A Systematic Review of Factors Associated with Mortality among Patients with Mycobacterium avium Complex Lung Disease
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Data Extraction and Analysis
2.3. Assessing the Risk of Bias
3. Results
Assessing the Risk of Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namkoong, H.; Kurashima, A.; Morimoto, K.; Hoshino, Y.; Hasegawa, N.; Ato, M.; Mitarai, S. Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan. Emerg. Infect. Dis. 2016, 22, 1116–1117. [Google Scholar] [CrossRef] [PubMed]
- Jhun, B.W.; Moon, S.M.; Jeon, K.; Kwon, O.J.; Yoo, H.; Carriere, K.C.; Huh, H.J.; Lee, N.Y.; Shin, S.J.; Daley, C.L.; et al. Prognostic factors associated with long-term mortality in 1445 patients with nontuberculous mycobacterial pulmonary disease: A 15-year follow-up study. Eur. Respir. J. 2020, 55, 1900798. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Kim, S.; Jo, K.W.; Shim, T.S. Natural history of Mycobacterium avium complex lung disease in untreated patients with stable course. Eur. Respir. J. 2017, 49, 1600537. [Google Scholar] [CrossRef] [PubMed]
- Diel, R.; Nienhaus, A.; Ringshausen, F.C.; Richter, E.; Welte, T.; Rabe, K.F.; Loddenkemper, R. Microbiologic Outcome of Interventions Against Mycobacterium avium Complex Pulmonary Disease: A Systematic Review. Chest 2018, 153, 888–921. [Google Scholar] [CrossRef] [PubMed]
- Diel, R.; Lipman, M.; Hoefsloot, W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect. Dis. 2018, 18, 206. [Google Scholar] [CrossRef]
- Wong, A.W.; Ryerson, C.J.; Guler, S.A. Progression of fibrosing interstitial lung disease. Respir. Res. 2020, 21, 32. [Google Scholar] [CrossRef]
- Kurz, S.G.; Zha, B.S.; Herman, D.D.; Holt, M.R.; Daley, C.L.; Ruminjo, J.K.; Thomson, C.C. Summary for Clinicians: 2020 Clinical Practice Guideline Summary for the Treatment of Nontuberculous Mycobacterial Pulmonary Disease. Ann. Am. Thorac. Soc. 2020, 17, 1033–1039. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.-J.; Sheen, S.-S.; Hahn, S.; Jang, B.-H.; Son, H.-J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Aono, Y.; Hozumi, H.; Kono, M.; Hashimoto, D.; Nakamura, H.; Yokomura, K.; Imokawa, S.; Shirai, M.; Akahori, D.; Inoue, Y.; et al. Prognostic significance of radiological pleuroparenchymal fibroelastosis in Mycobacterium avium complex lung disease: A multicentre retrospective cohort study. Thorax 2022, 78, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Asakura, T.; Suzuki, S.; Okamori, S.; Kusumoto, T.; Sato, Y.; Namkoong, H.; Kamata, H.; Ishii, M.; Fukunaga, K.; et al. Longitudinal validity and prognostic significance of the St George’s Respiratory Questionnaire in Mycobacterium avium complex pulmonary disease. Respir. Med. 2021, 185, 106515. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Ito, A.; Fujiwara, K.; Morino, E.; Hase, I.; Nakano, Y.; Asakura, T.; Furuuchi, K.; Morita, A.; Asami, T.; et al. Clinical Features and Prognosis of Nontuberculous Mycobacterial Pleuritis: A Multicenter Retrospective Study. Ann. Am. Thorac. Soc. 2021, 18, 1490–1497. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tsujino, K.; Kuge, T.; Okabe, F.; Kawasaki, T.; Matsuki, T.; Kagawa, H.; Miki, M.; Miki, K.; Mori, M.; et al. Pleuroparenchymal fibroelastosis in Mycobacterium avium complex pulmonary disease: Clinical characteristics and prognostic impact. ERJ Open Res. 2021, 7, 00765-2020. [Google Scholar] [CrossRef]
