Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Virus Detection and Isolation
2.3. Nucleotide Sequencing and Phylogenetic Analyses
3. Results
3.1. Detection of H5N1 AIV in Wild Birds in Egypt
3.2. Genetic Characterization Revealed Close Related Features to H5N1 Viruses Circulating in Different Countries
3.3. Phylogenetic Relatedness with Viruses from Clade 2.3.4.4b
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef]
- Clark, L.; Hall, J. Avian influenza in wild birds: Status as reservoirs, and risks to humans and agriculture. Ornithol. Monogr. 2006, 2006, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Tarnagda, Z.; Yougbaré, I.; Kam, A.; Tahita, M.C.; Ouedraogo, J.B. Prevalence of infectious bronchitis and Newcastle disease virus among domestic and wild birds in H5N1 outbreaks areas. J. Infect. Dev. Ctries. 2011, 5, 565–570. [Google Scholar]
- De Wit, J.; Cook, J.K. Spotlight on avian pathology: Infectious bronchitis virus. Avian Pathol. 2019, 48, 393–395. [Google Scholar] [CrossRef] [Green Version]
- Miłek, J.; Blicharz-Domańska, K. Coronaviruses in avian species–review with focus on epidemiology and diagnosis in wild birds. J. Vet. Res. 2018, 62, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Schreuder, J.; de Knegt, H.J.; Velkers, F.C.; Elbers, A.R.; Stahl, J.; Slaterus, R.; Stegeman, J.A.; de Boer, W.F. Wild Bird Densities and Landscape Variables Predict Spatial Patterns in HPAI Outbreak Risk across The Netherlands. Pathogens 2022, 11, 549. [Google Scholar] [CrossRef]
- Hill, N.J.; Bishop, M.A.; Trovão, N.S.; Ineson, K.M.; Schaefer, A.L.; Puryear, W.B.; Zhou, K.; Foss, A.D.; Clark, D.E.; MacKenzie, K.G. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022, 18, e1010062. [Google Scholar] [CrossRef]
- Graziosi, G.; Catelli, E.; Fanelli, A.; Lupini, C. Infectious bursal disease virus in free-living wild birds: A systematic review and meta-analysis of its sero-viroprevalence on a global scale. Transbound. Emerg. Dis. 2022, 69, 2800–2815. [Google Scholar] [CrossRef]
- Claes, F.; Morzaria, S.P.; Donis, R.O. Emergence and dissemination of clade 2.3. 4.4 H5Nx influenza viruses—How is the Asian HPAI H5 lineage maintained. Curr. Opin. Virol. 2016, 16, 158–163. [Google Scholar] [CrossRef]
- Lee, D.-H.; Bertran, K.; Kwon, J.-H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3. 4.4. J. Vet. Sci. 2017, 18, 269–280. [Google Scholar] [CrossRef]
- Naguib, M.M.; Verhagen, J.H.; Samy, A.; Eriksson, P.; Fife, M.; Lundkvist, Å.; Ellström, P.; Järhult, J.D. Avian influenza viruses at the wild–domestic bird interface in Egypt. Infect. Ecol. Epidemiol. 2019, 9, 1575687. [Google Scholar]
- Verhagen, J.H.; Fouchier, R.A.; Lewis, N. Highly pathogenic avian influenza viruses at the wild–domestic bird interface in europe: Future directions for research and surveillance. Viruses 2021, 13, 212. [Google Scholar]
- Lycett, S.J.; Pohlmann, A.; Staubach, C.; Caliendo, V.; Woolhouse, M.; Beer, M.; Kuiken, T.; Van Borm, S.; Breed, A.; Briand, F.-X. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc. Natl. Acad. Sci. USA 2020, 117, 20814–20825. [Google Scholar]
