Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Hamster Gavage Procedure
2.3. Isolation of Adult Ancylostoma Ceylanicum
2.4. Excretory-Secretory Products (ESPs) Collection
2.5. Quantification of Protein Concentration
2.6. SDS-PAGE
2.7. Sample Preparation for Mass Spectrometry
2.8. UPLC-MS
2.9. Genome Annotation Improvement and Peptide Identification
2.10. Bioinformatic Analysis of Proteomic Sequence Data
3. Results and Discussion
3.1. Improved Genome Annotation Identified ~10% More Peptides in Male and Female Hookworms
3.2. Female and Male Hookworm Secrete Similar Number of Proteins in Culture
3.3. Conserved ESPs in Female and Male A. Ceylanicum
3.4. Proteins Detected Only in Female ESPs
3.5. Proteins Detected Only in Male Hookworm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodda, M. Phylum Nematoda: A classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 2022, 5114, 1–289. [Google Scholar] [CrossRef] [PubMed]
- Inpankaew, T.; Schär, F.; Dalsgaard, A.; Khieu, V.; Chimnoi, W.; Chhoun, C.; Sok, D.; Marti, H.; Muth, S.; Odermatt, P.; et al. High prevalence of Ancylostoma ceylanicum hookworm infections in humans, Cambodia, 2012. Emerg. Infect. Dis. 2014, 20, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Loukas, A.; Hotez, P.J.; Diemert, D.; Yazdanbakhsh, M.; McCarthy, J.S.; Correa-Oliveira, R.; Croese, J.; Bethony, J.M. Hookworm infection. Nat. Rev. Dis. Prim. 2016, 2, 16088. [Google Scholar] [CrossRef] [PubMed]
- De Silva, N.R.; Brooker, S.; Hotez, P.J.; Montresor, A.; Engels, D.; Savioli, L. Soil-transmitted helminth infections: Updating the global picture. Trends Parasitol. 2003, 19, 547–551. [Google Scholar] [CrossRef]
- Ngui, R.; Lim, Y.A.; Traub, R.; Mahmud, R.; Mistam, M.S. Epidemiological and genetic data supporting the transmission of Ancylostoma ceylanicum among human and domestic animals. PLoS Negl. Trop. Dis. 2012, 6, e1522. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.; Pearson, M.S.; Manda, S.S.; Choi, Y.J.; Field, M.; Eichenberger, R.M.; Mulvenna, J.; Nagaraj, S.H.; Fujiwara, R.T.; Gazzinelli-Guimaraes, P.; et al. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Negl. Trop. Dis. 2020, 14, e0008237. [Google Scholar] [CrossRef]
- Hotez, P.J.; Brooker, S.; Bethony, J.M.; Bottazzi, M.E.; Loukas, A.; Xiao, S. Hookworm infection. N. Engl. J. Med. 2004, 351, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Humphries, D.; Simms, B.T.; Davey, D.; Otchere, J.; Quagraine, J.; Terryah, S.; Newton, S.; Berg, E.; Harrison, L.M.; Boakye, D.; et al. Hookworm infection among school age children in Kintampo north municipality, Ghana: Nutritional risk factors and response to albendazole treatment. Am. J. Trop. Med. Hyg. 2013, 89, 540–548. [Google Scholar] [CrossRef]
- Stephenson, L.S.; Latham, M.C.; Adams, E.J.; Kinoti, S.N.; Pertet, A. Physical fitness, growth and appetite of Kenyan school boys with hookworm, Trichuris trichiura and Ascaris lumbricoides infections are improved four months after a single dose of albendazole. J. Nutr. 1993, 123, 1036–1046. [Google Scholar] [CrossRef]
- Hotez, P. Hookworm and poverty. Ann. N. Y. Acad. Sci. 2008, 1136, 38–44. [Google Scholar] [CrossRef]
- Pullan, R.L.; Bethony, J.M.; Geiger, S.M.; Cundill, B.; Correa-Oliveira, R.; Quinnell, R.J.; Brooker, S. Human helminth co-infection: Analysis of spatial patterns and risk factors in a Brazilian community. PLoS Negl. Trop. Dis. 2008, 2, e352. [Google Scholar] [CrossRef]
- Geiger, S.M.; Massara, C.L.; Bethony, J.; Soboslay, P.T.; Corrêa-Oliveira, R. Cellular responses and cytokine production in post-treatment hookworm patients from an endemic area in Brazil. Clin. Exp. Immunol. 2004, 136, 334–340. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Hotez, P.J.; Asti, L.; Zapf, K.M.; Bottazzi, M.E.; Diemert, D.J.; Lee, B.Y. The Global Economic and Health Burden of Human Hookworm Infection. PLoS Negl. Trop. Dis. 2016, 10, e0004922. [Google Scholar] [CrossRef] [Green Version]
