Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection
2.2. Data Analysis
3. Results
3.1. Application Trends
3.2. Geographical Distribution of the Applications
3.3. Applicants
3.4. Technologies
3.5. Strains
3.6. Co-Ownership
3.7. Follow-Up of Innovative Inventions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marciniuk, D.D.; Schraufnagel, D.E. The Global Impact of Respiratory Disease; European Respiratory Society: Lausanne, Switzerland, 2017. [Google Scholar]
- Blau, D.M.; Baillie, V.L.; Els, T.; Mahtab, S.; Mutevedzi, P.; Keita, A.M.; Kotloff, K.L.; Mehta, A.; Sow, S.O.; Tapia, M.D.; et al. Deaths Attributed to Respiratory Syncytial Virus in Young Children in High–Mortality Rate Settings: Report from Child Health and Mortality Prevention Surveillance (CHAMPS). Clin. Infect. Dis. 2021, 73, S218–S228. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Domingo, J.; Pérez-Yarza, E.G.; A Melero, J.; Sánchez-Luna, M.; Aguilar, M.D.; Blasco, A.J.; Alfaro, N.; Lázaro, P. Social, economic, and health impact of the respiratory syncytial virus: A systematic search. BMC Infect. Dis. 2014, 14, 544. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Johnson, E.K.; Shi, T.; Campbell, H.; Chaves, S.S.; Commaille-Chapus, C.; Dighero, I.; James, S.L.; Mahé, C.; Ooi, Y.; et al. National burden estimates of hospitalisations for acute lower respiratory infections due to respiratory syncytial virus in young children in 2019 among 58 countries: A modelling study. Lancet Respir. Med. 2020, 9, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Young, M.; Smitherman, L. Socioeconomic Impact of RSV Hospitalization. Infect. Dis. Ther. 2021, 10 (Suppl. S1), 35–45. [Google Scholar] [CrossRef] [PubMed]
- Valarcher, J.-F.; Taylor, G. Bovine respiratory syncytial virus infection. Veter Res. 2007, 38, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A. Effects of feedlot disease on economics, production and carcass value. In Proceedings of the Thirty-Third Annual Conference, American Association of Bovine Practitioners, Rapid City, SD, USA, 21–23 September 2000. [Google Scholar]
- Krehbiel, C.R. Bovine Respiratory Disease Influences on Nutrition and Nutrient Metabolism. Veter Clin. N. Am. Food Anim. Pract. 2020, 36, 361–373. [Google Scholar] [CrossRef]
- Greenwood, B. The contribution of vaccination to global health: Past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130433. [Google Scholar] [CrossRef] [Green Version]
- Breman, J.G.; Arita, I. The Confirmation and Maintenance of Smallpox Eradication. N. Engl. J. Med. 1980, 303, 1263–1273. [Google Scholar] [CrossRef]
- Rappuoli, R.; Mandl, C.W.; Black, S.; De Gregorio, E. Vaccines for the twenty-first century society. Nat. Rev. Immunol. 2011, 11, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Cantor, J.; Simon, K.I.; Bento, A.I.; Wing, C.; Whaley, C.M. Vaccinations Against COVID-19 May Have Averted Up To 140,000 Deaths In The United States: Study examines role of COVID-19 vaccines and deaths averted in the United States. Health Affairs 2021, 40, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- WHO. Facts on Immunization. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage (accessed on 15 June 2021).
