRef]
- Camargo, A.C.; Dias, M.R.; Cossi, M.V.C.; Lanna, F.G.P.A.; Cavicchioli, V.Q.; Vallim, D.C.; Pinto, P.S.D.A.; Hofer, E.; Nero, L.A. Serotypes and Pulsotypes Diversity of Listeria monocytogenes in a Beef-Processing Environment. Foodborne Pathog. Dis. 2015, 12, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Vallim, D.C.; Hofer, C.B.; Lisbôa, R.D.C.; Barbosa, A.V.; Rusak, L.A.; dos Reis, C.M.F.; Hofer, E. Twenty Years of Listeria in Brazil: Occurrence of Listeria Species and Listeria monocytogenes Serovars in Food Samples in Brazil between 1990 and 2012. BioMed. Res. Int. 2015, 2015, 540204. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, J.; Saleh-Lakha, S.; Allen, V.; Odumeru, J. Multiple-locus variable number of tandem repeat analysis (MLVA) of Listeria monocytogenes directly in food samples. Int. J. Food Microbiol. 2011, 148, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Lunestad, B.T.; Truong, T.T.T.; Lindstedt, B.-A. A multiple-locus variable-number tandem repeat analysis (MLVA) of Listeria monocytogenes isolated from Norwegian salmon-processing factories and from listeriosis patients. Epidemiol. Infect. 2012, 141, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
Tandem Repeats (TR) | Primer | Sequence 5′-3′ |
---|---|---|
TR-D | D-Forward | GACAAAAGTAAGTCATGCGGGTATTT |
D-Reverse | TAGCTACAATCGGATTAACGG | |
TR-E | E-Forward | GTACCTCCATTTGCTGTTCCA |
E-Reverse | ATGTTATCCACCTTCAAGTAACTG | |
TR-J | J-Forward | ATGTTTGTGTTCTCAGTTGCC |
J-Reverse | CTACCAAGGATTACTACAAGAAC |
Sample Category | L. grayi | L. innocua | L. monocytogenes | L. seeligeri | L. welshimeri | L. specie * | Total |
---|---|---|---|---|---|---|---|
Fecal | 29 | 29 | |||||
Feed | 4 | 4 | |||||
Ground meat | 2 | 31 | 5 | 2 | 40 | ||
Offals | 24 | 4 | 1 | 4 | 33 | ||
Processed meat | 28 | 7 | 1 | 36 | |||
Raw meat | 1 | 39 | 5 | 1 | 5 | 7 | 58 |
RTE | 10 | 3 | 1 | 14 | |||
Total | 3 | 165 | 24 | 2 | 12 | 8 | 214 |
MLVA Type | MLVA Pattern a | Serogroup(s) | Meat Category | Frequency of Occurrence. % (n) | Geographical Origin b |
---|---|---|---|---|---|
1 | 04-02-20-00-27-04 | IIa, IVb | Processed meat, Offals, Raw meat, Ground meat | 20 (5) | NW, MP |
2 | 05-02-14-00-27-04 | IIb | Raw meat | 4 (1) | NW |
3 | 05-02-06-00-27-04 | IIa, IIb | RTE, Ground meat | 8 (2) | NW |
4 | 05-02-20-00-27-04 | IVb-1, IVb, IIa | RTE, Processed meat | 13 (3) | NW, MP |
5 | 04-02-25-00-27-04 | IIa, NS | Raw meat, Processed meat, Ground meat | 17 (4) | NW, MP |
6 | 05-02-25-00-27-04 | IVb, IIa, NS | Offals, Ground meat | 17 (4) | NW, MP |
7 | 05-02-09-00-27-04 | IVb | Offals, Ground meat | 8 (2) | MP |
8 | 11-02-20-00-27-04 | IIc | Processed meat | 4 (1) | MP |