- Bungiro, R.D., Jr.; Anderson, B.R.; Cappello, M. Oral transfer of adult Ancylostoma ceylanicum hookworms into permissive and nonpermissive host species. Infect. Immun. 2003, 71, 1880–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smout, F.A.; Thompson, R.C.; Skerratt, L.F. First report of Ancylostoma ceylanicum in wild canids. Int. J. Parasitol. Parasites Wildl. 2013, 2, 173–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucera, K.; Harrison, L.M.; Cappello, M.; Modis, Y. Ancylostoma ceylanicum excretory-secretory protein 2 adopts a netrin-like fold and defines a novel family of nematode proteins. J. Mol. Biol. 2011, 408, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maizels, R.M.; Smits, H.H.; McSorley, H.J. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018, 49, 801–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuzeid, A.M.I.; Zhou, X.; Huang, Y.; Li, G. Twenty-five-year research progress in hookworm excretory/secretory products. Parasit. Vectors 2020, 13, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blount, D.; Hooi, D.; Feary, J.; Venn, A.; Telford, G.; Brown, A.; Britton, J.; Pritchard, D. Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection. Am. J. Trop. Med. Hyg. 2009, 81, 911–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, T.B.; Giacomin, P.R.; Loukas, A.; Mulvenna, J.P.; Clark, R.J.; Miles, J.J. Helminth Immunomodulation in Autoimmune Disease. Front. Immunol. 2017, 8, 453. [Google Scholar] [CrossRef]
- Navarro, S.; Pickering, D.A.; Ferreira, I.B.; Jones, L.; Ryan, S.; Troy, S.; Leech, A.; Hotez, P.J.; Zhan, B.; Laha, T.; et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci. Transl. Med. 2016, 8, 362ra143. [Google Scholar] [CrossRef] [PubMed]
- Morante, T.; Shepherd, C.; Constantinoiu, C.; Loukas, A.; Sotillo, J. Revisiting the Ancylostoma Caninum Secretome Provides New Information on Hookworm-Host Interactions. Proteomics 2017, 17, 1700186. [Google Scholar] [CrossRef] [PubMed]
- Hawdon, J.M.; Narasimhan, S.; Hotez, P.J. Ancylostoma secreted protein 2: Cloning and characterization of a second member of a family of nematode secreted proteins from Ancylostoma caninum. Mol. Biochem. Parasitol. 1999, 99, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Kenney, E.T.; Mann, V.H.; Ittiprasert, W.; Rosa, B.A.; Mitreva, M.; Bracken, B.K.; Loukas, A.; Brindley, P.J.; Sotillo, J. Differential Excretory/Secretory Proteome of the Adult Female and Male Stages of the Human Blood Fluke, Schistosoma mansoni. Front. Parasitol. 2022, 1, 950774. [Google Scholar] [CrossRef]
- Mertins, P.; Tang, L.C.; Krug, K.; Clark, D.J.; Gritsenko, M.A.; Chen, L.; Clauser, K.R.; Clauss, T.R.; Shah, P.; Gillette, M.A.; et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 2018, 13, 1632–1661. [Google Scholar] [CrossRef]
- Contrepois, K.; Ezan, E.; Mann, C.; Fenaille, F. Ultra-high performance liquid chromatography-mass spectrometry for the fast profiling of histone post-translational modifications. J. Proteome Res. 2010, 9, 5501–5509. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Chen, T.; Ma, J.; Liu, Y.; Chen, Z.; Xiao, N.; Lu, Y.; Fu, Y.; Yang, C.; Li, M.; Wu, S.; et al. iProX in 2021: Connecting proteomics data sharing with big data. Nucleic Acids Res. 2022, 50, D1522–D1527. [Google Scholar] [CrossRef]
- Schwarz, E.M.; Hu, Y.; Antoshechkin, I.; Miller, M.M.; Sternberg, P.W.; Aroian, R.V. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. Nat. Genet. 2015, 47, 416–422. [Google Scholar] [CrossRef]
- Holt, C.; Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Magrini, V.; Gao, X.; Rosa, B.A.; McGrath, S.; Zhang, X.; Hallsworth-Pepin, K.; Martin, J.; Hawdon, J.; Wilson, R.K.; Mitreva, M. Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genom. 2018, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.T.; Knop, K.; Barton, G.J.; Simpson, G.G. 2passtools: Two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing. Genome Biol. 2021, 22, 72. [Google Scholar] [CrossRef] [PubMed]
