Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review
Abstract
:1. Introduction
2. Spectrum of Infections
2.1. Recurrent Sinopulmonary Infections
2.2. Gastrointestinal Infections
2.3. Infections of the Central Nervous System
2.4. Mucocutaneous Infections
2.5. Opportunistic Infections
2.6. Infections following Immunization
3. Preventive Measures
4. Combined Immunodeficiency (CID), Generally Less Profound than SCID
4.1. CD40L and CD40 Deficiency
4.2. Deficient Expression of MHC I & II
4.2.1. Type 1 BLS
4.2.2. Type 2 BLS
4.2.3. Type 3 BLS
4.3. ICOS Deficiency
4.4. DOCK8 Deficiency
4.5. STK4 (MST1) Deficiency
4.6. ZAP70 Deficiency
4.7. IKAROS Deficiency
5. Combined Immunodeficiencies with Associated or Syndromic Features
5.1. Immunodeficiency with Congenital Thrombocytopenia
5.1.1. Wiskott–Aldrich Syndrome
5.1.2. WIP Deficiency
5.1.3. Arp2/3-Mediated Filament Branching Defect
6. DNA Repair Defects Other than Those Listed in Table 1
6.1. Ataxia Telangiectasia (A–T)
6.2. Nijmegen Breakage Syndrome
6.3. Bloom Syndrome
7. Thymic Defects with Additional Congenital Anomalies
7.1. CHARGE Syndrome
7.2. DiGeorge Syndrome
8. Immuno-Osseous Dysplasias
8.1. Cartilage Hair Hypoplasia
8.2. Schimke Immuno-Osseous Dysplasia
9. Hyper IgE Syndromes
9.1. Job Syndrome (AD Hyper IgE Syndrome)
9.2. Comel–Netherton Syndrome
10. Defects of Vitamin B12 and Folate Metabolism
Methylene-Tetrahydrofolate Dehydrogenase 1 (MTHFD1) Deficiency
11. Anhidrotic Ectodermodysplasia with Immunodeficiency
EDA-ID Due to NEMO/IKBKG Deficiency (Ectodermal Dysplasia, Immune Deficiency)
12. Calcium Channel Defects
12.1. ORAI1 Deficiency
12.2. STIM1 Deficiency
13. Other Defects
13.1. Purine Nucleoside Phosphorylase (PNP Deficiency)
13.2. Immunodeficiency with Multiple Intestinal Atresias
14. Combined Immunodeficiency Due to RAG Deficiency
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef] [PubMed]
- Roifman, C.M.; Somech, R.; Kavadas, F.; Pires, L.; Nahum, A.; Dalal, I.; Grunebaum, E. Defining combined immunodeficiency. J. Allergy Clin. Immunol. 2012, 130, 177–183. [Google Scholar] [CrossRef]
- Speckmann, C.; Doerken, S.; Aiuti, A.; Albert, M.H.; Al-Herz, W.; Allende, L.M.; Scarselli, A.; Avcin, T.; Perez-Becker, R.; Cancrini, C.; et al. A prospective study on the natural history of patients with profound combined immunodeficiency: An interim analysis. J. Allergy Clin. Immunol. 2017, 139, 1302–1310.e4. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Provot, J.; Jais, J.-P.; Alcais, A.; Mahlaoui, N.; members of the CEREDIH French PID study group. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 2017, 140, 1388–1393.e8. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Notarangelo, L.D. RAGgene defects at the verge of immunodeficiency and immune dysregulation. Immunol. Rev. 2019, 287, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Leven, E.A.; Maffucci, P.; Ochs, H.D.; Scholl, P.R.; Buckley, R.H.; Fuleihan, R.L.; Geha, R.S.; Cunningham, C.K.; Bonilla, F.A.; Conley, M.E.; et al. Hyper IgM Syndrome: A Report from the USIDNET Registry. J. Clin. Immunol. 2016, 36, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Tang, W.; Chen, X.; Zeng, T.; Wang, Y.; Chen, Z.; Xu, T.; Zhou, L.; Tang, X.; An, Y.; et al. Clinical, genetic and immunological characteristics of 40 Chinese patients with CD40 ligand deficiency. Scand. J. Immunol. 2019, 90, e12798. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Espanol-Boren, T.; Thomas, C.; Fischer, A.; Tovo, P.; Bordigoni, P.; Resnick, I.; Fasth, A.; Baer, M.; Gomez, L.; et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 1997, 131, 47–54. [Google Scholar] [CrossRef]
- de la Morena, M.T. Clinical Phenotypes of Hyper-IgM Syndromes. J. Allergy Clin. Immunol. Pract. 2016, 4, 1023–1036. [Google Scholar] [CrossRef]