- Browne, S.K.; Beeler, J.A.; Roberts, J.N. Summary of the Vaccines and Related Biological Products Advisory Committee meeting held to consider evaluation of vaccine candidates for the prevention of respiratory syncytial virus disease in RSV-naïve infants. Vaccine 2019, 38, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Biagi, C.; Dondi, A.; Scarpini, S.; Rocca, A.; Vandini, S.; Poletti, G.; Lanari, M. Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines 2020, 8, 672. [Google Scholar] [CrossRef]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Meyer, G.; Deplanche, M.; Schelcher, F. Human and bovine respiratory syncytial virus vaccine research and development. Comp. Immunol. Microbiol. Infect. Dis. 2007, 31, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.A. How efficacious are vaccines against bovine respiratory syncytial virus in cattle? Vet. Microbiol. 2017, 206, 59–68. [Google Scholar] [CrossRef]
- Lemon, J.L.; McMenamy, M.J. A Review of UK-Registered and Candidate Vaccines for Bovine Respiratory Disease. Vaccines 2021, 9, 1403. [Google Scholar] [CrossRef]
- Taylor, G. Animal models of respiratory syncytial virus infection. Vaccine 2017, 35, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Graham, B.S. Immunological goals for respiratory syncytial virus vaccine development. Curr. Opin. Immunol. 2019, 59, 57–64. [Google Scholar] [CrossRef]
- De Giusti, M.; Barbato, D.; Lia, L.; Colamesta, V.; Lombardi, A.M.; Cacchio, D.; Villari, P.; La Torre, G. Collaboration between human and veterinary medicine as a tool to solve public health problems. Lancet Planet. Health 2019, 3, e64–e65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, O.F.; van de Burgwal, L.H. On the verge of a catastrophic collapse? the need for a multi-ecosystem approach to microbiome studies. Front. Microbiol. 2021, 12, 784797. [Google Scholar] [PubMed]
- Neevel, A.M.G.; Urias, E.; Claassen, E.; van de Burgwal, L.H.M. Quantity vs. quality: An assessment of the current pipeline for rabies. Trop. Med. Int. Health 2019, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Feddema, J.J.; van der Waal, M.B.; Renes, M.J.; Claassen, E.; van de Burgwal, L.H. To patent or not to patent? Consideration of the societal aspects of patenting across pharma-nutrition industries. Pharmanutrition 2021, 16, 100269. [Google Scholar] [CrossRef]
- Benson, C.L.; Magee, C.L. Quantitative Determination of Technological Improvement from Patent Data. PLoS ONE 2015, 10, e0121635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, K. Co-owner relationships conducive to high quality joint patents. Res. Policy 2015, 44, 1566–1573. [Google Scholar] [CrossRef]
- Clarke, N.S. The basics of patent searching. World Pat. Inf. 2018, 54, S4–S10. [Google Scholar] [CrossRef]
- Jee, S.J.; Kwon, M.; Ha, J.M.; Sohn, S.Y. Exploring the forward citation patterns of patents based on the evolution of technology fields. J. Inf. 2019, 13, 100985. [Google Scholar] [CrossRef]
- Soto, J.A.; Stephens, L.M.; Waldstein, K.A.; Canedo-Marroquín, G.; Varga, S.M.; Kalergis, A.M. Current Insights in the Development of Efficacious Vaccines Against RSV. Front. Immunol. 2020, 11, 1507. [Google Scholar] [CrossRef]
- Gunatilaka, A.; Giles, M.L. Maternal RSV vaccine development. Where to from here? Hum. Vaccines Immunother. 2021, 17, 4542–4548. [Google Scholar] [CrossRef]
- Madhi, S.A.; Polack, F.P.; Piedra, P.A.; Munoz, F.M.; Trenholme, A.A.; Simões, E.A.; Swamy, G.K.; Agrawal, S.; Ahmed, K.; August, A.; et al. Vaccination of pregnant women with respiratory syncytial virus vaccine and protection of their infants. N. Engl. J. Med. 2020, 383, 426. [Google Scholar] [CrossRef] [PubMed]
- Killikelly, A.; Tunis, M.; House, A.; Quach, C.; Vaudry, W.; Moore, D. Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. Can. Commun. Dis. Rep. 2020, 46, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Weenen, T.; Pronker, E.; Commandeur, H.; Claassen, E. Patenting in the European medical nutrition industry: Trends, opportunities and strategies. PharmaNutrition 2013, 1, 13–21. [Google Scholar] [CrossRef]
- Martinez, D.A.; Newcomer, B.; Passler, T.; Chamorro, M.F. Efficacy of Bovine Respiratory Syncytial Virus Vaccines to Reduce Morbidity and Mortality in Calves Within Experimental Infection Models: A Systematic Review and Meta-Analysis. Front. Veter Sci. 2022, 9, 906636. [Google Scholar] [CrossRef] [PubMed]