- Kovaka, S.; Zimin, A.V.; Pertea, G.M.; Razaghi, R.; Salzberg, S.L.; Pertea, M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019, 20, 278. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Howe, K.L.; Bolt, B.J.; Shafie, M.; Kersey, P.; Berriman, M. WormBase ParaSite—A comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2017, 215, 2–10. [Google Scholar] [CrossRef]
- Hoff, K.J.; Lange, S.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 2016, 32, 767–769. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Campbell, M.S.; Law, M.; Holt, C.; Stein, J.C.; Moghe, G.D.; Hufnagel, D.E.; Lei, J.; Achawanantakun, R.; Jiao, D.; Lawrence, C.J.; et al. MAKER-P: A tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 2014, 164, 513–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.; Rosa, B.A.; Ozersky, P.; Hallsworth-Pepin, K.; Zhang, X.; Bhonagiri-Palsikar, V.; Tyagi, R.; Wang, Q.; Choi, Y.J.; Gao, X.; et al. Helminth.net: Expansions to Nematode.net and an introduction to Trematode.net. Nucleic Acids Res. 2015, 43, D698–D706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.; Tyagi, R.; Rosa, B.A.; Mitreva, M. A Multi-Omics Database for Parasitic Nematodes and Trematodes. Methods Mol. Biol. 2018, 1757, 371–397. [Google Scholar] [CrossRef] [PubMed]
- Bernot, J.P.; Rudy, G.; Erickson, P.T.; Ratnappan, R.; Haile, M.; Rosa, B.A.; Mitreva, M.; O’Halloran, D.M.; Hawdon, J.M. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int. J. Parasitol. 2020, 50, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Gene Ontology, C. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendtsen, J.D.; Jensen, L.J.; Blom, N.; Von Heijne, G.; Brunak, S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 2004, 17, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toronen, P.; Holm, L. PANNZER-A practical tool for protein function prediction. Protein Sci. 2022, 31, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Casimiro-Soriguer, C.S.; Munoz-Merida, A.; Perez-Pulido, A.J. Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes. Proteomics 2017, 17, 1700071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcon, S.; Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23, 257–258. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Comparative genomics of the major parasitic worms. Nat. Genet. 2019, 51, 163–174. [CrossRef] [Green Version]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Cantacessi, C.; Gasser, R.B. SCP/TAPS proteins in helminths—Where to from now? Mol. Cell. Probes 2012, 26, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Moser, J.M.; Freitas, T.; Arasu, P.; Gibson, G. Gene expression profiles associated with the transition to parasitism in Ancylostoma caninum larvae. Mol. Biochem. Parasitol. 2005, 143, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Hawdon, J.M.; Jones, B.F.; Hoffman, D.R.; Hotez, P.J. Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. J. Biol. Chem. 1996, 271, 6672–6678. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hu, X.; He, S.; Wang, L.; Hu, D.; Wang, X.; Zheng, M.; Yang, Y.; Liang, C.; Xu, J.; et al. Expression and immune response analysis of Schistosoma japonicum VAL-1, a homologue of vespid venom allergens. Parasitol. Res. 2010, 106, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.M.; Ruscher, R.; Johnston, W.A.; Pickering, D.A.; Kennedy, M.W.; Smith, B.O.; Jones, L.; Buitrago, G.; Field, M.A.; Esterman, A.J.; et al. Novel antiinflammatory biologics shaped by parasite-host coevolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202795119. [Google Scholar] [CrossRef]
- Kennedy, M.W. The nematode polyprotein allergens/antigens. Parasitol. Today 2000, 16, 373–380. [Google Scholar] [CrossRef]