- Fukushima, K.; Kitada, S.; Komukai, S.; Kuge, T.; Matsuki, T.; Kagawa, H.; Tsujino, K.; Miki, M.; Miki, K.; Kida, H. First line treatment selection modifies disease course and long-term clinical outcomes in Mycobacterium avium complex pulmonary disease. Sci. Rep. 2021, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.W.; Lee, E.H.; Choi, J.S.; Leem, A.Y.; Lee, S.H.; Lee, S.H.; Kim, S.Y.; Chung, K.S.; Jung, J.Y.; Park, M.S.; et al. Impact of prognostic nutritional index on outcomes in patients with Mycobacterium avium complex pulmonary disease. PLoS ONE 2020, 15, e0232714. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Furuuchi, K.; Fujiwara, K.; Nakamoto, K.; Tanaka, Y.; Ishii, H.; Yoshiyama, T.; Yoshimori, K.; Takizawa, H.; Sasaki, Y.; et al. Impact of Aspergillus precipitating antibody test results on clinical outcomes of patients with Mycobacterium avium complex lung disease. Respir. Med. 2020, 166, 105955. [Google Scholar] [CrossRef]
- Akahori, D.; Suzuki, Y.; Yokomura, K.; Shirai, M.; Yasui, H.; Hozumi, H.; Karayama, M.; Furuhashi, K.; Enomoto, N.; Fujisawa, T.; et al. Body composition changes successfully classify prognosis in patients with mycobacterium avium complex lung disease. J. Infect. 2019, 79, 341–348. [Google Scholar] [CrossRef]
- Asakura, T.; Yamada, Y.; Suzuki, S.; Namkoong, H.; Okamori, S.; Kusumoto, T.; Niijima, Y.; Ozaki, A.; Hashimoto, M.; Yagi, K.; et al. Quantitative assessment of erector spinae muscles in patients with Mycobacterium avium complex lung disease. Respir. Med. 2018, 145, 66–72. [Google Scholar] [CrossRef]
- Furuuchi, K.; Ito, A.; Hashimoto, T.; Kumagai, S.; Ishida, T. Clinical significance of Aspergillus species isolated from respiratory specimens in patients with Mycobacterium avium complex lung disease. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2018, 37, 91–98. [Google Scholar] [CrossRef]
- Kumagai, S.; Ito, A.; Hashimoto, T.; Marumo, S.; Tokumasu, H.; Kotani, A.; Yamaki, H.; Shirata, M.; Furuuchi, K.; Fukui, M.; et al. Development and validation of a prognostic scoring model for Mycobacterium avium complex lung disease: An observational cohort study. BMC Infect. Dis. 2017, 17, 436. [Google Scholar] [CrossRef] [PubMed]
- Furuuchi, K.; Ito, A.; Hashimoto, T.; Kumagai, S.; Ishida, T. Clinical significance of the radiological severity score in Mycobacterium avium complex lung disease patients. Int. J. Tuberc. Lung Dis. 2017, 21, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Takayanagi, N.; Kanauchi, T.; Miyahara, Y.; Yanagisawa, T.; Sugita, Y. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am. J. Respir. Crit. Care Med. 2012, 185, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Takasaka, N.; Hosaka, Y.; Fukuda, T.; Shinfuku, K.; Chida, K.; Shibata, S.; Kojima, A.; Hasegawa, T.; Yamada, M.; Yamanaka, Y.; et al. Impact of emphysema on the prognosis of Mycobacterium avium complex pulmonary disease. Respir. Med. 2022, 192, 106738. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-H.; Pan, S.-W.; Shu, C.-C.; Chen, C.-Y.; Wei, Y.-F.; Cheng, S.-L.; Wang, H.-C.; Yu, C.-J. Clinical course and risk factors of mortality in Mycobacterium avium complex lung disease without initial treatment. Respir. Med. 2020, 171, 106070. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Mourtzoukou, E.G.; Vardakas, K.Z. Sex differences in the incidence and severity of respiratory tract infections. Respir. Med. 2007, 101, 1845–1863. [Google Scholar] [CrossRef] [PubMed]
- Ley, B.; Ryerson, C.J.; Vittinghoff, E.; Ryu, J.; Tomassetti, S.; Lee, J.S.; Poletti, V.; Buccioli, M.; Elicker, B.M.; Jones, K.D.; et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann. Intern. Med. 2012, 156, 684–691. [Google Scholar] [CrossRef]