- Winkelstein, J.A.; Marino, M.C.; Ochs, H.; Fuleihan, R.; Scholl, P.R.; Geha, R.; Stiehm, E.R.; Conley, M.E. The X-Linked Hyper-IgM Syndrome: Clinical and Immunologic Features of 79 Patients. Medicine 2003, 82, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Murguia-Favela, L.; Sharfe, N.; Karanxha, A.; Bates, A.; Dadi, H.; Cimpean, L.; Roifman, C.M. CD40 deficiency: A unique adult patient with hyper immunoglobulin m syndrome and normal expression of CD40. LymphoSign J. 2017, 4, 70–76. [Google Scholar] [CrossRef]
- Schepp, J.; Chou, J.; Skrabl-Baumgartner, A.; Arkwright, P.D.; Engelhardt, K.R.; Hambleton, S.; Morio, T.; Röther, E.; Warnatz, K.; Geha, R.; et al. 14 Years after Discovery: Clinical Follow-up on 15 Patients with Inducible Co-Stimulator Deficiency. Front. Immunol. 2017, 8, 964. [Google Scholar] [CrossRef]
- Hanalioglu, D.; Ayvaz, D.C.; Ozgur, T.T.; van der Burg, M.; Sanal, O.; Tezcan, I. A novel mutation in TAP1 gene leading to MHC class I deficiency: Report of two cases and review of the literature. Clin. Immunol. 2017, 178, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.; de la Salle, H.; Hanau, D.; Tongio, M.-M.; Oswald, M.; Vandevenne, A.; Geisert, J. Association of HLA class I antigen deficiency related to a TAP2 gene mutation with familial bronchiectasis. J. Pediatr. 1995, 127, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Andrès, E.; Donato, L.; Hanau, D.; Hentges, F.; de la Salle, H. Clinical and immunological aspects of HLA class I deficiency. Qjm Int. J. Med. 2005, 98, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Gadola, S.D.; Moins-Teisserenc, H.T.; Trowsdale, J.; Gross, W.L.; Cerundolo, V. TAP deficiency syndrome. Clin. Exp. Immunol. 2008, 121, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.; Etzioni, A. MHC class I and II deficiencies. J. Allergy Clin. Immunol. 2014, 134, 269–275. [Google Scholar] [CrossRef]
- Will, N.; Seger, R.A.; Betzler, C.; Dockter, G.; Graf, N.; Büttner, M.; Irlé, C.; Tiercy, J.M.; Sitzmann, F.C. Bare lymphocyte syndrome—Combined immunodeficiency and neutrophil dysfunction. Eur. J. Pediatr. 1990, 149, 700–704. [Google Scholar] [CrossRef]
- Elhasid, R.; Etzioni, A. Major histocompatibility complex class II deficiency: A clinical review. Blood Rev. 1996, 10, 242–248. [Google Scholar] [CrossRef]
- Villard, J.; Masternak, K.; Lisowska-Grospierre, B.; Fischer, A.; Reith, W. MHC class II deficiency: A disease of gene regulation. Medicine 2001, 80, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Ouederni, M.; Vincent, Q.B.; Frange, P.; Touzot, F.; Scerra, S.; Bejaoui, M.; Bousfiha, A.; Levy, Y.; Lisowska-Grospierre, B.; Canioni, D.; et al. Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: A survey of 35 patients. Blood 2011, 118, 5108–5118. [Google Scholar] [CrossRef] [PubMed]
- Klein, C. Major histocompatibility complex class deficiency: Clinical manifestations, immunologic features, and outcome. J. Pediatr. 1993, 123, 8. [Google Scholar] [CrossRef] [PubMed]
- Posovszky, C.; Sirin, M.; Jacobsen, E.; Lorenz, M.; Schwarz, K.; Schmidt-Choudhury, A.; Rothoeft, T.; Schuetz, C.; Hönig, M.; Debatin, K.-M.; et al. Persisting enteropathy and disturbed adaptive mucosal immunity due to MHC class II deficiency. Clin. Immunol. 2019, 203, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Lum, S.H.; Anderson, C.; McNaughton, P.; Engelhardt, K.R.; MacKenzie, B.; Watson, H.; Al-Mousa, H.; Al-Herz, W.; Al-Saud, B.; Mohammed, R.; et al. Improved transplant survival and long-term disease outcome in children with MHC class II deficiency. Blood 2020, 135, 954–973. [Google Scholar] [CrossRef] [PubMed]
- Aluri, J.; Gupta, M.; Dalvi, A.; Mhatre, S.; Kulkarni, M.; Hule, G.; Desai, M.; Shah, N.; Taur, P.; Vedam, R.; et al. Clinical, Immunological, and Molecular Findings in Five Patients with Major Histocompatibility Complex Class II Deficiency from India. Front. Immunol. 2018, 9, 188. [Google Scholar] [CrossRef]