- Moyle, M.; Foster, D.L.; McGrath, D.E.; Brown, S.M.; Laroche, Y.; De Meutter, J.; Stanssens, P.; Bogowitz, C.A.; Fried, V.A.; Ely, J.A.; et al. A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J. Biol. Chem. 1994, 269, 10008–10015. [Google Scholar] [CrossRef]
- Xia, Y.; Spence, H.J.; Moore, J.; Heaney, N.; McDermott, L.; Cooper, A.; Watson, D.G.; Mei, B.; Komuniecki, R.; Kennedy, M.W. The ABA-1 allergen of Ascaris lumbricoides: Sequence polymorphism, stage and tissue-specific expression, lipid binding function, and protein biophysical properties. Parasitology 2000, 120 Pt 2, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, N.; Sánchez, J.; Erler, A.; Mercado, D.; Briza, P.; Kennedy, M.; Fernandez, A.; Gutierrez, M.; Chua, K.Y.; Cheong, N.; et al. IgE cross-reactivity between Ascaris and domestic mite allergens: The role of tropomyosin and the nematode polyprotein ABA-1. Allergy 2009, 64, 1635–1643. [Google Scholar] [CrossRef]
- Kennedy, M.W.; Brass, A.; McCruden, A.B.; Price, N.C.; Kelly, S.M.; Cooper, A. The ABA-1 allergen of the parasitic nematode Ascaris suum: Fatty acid and retinoid binding function and structural characterization. Biochemistry 1995, 34, 6700–6710. [Google Scholar] [CrossRef]
- Fairfax, K.C.; Harrison, L.M.; Cappello, M. Molecular cloning and characterization of a nematode polyprotein antigen/allergen from the human and animal hookworm Ancylostoma ceylanicum. Mol. Biochem. Parasitol. 2014, 198, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.D.; Faulkner, H.; Kamgno, J.; Kennedy, M.W.; Behnke, J.; Boussinesq, M.; Bradley, J.E. Allergen-specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection. Microbes Infect. 2005, 7, 990–996. [Google Scholar] [CrossRef] [PubMed]
- McSharry, C.; Xia, Y.; Holland, C.V.; Kennedy, M.W. Natural immunity to Ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infect. Immun. 1999, 67, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.W.; Qureshi, F. Stage-specific secreted antigens of the parasitic larval stages of the nematode Ascaris. Immunology 1986, 58, 515–522. [Google Scholar]
- Grote, A.; Caffrey, C.R.; Rebello, K.M.; Smith, D.; Dalton, J.P.; Lustigman, S. Cysteine proteases during larval migration and development of helminths in their final host. PLoS Negl. Trop. Dis. 2018, 12, e0005919. [Google Scholar] [CrossRef] [Green Version]
- Eichenberger, R.M.; Ryan, S.; Jones, L.; Buitrago, G.; Polster, R.; Montes de Oca, M.; Zuvelek, J.; Giacomin, P.R.; Dent, L.A.; Engwerda, C.R.; et al. Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice. Front. Immunol. 2018, 9, 850. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, E.A.; Abraham, O.; Hundley, H.A. Caenorhabditis elegans expressing a Vitellogenin::GFP fusion protein show reduced embryo content and brood size. MicroPubl. Biol. 2022. [Google Scholar] [CrossRef]
- Ramos, I.; Machado, E.; Masuda, H.; Gomes, F. Open questions on the functional biology of the yolk granules during embryo development. Mol. Reprod. Dev. 2022, 89, 86–94. [Google Scholar] [CrossRef]
- Grant, B.; Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 1999, 10, 4311–4326. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.H.; Winfrey, V.P.; Blaeuer, G.; Hoffman, L.H.; Furuta, T.; Rose, K.L.; Hobert, O.; Greenstein, D. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: Relations between the germ line and soma. Dev. Biol. 1999, 212, 101–123. [Google Scholar] [CrossRef]