- Briand, F.-X.; Niqueux, E.; Schmitz, A.; Hirchaud, E.; Quenault, H.; Allée, C.; Le Prioux, A.; Guillou-Cloarec, C.; Ogor, K.; Le Bras, M.-O. Emergence and multiple reassortments of French 2015–2016 highly pathogenic H5 avian influenza viruses. Infect. Genet. Evol. 2018, 61, 208–214. [Google Scholar]
- Sonnberg, S.; Webby, R.J.; Webster, R.G. Natural history of highly pathogenic avian influenza H5N1. Virus Res. 2013, 178, 63–77. [Google Scholar] [CrossRef]
- World Health Organization Global Influenza Program Surveillance Network. Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis. 2005, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control. Highly pathogenic avian influenza A subtype H5N8. EFSA J. 2014, 12, 3941. [Google Scholar]
- Antigua, K.J.C.; Choi, W.-S.; Baek, Y.H.; Song, M.-S. The emergence and decennary distribution of clade 2.3. 4.4 HPAI H5Nx. Microorganisms 2019, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Sagong, M.; Lee, Y.N.; Song, S.; Cha, R.M.; Lee, E.K.; Kang, Y.M.; Cho, H.K.; Kang, H.M.; Lee, Y.J.; Lee, K.N. Emergence of clade 2.3. 4.4 b novel reassortant H5N1 high pathogenicity avian influenza virus in South Korea during late 2021. Transbound. Emerg. Dis. 2022, 69, e3255–e3260. [Google Scholar] [CrossRef] [PubMed]
- Engelsma, M.; Heutink, R.; Harders, F.; Germeraad, E.A.; Beerens, N. Multiple Introductions of Reassorted Highly Pathogenic Avian Influenza H5Nx Viruses Clade 2.3. 4.4 b Causing Outbreaks in Wild Birds and Poultry in The Netherlands, 2020–2021. Microbiol. Spectr. 2022, 10, e0249921. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.B.; Habibata-Zerbo, L.; Zecchin, B.; Barbierato, G.; Hamidou-Ouandaogo, S.; Palumbo, E.; Giussani, E.; Bortolami, A.; Niang, M.; Traore-Kam, A. Emergence of a Reassortant 2.3. 4.4 b Highly Pathogenic H5N1 Avian Influenza Virus Containing H9N2 PA Gene in Burkina Faso, West Africa, in 2021. Viruses 2022, 14, 1901. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Černíková, L.; Stará, M. A new clade 2.3. 4.4 b H5N1 highly pathogenic avian influenza genotype detected in Europe in 2021. Arch. Virol. 2022, 167, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Puryear, W.; Sawatzki, K.; Hill, N.; Foss, A.; Stone, J.J.; Doughty, L.; Walk, D.; Gilbert, K.; Murray, M.; Cox, E. Outbreak of Highly Pathogenic Avian Influenza H5N1 in New England Seals. bioRxiv 2022. [Google Scholar] [CrossRef]
- Cui, P.; Shi, J.; Wang, C.; Zhang, Y.; Xing, X.; Kong, H.; Yan, C.; Zeng, X.; Liu, L.; Tian, G.; et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg. Microbes Infect. 2022, 11, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; et al. Avian influenza overview March–June 2022. EFSA J. 2022, 20, e07415. [Google Scholar] [PubMed]
- Oliver, I.; Roberts, J.; Brown, C.S.; Byrne, A.M.; Mellon, D.; Hansen, R.D.; Banyard, A.C.; James, J.; Donati, M.; Porter, R. A case of avian influenza A (H5N1) in England, January 2022. Eurosurveillance 2022, 27, 2200061. [Google Scholar] [CrossRef]
- Abdelwhab, E.; Hafez, H. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: Epidemiology and control challenges. Epidemiol. Infect. 2011, 139, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Abdelwhab, E.; Hassan, M.; Abdel-Moneim, A.; Naguib, M.; Mostafa, A.; Hussein, I.; Arafa, A.; Erfan, A.; Kilany, W.; Agour, M. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. Infect. Genet. Evol. 2016, 40, 80–90. [Google Scholar] [CrossRef]