- Marrie, T.J. Community-acquired pneumonia in the elderly. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2000, 31, 1066–1078. [Google Scholar] [CrossRef]
- Dias, S.P.; Brouwer, M.C.; van de Beek, D. Sex and Gender Differences in Bacterial Infections. Infect. Immun. 2022, 90, e0028322. [Google Scholar] [CrossRef]
- Ueshima, J.; Momosaki, R.; Shimizu, A.; Motokawa, K.; Sonoi, M.; Shirai, Y.; Uno, C.; Kokura, Y.; Shimizu, M.; Nishiyama, A.; et al. Nutritional Assessment in Adult Patients with Dysphagia: A Scoping Review. Nutrients 2021, 13, 778. [Google Scholar] [CrossRef]
- Raad, S.; Smith, C.; Allen, K. Nutrition Status and Chronic Obstructive Pulmonary Disease: Can We Move Beyond the Body Mass Index? Nutr. Clin. Pract. 2019, 34, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Komiya, K.; Ishii, H.; Umeki, K.; Mizunoe, S.; Okada, F.; Johkoh, T.; Kadota, J.-I. Impact of aspiration pneumonia in patients with community-acquired pneumonia and healthcare-associated pneumonia: A multicenter retrospective cohort study. Respirology 2013, 18, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Prospective Studies Collaboration; Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Schembri, S.; Anderson, W.; Morant, S.; Winter, J.; Thompson, P.; Pettitt, D.; MacDonald, T.M.; Winter, J.H. A predictive model of hospitalisation and death from chronic obstructive pulmonary disease. Respir. Med. 2009, 103, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Redox properties of serum albumin. Biochim. Biophys. Acta 2013, 1830, 5465–5472. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.H.; Kwon, S.O.; Han, S.S.; Kim, W.J. Computed tomography-derived area and density of pectoralis muscle associated disease severity and longitudinal changes in chronic obstructive pulmonary disease: A case control study. Respir. Res. 2019, 20, 226. [Google Scholar] [CrossRef]
- Sheth, J.S.; Xia, M.; Murray, S.; Martinez, C.H.; Meldrum, C.A.; Belloli, E.A.; Salisbury, M.L.; White, E.S.; Holtze, C.H.; Flaherty, K.R. Frailty and geriatric conditions in older patients with idiopathic pulmonary fibrosis. Respir. Med. 2019, 148, 6–12. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Komiya, K.; Yamamoto, T.; Fujita, N.; Oka, H.; Okabe, E.; Yamasue, M.; Umeki, K.; Rubin, B.K.; Hiramatsu, K.; et al. Quantitative assessment of erector spinae muscles and prognosis in elderly patients with pneumonia. Sci. Rep. 2021, 11, 4319. [Google Scholar] [CrossRef]
- O’Connell, D.G.; Brewer, J.F.; Man, T.H.; Weldon, J.S.; Hinman, M.R. The Effects of Forced Exhalation and Inhalation, Grunting, and Valsalva Maneuver on Forehand Force in Collegiate Tennis Players. J. Strength Cond. Res. 2016, 30, 430–437. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Fuseya, Y.; Hasegawa, K.; Uemasu, K.; Sato, A.; Oguma, T.; Hirai, T.; Mishima, M.; Muro, S. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis. Ann. Am. Thorac. Soc. 2016, 13, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Negewo, N.A.; Gibson, P.G.; McDonald, V.M. COPD and its comorbidities: Impact, measurement and mechanisms. Respirology 2015, 20, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Caminati, A.; Lonati, C.; Cassandro, R.; Elia, D.; Pelosi, G.; Torre, O.; Zompatori, M.; Uslenghi, E.; Harari, S. Comorbidities in idiopathic pulmonary fibrosis: An underestimated issue. Eur. Respir. Rev. 2019, 28, 190044. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.; Morel, M.D.P.; Kostka, J.; Nicolau, D.P. Duration of antibiotic therapy for Enterobacterales and Pseudomonas aeruginosa: A review of recent evidence. Curr. Opin. Infect. Dis. 2021, 34, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Kosmidis, C.; Denning, D.W. The clinical spectrum of pulmonary aspergillosis. Thorax 2015, 70, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Asio, L.G.; Baluku, J.B.; Kwizera, R.; Denning, D.W. Chronic Pulmonary Aspergillosis: Notes for a Clinician in a Resource-Limited Setting Where There Is No Mycologist. J. Fungi 2020, 6, 75. [Google Scholar] [CrossRef]