- Wei, J.; Damania, A.; Gao, X.; Liu, Z.; Mejia, R.; Mitreva, M.; Strych, U.; Bottazzi, M.E.; Hotez, P.J.; Zhan, B. The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasit. Vectors 2016, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, J.; Adachi, T.; Aoki, N.; Nakajima, H.; Nakamura, R.; Matsuda, T. Precursor-product relationship between chicken vitellogenin and the yolk proteins: The 40 kDa yolk plasma glycoprotein is derived from the C-terminal cysteine-rich domain of vitellogenin II. Biochim. Biophys. Acta 1995, 1244, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.E. Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem. J. 1988, 256, 1059–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.N. Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biol. Reprod. 2007, 76, 926–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelmedin, V.; Delaney, A.; Jennelle, L.; Hawdon, J.M. Expression profile of heat shock response factors during hookworm larval activation and parasitic development. Mol. Biochem. Parasitol. 2015, 202, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nontasut, P.; Changbumrung, S.; Muennoo, C.; Hongthong, K.; Vudhivai, N.; Sanguankiat, S.; Yaemput, S. Vitamin B1, B2 and B6 deficiency in primary school children infected with hookworm. Southeast Asian J. Trop. Med. Public Health 1996, 27, 47–50. [Google Scholar]
- Da’dara, A.A.; Elzoheiry, M.; El-Beshbishi, S.N.; Skelly, P.J. Vitamin B6 Acquisition and Metabolism in Schistosoma mansoni. Front. Immunol. 2020, 11, 622162. [Google Scholar] [CrossRef]
- Tritten, L.; Ballesteros, C.; Beech, R.; Geary, T.G.; Moreno, Y. Mining nematode protein secretomes to explain lifestyle and host specificity. PLoS Negl. Trop. Dis. 2021, 15, e0009828. [Google Scholar] [CrossRef]
- Magalhaes, J.; Eira, J.; Liz, M.A. The role of transthyretin in cell biology: Impact on human pathophysiology. Cell. Mol. Life Sci. 2021, 78, 6105–6117. [Google Scholar] [CrossRef]
- Brown, A.C.; Harrison, L.M.; Kapulkin, W.; Jones, B.F.; Sinha, A.; Savage, A.; Villalon, N.; Cappello, M. Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: Evidence for a role in hookworm reproductive physiology. Mol. Biochem. Parasitol. 2007, 151, 141–147. [Google Scholar] [CrossRef] [Green Version]
- van Die, I.; Cummings, R.D. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front. Immunol. 2017, 8, 1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 1988, 263, 9557–9560. [Google Scholar] [CrossRef] [PubMed]
- Drickamer, K. Evolution of Ca(2+)-dependent animal lectins. Prog. Nucleic Acid Res. Mol. Biol. 1993, 45, 207–232. [Google Scholar] [PubMed]
Statistic | Original Annotation (Schwarz et al., 2015) [29] | Re-Annotation |
---|---|---|
Number of genes | 36,687 | 18,783 |
Number of mRNAs | 65,583 | 22,928 |
Overlapping genes | 3714 | 2170 |
Contained genes | 1421 | 440 |
Mean gene length (bp) | 3819 | 10,069 |
Mean exon length (bp) | 138 | 246 |
Mean intron length (bp) | 647 | 809 |
Mean CDS length (bp) | 923 | 1316 |
Mean mRNAs per gene | 1.8 | 1.2 |
Mean exons per mRNA | 6.7 | 11.5 |
Complete BUSCOs | 86.9% | 94.5% |
Fragmented BUSCOs | 5.5% | 1.5% |
Missing BUSCOs | 7.5% | 4.0% |
Protein ID | Best Annotation | Conservation | Detected in Logan et al., 2020 [6] | Sig. pep. | CAP Domain | Adult E/S Proteomics | Avg. mRNA Level (FPKM) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peptide Count | Spectral Count | ||||||||||
F | M | F | M | Ad F | Ad M | ||||||
ACEY_07898-1 | Acey_s0073.g740 | Clade V-specific | Y | - | - | 241 | 261 | 788 | 874 | 638.1 | 486.6 |
ACEY_17598-1 | 5H561: Npa-1-Nematode polyprotein allergen | Clade V conserved (no human) | Y | Y | - | 94 | 128 | 271 | 637 | 302.0 | 217.0 |
ACEY_09343-1 | ANCCEY_02418: SCP-like protein | Ancylostoma-specific | Y | Y | Y | 40 | 44 | 374 | 432 | 1622.5 | 3254.1 |
ACEY_06577-1 | ASP2: SCP-like protein | Conserved in humans | Y | Y | Y | 48 | 47 | 302 | 328 | 1876.3 | 2123.7 |
ACEY_15233-3 | A. ceylanicum-specific | A. ceylanicum-specific | (N/A) | Y | - | 19 | 19 | 343 | 277 | 126.8 | 140.3 |
ACEY_15233-2 | A. ceylanicum-specific | A. ceylanicum-specific | (N/A) | Y | - | 20 | 17 | 299 | 250 | 126.8 | 140.3 |
ACEY_02017-1 | Acey_s0009.g591 | Ancylostoma-specific | (N/A) | Y | - | 18 | 13 | 200 | 206 | 4718.3 | 4053.5 |