- Selim, A.A.; Erfan, A.M.; Hagag, N.; Zanaty, A.; Samir, A.-H.; Samy, M.; Abdelhalim, A.; Arafa, A.-S.A.; Soliman, M.A.; Shaheen, M. Highly pathogenic avian influenza virus (H5N8) clade 2.3. 4.4 infection in migratory birds, Egypt. Emerg. Infect. Dis. 2017, 23, 1048. [Google Scholar] [CrossRef] [Green Version]
- Kandeil, A.; Moatasim, Y.; El Taweel, A.; El Sayes, M.; Rubrum, A.; Jeevan, T.; McKenzie, P.P.; Webby, R.J.; Ali, M.A.; Kayali, G. Genetic and Antigenic Characteristics of Highly Pathogenic Avian Influenza A (H5N8) Viruses Circulating in Domestic Poultry in Egypt, 2017–2021. Microorganisms 2022, 10, 595. [Google Scholar] [CrossRef]
- Yehia, N.; Hassan, W.M.; Sedeek, A.; Elhusseiny, M.H. Genetic variability of avian influenza virus subtype H5N8 in Egypt in 2017 and 2018. Arch. Virol. 2020, 165, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Kandeil, A.; Kayed, A.; Moatasim, Y.; Webby, R.J.; McKenzie, P.P.; Kayali, G.; Ali, M.A. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J. Gen. Virol. 2017, 98, 1573. [Google Scholar] [CrossRef] [PubMed]
- Salaheldin, A.H.; Abd El-Hamid, H.S.; Elbestawy, A.R.; Veits, J.; Hafez, H.M.; Mettenleiter, T.C.; Abdelwhab, E.M. Multiple introductions of influenza A (H5N8) virus into poultry, Egypt, 2017. Emerg. Infect. Dis. 2018, 24, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mady, W.; Yehia, N.; Elhussieny, M.H.; Shalaby, A.G.; El Sayed, M.M.; Bakry, N.R.; Shaaban, A.; Arafa, A.S.; Mahmoud, A.A.B.; Hassan, W.M. Genetic characterization of highly pathogenic avian influenza virus (H5N8) in backyard poultry production sector during Mid-2017 to autumn 2018. Hosts Viruses 2019, 6, 75. [Google Scholar]
- Moatasim, Y.; Kandeil, A.; Aboulhoda, B.E.; El-Shesheny, R.; Alkhazindar, M.; AbdElSalam, E.T.; Kutkat, O.; Kamel, M.N.; El Taweel, A.N.; Mostafa, A. Comparative virological and pathogenic characteristics of avian influenza h5n8 viruses detected in wild birds and domestic poultry in Egypt during the winter of 2016/2017. Viruses 2019, 11, 990. [Google Scholar] [CrossRef] [Green Version]
- Tarek, M.; Naguib, M.M.; Arafa, A.-S.; Tantawy, L.A.; Selim, K.M.; Talaat, S.; Sultan, H.A. Epidemiology, genetic characterization, and pathogenesis of avian influenza H5N8 viruses circulating in Northern and Southern Parts of Egypt, 2017–2019. Animals 2021, 11, 2208. [Google Scholar] [CrossRef]
- Hagag, N.M.; Erfan, A.M.; El-Husseiny, M.; Shalaby, A.G.; Saif, M.A.; Tawakol, M.M.; Nour, A.A.; Selim, A.A.; Arafa, A.-S.; Hassan, M.K. Isolation of a novel reassortant highly pathogenic avian influenza (H5N2) virus in Egypt. Viruses 2019, 11, 565. [Google Scholar] [CrossRef]
- Hassan, K.E.; King, J.; El-Kady, M.; Afifi, M.; Abozeid, H.H.; Pohlmann, A.; Beer, M.; Harder, T. Novel reassortant highly pathogenic avian influenza A (H5N2) virus in broiler chickens, Egypt. Emerg. Infect. Dis. 2020, 26, 129. [Google Scholar] [CrossRef]
- Amer, F.; Li, R.; Rabie, N.; El-Husseiny, M.H.; Yehia, N.; Hagag, N.M.; Samy, M.; Selim, A.; Hassan, M.K.; Hassan, W.M. Temporal Dynamics of Influenza A (H5N1) Subtype before and after the Emergence of H5N8. Viruses 2021, 13, 1565. [Google Scholar] [CrossRef]