- Gubbins, P.O.; Heldenbrand, S. Clinically relevant drug interactions of current antifungal agents. Mycoses 2010, 53, 95–113. [Google Scholar] [CrossRef]
- Kuroishi, S.; Nakamura, Y.; Hayakawa, H.; Shirai, M.; Nakano, Y.; Yasuda, K.; Suda, T.; Nakamura, H.; Chida, K. Mycobacterium avium complex disease: Prognostic implication of high-resolution computed tomography findings. Eur. Respir. J. 2008, 32, 147–152. [Google Scholar] [CrossRef]
- Palaci, M.; Dietze, R.; Hadad, D.J.; Ribeiro, F.K.C.; Peres, R.L.; Vinhas, S.A.; Maciel, E.L.N.; Dettoni, V.D.V.; Horter, L.; Boom, W.H.; et al. Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. J. Clin. Microbiol. 2007, 45, 4064–4066. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
Author, Publication Year | Study Design, Nationality | Number of Samples | Patients’ Age | Number of Patients Treated (%) with Chemotherapy, Regimens | Follow-Up Period (Year) | Number of Death (%) |
---|---|---|---|---|---|---|
Aono 2022 [11] | Retrospective, Japan | 97 with and 721 without PPFE | 74.4 ± 9.9 with and 68.7 ± 10.9 without PPFE (mean ± SD) | 62 (64) with and 466 (65) without PPFE | 3.1, 1.4–5.1 with and 4.5, 2.0–6.9 without PPFE (median, IQR) | 93 (11) |
Takasaka, 2022 [24] | Retrospective, Japan | 174 | 73 ± 9.8 (mean ± SD) | 68 (39), RECAM * | 3.4, 2.2–5.1 (median, IQR) | 20 (12) |
Ogawa, 2021 [12] | Prospective, Japan | 269 | 68, 62–75 (median, IQR) | 142 (53), n.d. | 4.1 | 22 (8) |
Yagi K, 2021 [13] | Retrospective, Japan | 54 with and 54 without pleuritis | 73, 67–81 with and 77, 70–82 without pleuritis (median, IQR) | 60 (56), various | 0.8, 0.2–2.3 with and 4.9, 3.3–5.7 without pleuritis (median, IQR) | 33 (31) |
Yamamoto, 2021 [14] | Retrospective, Japan | 224 | 68, 62–74 (median, IQR) | 86 (38), RECAM * | n.d. | 9 (4) |
Fukushima, 2021 [15] | Retrospective, Japan | 295 | 65.9 ± 10.5 (mean ± SD) | 295 (100), various | n.d. | 48 (16) |
Wang, 2020 [25] | Retrospective, Taiwan | 123 | 66.7 ± 14.2 (mean ± SD) | 47 (38), various | 4.15 ± 2.52 (mean ± SD) | 22 (18) |
Moon, 2020 [16] | Retrospective, South Korea | 663 | 64.1 ± 11.8 (mean ± SD) | 306 (46), various | 3.9 ± 2.8 (mean ± SD) | 63 (10) |
Shirai, 2020 [17] | Retrospective, Japan | 131 | 72, 63–79 (median, IQR) | 95 (73), RECAM * | 4.0, 2.2–5.7 (median, IQR) | 34 (26) |
Akahori, 2019 [18] | Retrospective, Japan | 248 (137 and 111 in different cohorts) | 73, 65–78 and 76, 67–82 (median, IQR) | 85 (66) and 58 (52), RECAM | 4.6, 3.3–6.9 and 5.8, 2.7–5.8 (median, IQR) | 44 (18) |
Asakura, 2018 [19] | Prospective, Japan | 260 | 69, 64–76 (median, IQR) | 110 (42), n.d. | 3.0, 2.0–3.8 (median, IQR) | 21 (8) |
Furuuchi, 2018 [20] | Retrospective, Japan | 329 (40 with and 289 without Aspergillus co-infection) | 74, 67–79 with and 73, 65–78 without Aspergillus co-infection (median, IQR) | 177 (54), n.d. | 3.7, 2.0–5.1 (median, IQR) | 67 (20) |
Kumagai, 2017 [21] | Retrospective, Japan | 368 | 72 ± 10 (mean ± SD) | 169 (46), various | 3.5, 0–9.3 (median, IQR) | 75 (21) |