ACEY_18401-1 | IPR001283: Cysteine-rich secretory protein | Ancylostoma-specific | - | Y | Y | 33 | 39 | 169 | 232 | 857.2 | 955.1 |
ACEY_07544-1 | asp6: SCP-like protein | Clade V-specific | Y | Y | Y | 27 | 28 | 184 | 210 | 1552.1 | 1634.6 |
ACEY_02018-1 | Acey_s0009.g591 | Ancylostoma-specific | (N/A) | - | - | 18 | 15 | 183 | 186 | 2183.4 | 2253.6 |
ACEY_17268-1 | SCP domain-containing protein | Ancylostoma-specific | (N/A) | Y | Y | 18 | 22 | 170 | 158 | 16,104 | 18,856 |
ACEY_09344-1 | asp6: SCP-like protein | Ancylostoma-specific | Y | Y | Y | 34 | 38 | 159 | 161 | 1072.0 | 1697.4 |
ACEY_07899-1 | Acey_s0073.g746 | Clade V-specific | Y | - | - | 48 | 57 | 130 | 160 | 352.1 | 276.2 |
ACEY_07543-1 | asp6: Secreted protein 6 | Clade V-specific | Y | Y | Y | 31 | 35 | 123 | 166 | 449.4 | 657.6 |
ACEY_08810-1 | VIT: Vitellogenin | Clade V conserved (no human) | Y | - | - | 121 | 53 | 216 | 62 | 3155.6 | 0.3 |
ACEY_01671-3 | asp5: SCP-like protein | Clade V conserved (no human) | Y | Y | Y | 35 | 36 | 132 | 144 | 1053.7 | 1217.8 |
ACEY_13362-1 | mtp: Metalloendopeptidase | Ancylostoma-specific | - | Y | - | 27 | 23 | 131 | 130 | 213.3 | 380.1 |
ACEY_07900-1 | Acey_s0073.g749 | Clade V-specific | Y | - | - | 63 | 62 | 140 | 117 | 136.1 | 162.5 |
ACEY_09375-1 | IPR035109: Ancylostoma-associated secreted protein | Ancylostoma-specific | (N/A) | - | - | 8 | 9 | 108 | 113 | 2634.1 | 2577.3 |
ACEY_02245-1 | IPR035109: Ancylostoma-associated secreted protein | Ancylostoma-specific | (N/A) | Y | - | 23 | 25 | 104 | 98 | 3281.0 | 3512.8 |
Term | Description | Total Term Size | Number of Sig. Genes | FDR-Adjusted p Value |
---|---|---|---|---|
KEGG | ||||
4147 | Exosome | 578 | 59 | 0 |
1002 | Peptidases and inhibitors | 406 | 53 | 0 |
3110 | Chaperones and folding catalysts | 206 | 32 | 0 |
4210 | Apoptosis | 108 | 26 | 0 |
4612 | Antigen processing and presentation | 73 | 23 | 0 |
4621 | NOD-like receptor signaling pathway | 86 | 21 | 6.3 × 10−14 |
536 | Glycosaminoglycan binding proteins | 126 | 24 | 1.9 × 10−13 |
4142 | Lysosome | 224 | 30 | 1.1 × 10−12 |
4140 | Autophagy-animal | 137 | 24 | 1.1 × 10−12 |
10 | Glycolysis/Gluconeogenesis | 62 | 10 | 8.9 × 10−5 |
GO molecular function | ||||
GO: 0008233 | peptidase activity | 531 | 68 | 2.1 × 10−24 |
GO: 0016787 | hydrolase activity | 1238 | 92 | 4.5 × 10−17 |
GO: 0043169 | cation binding | 733 | 61 | 1.5 × 10−12 |
GO: 0046872 | metal ion binding | 727 | 60 | 2.9 × 10−12 |
GO: 0004175 | endopeptidase activity | 358 | 40 | 5.2 × 10−12 |
GO: 0004222 | metalloendopeptidase activity | 204 | 30 | 5.2 × 10−12 |
GO: 0008234 | cysteine-type peptidase activity | 105 | 22 | 5.3 × 10−12 |
GO: 0140096 | catalytic activity, acting on a protein | 1136 | 76 | 1.9 × 10−11 |
GO: 0008237 | metallopeptidase activity | 248 | 32 | 2.1 × 10−11 |
GO: 0046914 | transition metal ion binding | 468 | 40 | 1.3 × 10−8 |
Interpro domains | ||||
IPR035940 | CAP superfamily | 465 | 136 | 0 |
IPR014044 | CAP domain | 394 | 124 | 0 |
IPR001283 | Cysteine-rich secretory protein-related | 306 | 94 | 0 |
IPR000668 | Peptidase C1A, papain C-terminal | 61 | 23 | 4.7 × 10−14 |
IPR025660 | Cysteine peptidase, histidine active site | 47 | 20 | 2.6 × 10−13 |
IPR000169 | Cysteine peptidase, cysteine active site | 52 | 20 | 2.2 × 10−12 |
IPR035109 | Ancylostoma-associated secreted protein related | 136 | 27 | 3.0 × 10−9 |
IPR025661 | Cysteine peptidase, asparagine active site | 39 | 15 | 4.1 × 10−9 |
IPR038765 | Papain-like cysteine peptidase superfamily | 110 | 23 | 2.6 × 10−8 |
IPR001506 | Peptidase M12A | 123 | 24 | 4.1 × 10−8 |
Protein ID | Best Annotation | Conservation | Detected in Logan et al., 2020 [6] | Sig. pep. | CAP Domain | Adult E/S Proteomics | Avg. mRNA Level (FPKM) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peptide Count | Spectral Count | ||||||||||
F | M | F | M | Ad F | Ad M | ||||||