- World Heath Organization. WHO Manual on Animal Influenza Diagnosis and Surveillance; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Spackman, E.; Senne, D.A.; Myers, T.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [Green Version]
- Slomka, M.; Pavlidis, T.; Banks, J.; Shell, W.; McNally, A.; Essen, S.; Brown, I. Validated H5 Eurasian real-time reverse transcriptase–polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007, 51, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Hoffmann, D.; Henritzi, D.; Beer, M.; Harder, T.C. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci. Rep. 2016, 6, 27211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Shabat, M.; Meir, R.; Haddas, R.; Lapin, E.; Shkoda, I.; Raibstein, I.; Perk, S.; Davidson, I. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J. Virol. Methods 2010, 168, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Meir, R.; Maharat, O.; Farnushi, Y.; Simanov, L. Development of a real-time TaqMan® RT-PCR assay for the detection of infectious bronchitis virus in chickens, and comparison of RT-PCR and virus isolation. J. Virol. Methods 2010, 163, 190–194. [Google Scholar] [CrossRef]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Herman, N. Real-Time Rt-Pcr Assays to Detect West Nile Virus in Mosquito Pools; Yale University: New Haven, Connecticut, 2015. [Google Scholar]
- Metwally, A.; Yousif, A.; Shaheed, I.; Mohammed, W.; Samy, A.; Reda, I. Re-emergence of very virulent IBDV in Egypt. Int. J. Virol. 2009, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Manual, O. Avian Influenza Chapter 3.3.4. Avian Influenza. 2015. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.03.04_AI.pdf (accessed on 3 January 2023).
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Abolnik, C.; Phiri, T.P.; van der Zel, G.; Anthony, J.; Daniell, N.; de Boni, L. Wild Bird Surveillance in the Gauteng Province of South Africa during the High-Risk Period for Highly Pathogenic Avian Influenza Virus Introduction. Viruses 2022, 14, 2027. [Google Scholar] [CrossRef]
- Isoda, N.; Onuma, M.; Hiono, T.; Sobolev, I.; Lim, H.Y.; Nabeshima, K.; Honjyo, H.; Yokoyama, M.; Shestopalov, A.; Sakoda, Y. Detection of New H5N1 High Pathogenicity Avian Influenza Viruses in Winter 2021–2022 in the Far East, Which Are Genetically Close to Those in Europe. Viruses 2022, 14, 2168. [Google Scholar] [CrossRef]
- Cai, Z.; Ducatez, M.F.; Yang, J.; Zhang, T.; Long, L.P.; Boon, A.C.; Webby, R.J.; Wan, X.F. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning. J. Mol. Biol. 2012, 422, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Mair, C.M.; Ludwig, K.; Herrmann, A.; Sieben, C. Receptor binding and pH stability—How influenza A virus hemagglutinin affects host-specific virus infection. Biochim. Biophys. Acta (BBA)—Biomembr. 2014, 1838, 1153–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenström, J.