9 | 04-02-06-00-27-04 | IIb | Offals | 4 (1) | MP |
10 | 11-02-25-00-27-04 | IIc | Raw meat | 4 (1) | MP |
MLVA Type | MLVA Pattern a | Meat Category/Farm Sample c | Frequency of Occurrence. % (n) | Geographical b Origin |
---|---|---|---|---|
1 | 08-09-05 | Feed | 0.6 (1) | MP |
2 | 08-09-12 | RM | 0.6 (1) | NW |
3 | 08-17-05 | RM, feed, GM, PM, | 2.4 (4) | NW, MP |
4 | 08-17-11 | GM, PM, offals, RM, feces | 6.6 (11) | NW, MP |
5 | 08-17-12 | GM, RM | 1.2 (2) | NW |
6 | 08-17-16 | RM, PM, offals | 3.0 (5) | MP |
7 | 08-25-08 | RTE, offals | 1.8 (3) | MP |
8 | 09-17-11 | GM, offals | 1.2 (2) | MP |
9 | 09-17-16 | GM | 0.6 (1) | NW |
10 | 10-17-05 | PM, RM | 1.2 (2) | MP |
11 | 14-09-08 | feces | 0.6 (1) | MP |
12 | 14-17-05 | PM, offals, GM, RTE, feces | 9 (15) | NW, MP |
13 | 00-17-08 | feces | 0.6 (1) | NW |
14 | 14-17-18 | RM, PM, offals, feces | 6.6 (11) | NW, MP |
15 | 14-17-11 | RM, PM, offals, GM, RTE, feces, feed | 21 (35) | NW, MP |
16 | 14-17-16 | RM, GM, PM | 3.6 (6) | MP |
17 | 14-17-14 | Offals, feces | 1.2 (2) | MP |
18 | 14-25-08 | GM, RM, PM | 5.4 (9) | NW |
19 | 14-25-11 | RM, PM | 1.2 (2) | NW, MP |
20 | 14-25-14 | PM, offals | 1.8 (3) | NW |
21 | 14-25-14 | feces | 06. (1) | MP |
22 | 19-17-05 | feces | 1.2 (2) | NW, MP |
23 | 19-17-11 | GM, offals, feces | 1.8 (3) | MP |
24 | 19-17-14 | GM, Offals | 2.4 (4) | MP |
25 | 19-20-08 | feces | 0.6 (1) | NW |
26 | 08-00-16 | RM | 0.6 (1) | MP |
27 | 30-17-11 | feces | 1.8 (3) | MP |
28 | 30-17-05 | feces | 0.6 (1) | MP |
29 | 36-17-05 | RM, feces | 2.4 (4) | MP |
30 | 36-17-08 | feed, feces | 3.0 (5) | MP |
31 | 36-17-11 | RTE, feces | 2.4 (4) | MP |
32 | 00-17-05 | PM, GM, RM, offals | 4.8 (8) | NW, MP |
33 | 00-25-05 | PM, RM | 5.4 (9) | NW, MP |
34 | 00-00-14 | RM | 0.6 (1) | MP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manqele, A.; Gcebe, N.; Pierneef, R.E.; Moerane, R.; Adesiyun, A.A. Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens 2023, 12, 147. https://doi.org/10.3390/pathogens12010147
Manqele A, Gcebe N, Pierneef RE, Moerane R, Adesiyun AA. Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens. 2023; 12(1):147. https://doi.org/10.3390/pathogens12010147
Chicago/Turabian StyleManqele, Ayanda, Nomakorinte Gcebe, Rian Ewald Pierneef, Rebone Moerane, and Abiodun Adewale Adesiyun. 2023. "Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa" Pathogens 12, no. 1: 147. https://doi.org/10.3390/pathogens12010147
APA StyleManqele, A., Gcebe, N., Pierneef, R. E., Moerane, R., & Adesiyun, A. A. (2023). Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens, 12(1), 147. https://doi.org/10.3390/pathogens12010147