ACEY_06131-2 | SCP domain-containing protein | Ancylostoma-specific | Y | Y | Y | 14 | 0 | 33 | 0 | 15.7 | 41.7 |
ACEY_11619-1 | asp4: Secreted protein 4 | Ancylostoma-specific | - | Y | Y | 7 | 0 | 16 | 0 | 197.3 | 0.10 |
ACEY_18091-1 | ANCCEY_04696: SCP-like protein | Ancylostoma-specific | Y | - | Y | 6 | 0 | 15 | 0 | 0.03 | 0.06 |
ACEY_06074-1 | hspD: Heat shock protein 90 | Conserved in humans | - | - | - | 11 | 0 | 12 | 0 | 1143.4 | 544.7 |
ACEY_00553-1 | nsbp: Putative nucleosome binding protein | Conserved in humans | - | - | - | 9 | 0 | 9 | 0 | 1037.1 | 701.5 |
ACEY_03322-1 | IPR014044:CAP domain | A. ceylanicum-specific | Y | Y | Y | 8 | 0 | 9 | 0 | 0.16 | 36.2 |
ACEY_06771-1 | HGS: Metalloendopeptidase | A. ceylanicum-specific | - | Y | - | 8 | 0 | 9 | 0 | 1852.0 | 0.31 |
ACEY_17074-1 | IPR035109: Ancylostoma-associated secreted protein | A. ceylanicum-specific | (N/A) | - | - | 8 | 0 | 9 | 0 | 49.0 | 42.3 |
ACEY_06945-1 | ttn-1: Immunoglobulin I-set domain protein | Conserved in humans | - | - | - | 8 | 0 | 8 | 0 | 0.29 | 0.37 |
ACEY_03325-1 | IPR002172:Low-density lipoprotein (LDL) receptor | Clade V-specific | (N/A) | Y | - | 7 | 0 | 8 | 0 | 0.26 | 2796.7 |
ACEY_16559-1 | r2: Ribonucleoside-diphosphate reductase | Conserved in humans | - | - | - | 6 | 0 | 7 | 0 | 315 | 48 |
ACEY_16507-1 | CBG16650: Deoxyribonuclease II | Clade V conserved (no human) | - | - | - | 5 | 0 | 7 | 0 | 44.5 | 70.7 |
ACEY_02929-1 | CBG06778: Trypsin Inhibitor like cysteine rich domain | Clade V conserved (no human) | - | Y | - | 6 | 0 | 6 | 0 | 129.9 | 1.2 |
ACEY_08051-1 | Acey_s0076.g1061 | Clade V-specific | - | Y | - | 6 | 0 | 6 | 0 | 146.0 | 0.14 |
ACEY_14605-1 | hspa4: Heat shock protein 105 kDa | Conserved in humans | - | - | - | 6 | 0 | 6 | 0 | 23.8 | 15.3 |
ACEY_04573-1 | - | Clade V conserved (no human) | Y | Y | - | 5 | 0 | 6 | 0 | 0.12 | 632.5 |
ACEY_15954-1 | IPR035109: Ancylostoma-associated secreted protein | Clade V-specific | - | Y | - | 5 | 0 | 6 | 0 | 32.9 | 54.5 |
ACEY_00191-1 | GOT2: Aspartate aminotransferase, mitochondrial | Conserved in humans | - | - | - | 5 | 0 | 6 | 0 | 169.2 | 56.4 |
ACEY_03760-1 | lgmn: Legumain | Conserved in humans | - | Y | - | 5 | 0 | 6 | 0 | 279.9 | 256.6 |
ACEY_10061-1 | spna2: Spectrin alpha chain | Conserved in humans | - | - | - | 5 | 0 | 6 | 0 | 31.0 | 24.2 |
Term | Description | Total Term Size | Number of Sig. Genes | FDR-Adjusted p Value |
---|---|---|---|---|
GO molecular function | ||||
GO: 0030170 | pyridoxal phosphate binding | 35 | 3 | 0.037 |
GO: 0070279 | vitamin B6 binding | 35 | 3 | 0.037 |
Protein ID | Best Annotation | Conservation | Detected in Logan et al., 2020 [6] | Sig. pep. | CAP Domain | Adult E/S Proteomics | Avg. mRNA Level (FPKM) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Peptide Count | Spectral Count | ||||||||||
F | M | F | M | Ad F | Ad M | ||||||
ACEY_02196-1 | ttl1: Precursor transthyretin like protein 1 | Clade V conserved (no human) | - | Y | - | 0 | 7 | 0 | 35 | 354.7 | 490.3 |
ACEY_13694-1 | Venom allergen/Ancylostoma secreted protein-like 18 | Ancylostoma-specific | - | Y | Y | 0 | 6 | 0 | 31 | 223.7 | 184.5 |
ACEY_06112-1 | NECAME_07497: SCP-like protein | Ancylostoma-specific | Y | Y | Y | 0 | 8 | 0 | 27 | 0.21 | 52.4 |
ACEY_07390-1 | Acey_s0065.g3604 | Clade V-specific | - | Y | - | 0 | 17 | 0 | 22 | 0.94 | 12.7 |
ACEY_15398-1 | inx: MFP2b | Clade V conserved (no human) | - | - | - | 0 | 13 | 0 | 17 | 0.14 | 177.2 |
ACEY_06326-1 | Acey_s0048.g1585: SCP-like protein | Clade V-specific | - | Y | Y | 0 | 10 | 0 | 17 | 9.95 | 17.6 |
ACEY_01267-1 | Nematode fatty acid retinoid binding protein | Ancylostoma-specific | Y | - | - | 0 | 14 | 0 | 14 | 0.80 | 1623.7 |
ACEY_15396-1 | inx: MFP2b | Clade V conserved (no human) | - | - | - | 0 | 12 | 0 | 14 | 0.080 | 95.5 |
ACEY_08562-1 | Acey_s0087.g2034: SCP-like protein | Ancylostoma-specific | (N/A) | Y | Y | 0 | 9 | 0 | 14 | 0.04 | 852.7 |