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Global patterns of influenza A virus in wild birds. Science 2006, 312, 384–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeil, A.; Sabir, J.S.M.; Abdelaal, A.; Mattar, E.H.; El-Taweel, A.N.; Sabir, M.J.; Khalil, A.A.; Webby, R.; Kayali, G.; Ali, M.A. Efficacy of commercial vaccines against newly emerging avian influenza H5N8 virus in Egypt. Sci. Rep. 2018, 8, 9697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaheldin, A.H.; Elbestawy, A.R.; Abdelkader, A.M.; Sultan, H.A.; Ibrahim, A.A.; Abd El-Hamid, H.S.; Abdelwhab, E.M. Isolation of Genetically Diverse H5N8 Avian Influenza Viruses in Poultry in Egypt, 2019–2021. Viruses 2022, 14, 1431. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Angelichio, M.; Gow, L.; Leathers, V.; Jackwood, M.W. Quantitative real-time PCR assays for the concurrent diagnosis of infectious laryngotracheitis virus, Newcastle disease virus and avian metapneumovirus in poultry. J. Vet. Sci. 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.; Perez, D. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
Collection Date | Sampling Governorate | Type of Birds | Number of Birds | Clinical Signs | Post Mortem Examination | No. of Positive Samples | qRT-PCR (Ct) | |
---|---|---|---|---|---|---|---|---|
Common Name | Scientific Name | |||||||
10/2021 | Ismailia (Berket el Baalwa) | Marbled Teal | Marmaronetta angustirostris | 7 | Lethargy and inability to fly | − | − | − |
Red-back-shrike | Lanius collurio | 15 | Neurological impairment | − | − | − | ||
Greater-Flamingo | Phoenicopteridae | 8 | Dead | + | 1 | AIV (31) | ||
Common Snipe | Gallinago gallinago | 7 | Lethargy and inability to fly | − | − | − | ||
Tufted Duck | Aythya fuligula | 5 | Lethargy and inability to fly | − | − | − | ||
11/2021 | Damietta (Ras El-bar) | Common-Blackbird | Turdus merula | 5 | Neurological impairment | ++ | 1 | AIV (25) |
Eurasian Jay | Garrulus glandarius | 22 | Apparent healthy | − | − | − | ||
True redstarts | Phoenicurus | 18 | Lethargy and inability to fly | − | − | − | ||
Wrynecks | Jynx | 30 | Lethargy and inability to fly | − | − | − | ||
1/2022 | Giza | Dusky Warbler | Phylloscopus fuscatus | 5 | Lethargy and inability to fly | − | − | − |
Squacco Heron | Ardeola ralloides | 7 | Lethargy and inability to fly | − | − | − | ||
Ibis | Threskiornithinae | 4 | Neurological impairment | ++ | 1 | AIV (25) | ||
Beni-Suef | Curlews | Numenius | 2 | Lethargy and inability to fly | − | − | − | |
Gadwall | Anas strepera | 3 | Lethargy and inability to fly | − | − | − | ||
Caspian Plover | Charadrius asiaticus | 4 | Lethargy and inability to fly | − | − | − | ||
3/2022 | Damietta (Lake Manzala) | Spotted Sandgrouse | Pterocles senegallus | 4 | Lethargy and inability to fly | − | − | − |
Greater-Flamingo | Phoenicopteridae | 4 | Neurological impairment | ++ | 1 | AIV (32) | ||
True redstarts | Phoenicurus | 6 | Dead | − | − | − | ||
Woodchat Shrike | Lanius senator | 7 | Lethargy and inability to fly | − | − | − | ||
European Bee-eater | Merops apiaster | 5 | Lethargy and inability to fly | − | − | − | ||
Red-back-shrike | Lanius collurio | 4 | neurological impairment | ++ | 1 | AIV (28) | ||
Common-Blackbird | Turdus merula | 15 | Lethargy and inability to fly | − | − | − | ||
Marbled Duck | Marmaronetta angustirostris | 3 | Dead | + | 1 | AIV (29) |
HA | NA Stalk Del | PB2 | PB1-F2 Length | M “Amantadine Resistance Markers” | NS1 Length | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Receptor Binding Sites | Cleavage Site | 627 | 701 | ||||||||||||||