Furuuchi, 2017 [22] | Retrospective, Japan | 218 | 71 ± 9.6 (mean ± SD) | 114 (52), various | 3.3, 0–5.5 (median, IQR) | 32 (15) |
Hayashi, 2012 [23] | Retrospective, Japan | 634 | 68.9 ± 11.4 (mean ± SD) | 196 (31), various | 4.7, 0–11.1 (median, IQR) | 160 (25) |
Significant | Non-Significant | |
---|---|---|
Patient’s backgrounds | ||
Advanced age | [11] [12] [15] [16] [17] [20] [21] [23] | [14] [18] [19] |
Male sex | [11] [15] [16] [18] [21] [23] | [19] [24] |
Nutritional status and lung function | ||
Low body mass index | [12] [14] [15] [16] [18] a [19] b [21] [23] [24] | [11] [13] [18] a [19] b |
Hypoalbuminemia | [11] [17] [20] [21] [23] | |
Decreased erector spinae muscles | [18] c | [18] c [19] d |
Low predicted forced vital capacity % | [12] [19] | |
Comorbidity | ||
Aspergillus co-infection | [17] [20] | [15] |
Respiratory comorbidity | [13] [20] [23] | |
Diabetes mellitus | [15] | [16] |
Malignancy | [21] | [16] |
Chest radiological features | ||
Cavity | [15] [19] [22] [24] | [14] |
Fibrocavitary pattern | [11] [17] [21] [23] | |
Nodular bronchiectatic pattern | [14] [19] | |
Bronchiectasis | [22] | [14] |
Pleuroparenchymal fibroelastosis | [11] [14] | |
Consolidation | [25] | [14] |
Laboratory data | ||
C-reactive protein | [15] | [11] |
Smear grade | [11] [16] e | [16] e |
Studies | Selection of Participants | Confounding Variables | Measurements of Exposure | Blinding of Outcome Assessments | Incomplete Outcome Data | Selective Outcome Reporting |
---|---|---|---|---|---|---|
Aono, 2023 [11] | high | high | low | low | low | unclear |
Takasaka, 2022 [24] | high | high | low | low | low | unclear |
Ogawa, 2021 [12] | low | high | low | unclear | high | unclear |
Yagi K, 2021 [13] | high | low | low | low | low | unclear |
Yamamoto, 2021 [14] | high | high | low | high | high | unclear |
Fukushima, 2021 [15] | high | high | low | low | high | unclear |
Wang, 2020 [25] | high | high | low | low | low | unclear |
Moon, 2020 [16] | high | high | low | low | high | unclear |
Shirai, 2020 [17] | high | high | low | low | high | unclear |
Akahori, 2019 [18] | high | high | low | low | high | unclear |
Asakura, 2018 [19] | low | low | low | unclear | high | unclear |
Furuuchi, 2018 [20] | high | high | low | low | low | unclear |
Kumagai, 2017 [21] | high | high | low | unclear | low | unclear |
Furuuchi, 2017 [22] | high | high | low | low | low | unclear |
Hayashi, 2012 [23] | high | high | low | unclear | unclear | unclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujishima, N.; Komiya, K.; Yamasue, M.; Hiramatsu, K.; Kadota, J.-i. A Systematic Review of Factors Associated with Mortality among Patients with Mycobacterium avium Complex Lung Disease. Pathogens 2023, 12, 1331. https://doi.org/10.3390/pathogens12111331
Fujishima N, Komiya K, Yamasue M, Hiramatsu K, Kadota J-i. A Systematic Review of Factors Associated with Mortality among Patients with Mycobacterium avium Complex Lung Disease. Pathogens. 2023; 12(11):1331. https://doi.org/10.3390/pathogens12111331
Chicago/Turabian StyleFujishima, Nobuhiro, Kosaku Komiya, Mari Yamasue, Kazufumi Hiramatsu, and Jun-ichi Kadota. 2023. "A Systematic Review of Factors Associated with Mortality among Patients with Mycobacterium avium Complex Lung Disease" Pathogens 12, no. 11: 1331. https://doi.org/10.3390/pathogens12111331
APA StyleFujishima, N., Komiya, K., Yamasue, M., Hiramatsu, K., & Kadota, J. -i. (2023). A Systematic Review of Factors Associated with Mortality among Patients with Mycobacterium avium Complex Lung Disease. Pathogens, 12(11), 1331. https://doi.org/10.3390/pathogens12111331