- Knight-Jones, T.J.D.; Edmond, K.; Gubbins, S.; Paton, D.J. Veterinary and human vaccine evaluation methods. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132839. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Maupome, M.; Palmer, M.V.; McGill, J.L.; Sacco, R.E. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines 2019, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, J.; Britton, P.N.; King, C.L.; Booy, R. The immunogenicity and safety of respiratory syncytial virus vaccines in development: A systematic review. Influ. Other Respir. Viruses 2021, 15, 539–551. [Google Scholar] [CrossRef]
- Riffault, S.; Hägglund, S.; Guzman, E.; Näslund, K.; Jouneau, L.; Dubuquoy, C.; Pietralunga, V.; Laubreton, D.; Boulesteix, O.; Gauthier, D.; et al. A Single Shot Pre-fusion-Stabilized Bovine RSV F Vaccine is Safe and Effective in Newborn Calves with Maternally Derived Antibodies. Vaccines 2020, 8, 231. [Google Scholar] [CrossRef]
- Janse, M.; Brouwers, T.; Claassen, E.; Hermans, P.; van de Burgwal, L. Barriers Influencing Vaccine Development Timelines, Identification, Causal Analysis, and Prioritization of Key Barriers by KOLs in General and Covid-19 Vaccine R&D. Front. Public Health 2021, 9, 612541. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef] [PubMed]
- Ftouh, M.; Kalboussi, N.; Abid, N.; Sfar, S.; Mignet, N.; Bahloul, B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res. 2021, 2021, 6741290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, L.; Silacci, C.; Thom, M.; Boyington, J.C.; Druz, A.; Joyce, M.G.; Guzman, E.; Kong, W.P.; Lai, Y.-T.; et al. Protection of calves by a prefusion-stabilized bovine RSV F vaccine. NPJ Vaccines 2017, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jong, R.; Stockhofe-Zurwieden, N.; Bonsing, J.; Wang, K.F.; Vandepaer, S.; Bouzya, B.; Toussaint, J.F.; Dieussaert, I.; Song, H.; Steff, A.M. ChAd155-RSV Vaccine Is Immunogenic and Efficacious against Bovine RSV Infection-Induced Disease in Young Calves. 2021. Available online: https://assets.researchsquare.com/files/rs-948230/v1/1ccd4c17-723b-43e8-9874-3bfdb5b3ff95.pdf?c=1666077086 (accessed on 2 August 2022).
- Van de Burgwal, L.; Ribeiro, C.D.S.; Van der Waal, M.; Claassen, E. Towards improved process efficiency in vaccine innovation: The Vaccine Innovation Cycle as a validated, conceptual stage-gate model. Vaccine 2018, 36, 7496–7508. [Google Scholar] [CrossRef] [PubMed]
- Dovidio, J.F.; Love, A.; Schellhaas, F.M.H.; Hewstone, M. Reducing intergroup bias through intergroup contact: Twenty years of progress and future directions. Group Process. Intergroup Relat. 2017, 20, 606–620. [Google Scholar] [CrossRef]
- Ribeiro, C.d.S.; van de Burgwal, L.H.; Regeer, B.J. Overcoming challenges for designing and implementing the One Health approach: A systematic review of the literature. One Health 2019, 7, 100085. [Google Scholar] [CrossRef]
Field | CPC Codes and Keywords | Number of Patent Applications | |
---|---|---|---|
Human | respiratory syncytial virus/RSV, vaccin* + immun* + | A61K39/155 | 1432 |
C07K14/135 | 184 | ||
C07K16/1027 | 129 | ||
C12N2760/18511 | 39 | ||
C12N2760/18521 | 5 | ||
C12N2760/18522 | 17 | ||
C12N2760/18534 | 170 | ||
C12N2760/18543 | 242 | ||
C12N2760/18561 | 22 | ||
C12N2760/18564 | 22 | ||
C12N2760/18571 | 3 | ||
A61K2039/552 | 3 | ||
C12N2760/18634 | 54 | ||
Veterinary | respiratory syncytial virus/RSV, vaccin* + immun* + | Y10S424/813 | 21 |
A61K2039/552 | 3 | ||
C12N2760/18634 | 54 | ||
For both veterinary and human use | respiratory syncytial virus/RSV, vaccin* + immun* + | A61K39, A61K31 | 32 |
Inclusion criteria | Patent documents focusing on the development of RSV vaccines targeting human, bovine, or human-bovine. | ||
Exclusion criteria | Not focused on RSV (e.g., parainfluenza virus, cancer, and coronavirus) Not describing vaccines, adjuvants or methods targeting RSV Not involving a human or bovine as target population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janse, M.; Soekhradj, S.D.; de Jong, R.; van de Burgwal, L.H.M. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens 2023, 12, 46. https://doi.org/10.3390/pathogens12010046
Janse M, Soekhradj SD, de Jong R, van de Burgwal LHM. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens. 2023; 12(1):46. https://doi.org/10.3390/pathogens12010046
Chicago/Turabian StyleJanse, Marga, Swasti D. Soekhradj, Rineke de Jong, and Linda H. M. van de Burgwal. 2023. "Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field" Pathogens 12, no. 1: 46. https://doi.org/10.3390/pathogens12010046
APA StyleJanse, M., Soekhradj, S. D., de Jong, R., & van de Burgwal, L. H. M. (2023). Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens, 12(1), 46. https://doi.org/10.3390/pathogens12010046