103 | 129 | 186 | 221 | 222 | 224 | 26 | 27 | 30 | 31 | 34 | |||||||
A/Duck/Jiangsu/k1203/2010 1 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 90 | L | V | A | N | G | 225 |
A/duck/Zhejiang/6D18/2013 2 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 52 | L | V | A | N | G | 230 |
A/turkey/Germany/AR3390-L00939/2014 3 | H | L | E | G | Q | G | PLRERRRKRGLF | No | E | D | 52 | L | V | A | N | G | 237 |
A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 4 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 52 | L | V | A | S | G | 230 |
A/ A/common-coot/Egypt/CA285/2016 5 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 52 | L | V | A | S | G | 217 |
A/Chicken/Egypt/AR528/2017 6 | H | x | A | G | Q | G | PQGEKRRKKRGLF | present | K | D | 90 | L | V | A | S | G | 230 |
A/chicken/Lesotho/352.3/20217 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 90 | L | V | A | S | G | 230 |
A/chicken/Nigeria/VRD21-98/21VIR2288/2021 8 | H | L | E | G | Q | G | PLREKRRKRGLF | present | E | D | 90 | L | V | A | S | G | 230 |
A/goose/CzechRepublic/18520/1/2021 9 | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 90 | L | V | A | S | G | 230 |
A/Greater-Flamingo/Egypt/25/2021 # | H | L | E | G | Q | G | PLREKRRKRGLF | No | - | - | - | - | - | - | - | - | - |
A/Common-Blackbird/Egypt/26/2021 # | H | L | E | G | Q | G | PLREKRRKRGLF | No | - | - | - | - | - | - | - | - | - |
A/Red-back-shrike/Egypt/30/2022 # | H | L | E | G | Q | G | PLREKRRKRGLF | No | - | - | - | - | - | - | - | - | - |
A/Greater-Flamingo/Egypt/31/2022 # | H | L | E | G | Q | G | PLREKRRKRGLF | No | - | - | - | - | - | - | - | - | - |
A/Marbled-Duck/Egypt/32/2022 # | H | L | E | G | Q | G | PLREKRRKRGLF | No | - | - | - | - | - | - | - | - | - |
A/Ibis/Egypt/RLQP/229S/2022 * | H | L | E | G | Q | G | PLREKRRKRGLF | No | E | D | 90 | L | V | A | S | G | 230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosaad, Z.; Elhusseiny, M.H.; Zanaty, A.; Fathy, M.M.; Hagag, N.M.; Mady, W.H.; Said, D.; Elsayed, M.M.; Erfan, A.M.; Rabie, N.; et al. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022. Pathogens 2023, 12, 90. https://doi.org/10.3390/pathogens12010090
Mosaad Z, Elhusseiny MH, Zanaty A, Fathy MM, Hagag NM, Mady WH, Said D, Elsayed MM, Erfan AM, Rabie N, et al. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022. Pathogens. 2023; 12(1):90. https://doi.org/10.3390/pathogens12010090
Chicago/Turabian StyleMosaad, Zienab, Mohamed H. Elhusseiny, Ali Zanaty, Mustafa M. Fathy, Naglaa M. Hagag, Wesam H. Mady, Dalia Said, Moataz M. Elsayed, Ahmed M. Erfan, Neveen Rabie, and et al. 2023. "Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022" Pathogens 12, no. 1: 90. https://doi.org/10.3390/pathogens12010090
APA StyleMosaad, Z., Elhusseiny, M. H., Zanaty, A., Fathy, M. M., Hagag, N. M., Mady, W. H., Said, D., Elsayed, M. M., Erfan, A. M., Rabie, N., Samir, A., Samy, M., Arafa, A. -S., Selim, A., Abdelhakim, A. M., Lindahl, J. F., Eid, S., Lundkvist, Å., Shahein, M. A., & Naguib, M. M. (2023). Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022. Pathogens, 12(1), 90. https://doi.org/10.3390/pathogens12010090