ACEY_16228-1 | SCP domain-containing protein | A. ceylanicum-specific | Y | - | Y | 0 | 4 | 0 | 14 | 2.58 | 3.0 |
ACEY_13234-1 | von Willebrand factor domain containing protein | Clade V conserved (no human) | - | - | - | 0 | 9 | 0 | 11 | 1.2 | 12 |
ACEY_01957-1 | asp6: SCP-like protein | Ancylostoma-specific | Y | - | Y | 0 | 8 | 0 | 11 | 0.12 | 1.0 |
ACEY_09376-1 | ARS: Arylsulfatase | Conserved in humans | - | Y | - | 0 | 9 | 0 | 10 | 2.1 | 74.7 |
ACEY_00325-1 | asp5: SCP-like protein | Ancylostoma-specific | Y | Y | Y | 0 | 7 | 0 | 10 | 1.0 | 158.7 |
ACEY_02166-1 | Acey_s0010.g910 | Clade V-specific | - | Y | - | 0 | 8 | 0 | 9 | 0.10 | 498.8 |
ACEY_15765-1 | Ancylostoma-specific | Ancylostoma-specific | (N/A) | Y | - | 0 | 7 | 0 | 9 | 0.43 | 119.5 |
ACEY_02233-1 | ANCCEY_04287: SCP-like protein | Clade V-specific | Y | Y | Y | 0 | 7 | 0 | 8 | 0.51 | 241.0 |
ACEY_15766-1 | Acey_s0439.g1485 | Ancylostoma-specific | (N/A) | Y | - | 0 | 6 | 0 | 8 | 11.7 | 141.1 |
ACEY_02212-1 | asp6: SCP-like protein | Ancylostoma-specific | Y | Y | Y | 0 | 6 | 0 | 8 | 0.032 | 0.29 |
ACEY_07632-1 | PPN: Kunitz/Bovine pancreatic trypsin inhibitor | Ancylostoma-specific | - | Y | - | 0 | 6 | 0 | 8 | 0.038 | 252.7 |
Term | Description | Total Term Size | Number of Sig. Genes | FDR-Adjusted p Value |
---|---|---|---|---|
KEGG | ||||
4091 | Lectins | 43 | 4 | 3.7 × 10−2 |
GO molecular function | ||||
GO: 0061135 | endopeptidase regulator activity | 146 | 13 | 1.8 × 10−10 |
GO: 0004866 | endopeptidase inhibitor activity | 146 | 13 | 1.8 × 10−10 |
GO: 0030414 | peptidase inhibitor activity | 152 | 13 | 2.0 × 10−10 |
GO: 0061134 | peptidase regulator activity | 156 | 13 | 2.1 × 10−10 |
GO: 0004867 | serine-type endopeptidase inhibitor activity | 130 | 12 | 3.4 × 10−10 |
GO: 0030234 | enzyme regulator activity | 273 | 14 | 1.4 × 10−8 |
GO: 0098772 | molecular function regulator | 298 | 14 | 3.7 × 10−8 |
Interpro domains | ||||
IPR035940 | CAP superfamily | 465 | 22 | 3.2 × 10−7 |
IPR014044 | CAP domain | 394 | 20 | 3.5 × 10−7 |
IPR021010 | Cytosolic motility protein | 7 | 5 | 7.2 × 10−7 |
IPR036880 | Pancreatic trypsin inhibitor Kunitz domain superfamily | 112 | 11 | 2.6 × 10−6 |
IPR002223 | Pancreatic trypsin inhibitor Kunitz domain | 107 | 10 | 1.7 × 10−5 |
IPR001283 | Cysteine-rich secretory protein-related | 306 | 15 | 3.6 × 10−5 |
IPR020901 | Proteinase inhibitor I2, Kunitz, conserved site | 76 | 8 | 1.1 × 10−4 |
IPR016186 | C-type lectin-like/link domain superfamily | 111 | 9 | 1.7 × 10−4 |
IPR016187 | C-type lectin fold | 117 | 9 | 2.4 × 10−4 |
IPR001304 | C-type lectin-like | 102 | 8 | 7.5 × 10−4 |
IPR008962 | PapD-like superfamily | 56 | 5 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzoechi, S.C.; Rosa, B.A.; Singh, K.S.; Choi, Y.-J.; Bracken, B.K.; Brindley, P.J.; Townsend, R.R.; Sprung, R.; Zhan, B.; Bottazzi, M.-E.; et al. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens 2023, 12, 95. https://doi.org/10.3390/pathogens12010095
Uzoechi SC, Rosa BA, Singh KS, Choi Y-J, Bracken BK, Brindley PJ, Townsend RR, Sprung R, Zhan B, Bottazzi M-E, et al. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens. 2023; 12(1):95. https://doi.org/10.3390/pathogens12010095
Chicago/Turabian StyleUzoechi, Samuel C., Bruce A. Rosa, Kumar Sachin Singh, Young-Jun Choi, Bethany K. Bracken, Paul J. Brindley, R. Reid Townsend, Robert Sprung, Bin Zhan, Maria-Elena Bottazzi, and et al. 2023. "Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum" Pathogens 12, no. 1: 95. https://doi.org/10.3390/pathogens12010095
APA StyleUzoechi, S. C., Rosa, B. A., Singh, K. S., Choi, Y. -J., Bracken, B. K., Brindley, P. J., Townsend, R. R., Sprung, R., Zhan, B., Bottazzi, M. -E., Hawdon, J. M., Wong, Y., Loukas, A., Djuranovic, S., & Mitreva, M. (2023). Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens, 12(1), 95. https://doi.org/10.3390/pathogens12010095