- El Hawary, R.E.; Mauracher, A.A.; Meshaal, S.S.; Eldash, A.; Elaziz, D.S.A.; Alkady, R.; Lotfy, S.; Opitz, L.; Galal, N.M.; Boutros, J.A.; et al. MHC-II Deficiency Among Egyptians: Novel Mutations and Unique Phenotypes. J. Allergy Clin. Immunol. Pract. 2019, 7, 856–863. [Google Scholar] [CrossRef]
- Bernaerts, A.; Vandevenne, J.E.; Lambert, J.; De Clerck, L.S.; De Schepper, A.M. Bare lymphocyte syndrome: Imaging findings in an adult. Eur. Radiol. 2001, 11, 815–818. [Google Scholar] [CrossRef]
- Parvaneh, N.; Shahmahmoudi, S.; Tabatabai, H.; Zahraei, M.; Mousavi, T.; Esteghamati, A.-R.; Gooya, M.M.; Mamishi, S.; Nategh, R.; Kew, O.M. Vaccine-associated paralytic poliomyelitis in a patient with MHC class II deficiency. J. Clin. Virol. 2007, 39, 145–148. [Google Scholar] [CrossRef]
- Abu-Arja, R.; Gonzalez, B.; Jacobs, M.; Cabral, L.; Egler, R.; Auletta, J.; Arnold, J.; Cooke, K. Disseminated Bacillus Calmette-Guérin (BCG) infection following allogeneic hematopoietic stem cell transplant in a patient with Bare Lymphocyte Syndrome type II. Transpl. Infect. Dis. 2014, 16, 830–837. [Google Scholar] [CrossRef]
- Saleem, M.A.; Arkwright, P.D.; Davies, E.G.; Cant, A.J.; Veys, P.A. Clinical course of patients with major histocompatibility complex class II deficiency. Arch. Dis. Child. 2000, 83, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Griscelli, C. Combined immunodeficiency with defective expression in major histocompatibility complex class II genes. Clin. Immunol. Immunopathol. 1991, 61, S106–S110. [Google Scholar] [CrossRef] [PubMed]
- Guirat-Dhouib, N.; Baccar, Y.; Ben Mustapha, I.; Ouederni, M.; Chouaibi, S.; El Fekih, N.; Barbouche, M.R.; Fezaa, B.; Kouki, R.; Hmida, S.; et al. Oral HPV infection and MHC class II deficiency (A study of two cases with atypical outcome). Clin. Mol. Allergy 2012, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Clarridge, K.; Leitenberg, D.; Loechelt, B.; Picard, C.; Keller, M. Major Histocompatibility Complex Class II Deficiency due to a Novel Mutation in RFXANK in a Child of Mexican Descent. J. Clin. Immunol. 2016, 36, 4–5. [Google Scholar] [CrossRef]
- Hsieh, J.; Mandola, A.; Betschel, S.D. A novel homozygous mutation in CIITA resulting in MHC Class II deficiency in an adult patient. LymphoSign J. 2018, 5, 135–140. [Google Scholar] [CrossRef]
- Ben-Mustapha, I.; Ben-Farhat, K.; Guirat-Dhouib, N.; Dhemaied, E.; Larguèche, B.; Ben-Ali, M.; Chemli, J.; Bouguila, J.; Ben-Mansour, L.; Mellouli, F.; et al. Clinical, Immunological and Genetic Findings of a Large Tunisian Series of Major Histocompatibility Complex Class II Deficiency Patients. J. Clin. Immunol. 2013, 33, 865–870. [Google Scholar] [CrossRef]
- Walkovich, K.; Lugt, M.V. ZAP70-Related Combined Immunodeficiency; University of Washington: Seattle, WA, USA, 2009. [Google Scholar]
- Turul, T.; Tezcan, I.; Artac, H.; De Bruin-Versteeg, S.; Barendregt, B.H.; Reisli, I.; Sanal, O.; Van Dongen, J.J.M.; Van Der Burg, M. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur. J. Pediatr. 2009, 168, 87–93. [Google Scholar] [CrossRef]
- Kuehn, H.S.; Nunes-Santos, C.J.; Rosenzweig, S.D. Germline IKZF1 mutations and their impact on immunity: IKAROS-associated diseases and pathophysiology. Expert Rev. Clin. Immunol. 2021, 17, 407–416. [Google Scholar] [CrossRef]
- Yamashita, M.; Morio, T. Inborn errors of IKAROS and AIOLOS. Curr. Opin. Immunol. 2021, 72, 239–248. [Google Scholar] [CrossRef]
- Aydin, S.E.; Kilic, S.S.; Aytekin, C.; Kumar, A.; Porras, O.; Kainulainen, L.; Kostyuchenko, L.; Genel, F.; Kütükcüler, N.; Karaca, N.; et al. DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options—A Review of 136 Patients. J. Clin. Immunol. 2015, 35, 189–198. [Google Scholar] [CrossRef]
- Zhang, Q.; Davis, J.C.; Lamborn, I.T.; Freeman, A.F.; Jing, H.; Favreau, A.J.; Matthews, H.F.; Davis, J.; Turner, M.L.; Uzel, G.; et al. Combined Immunodeficiency Associated withDOCK8Mutations. N. Engl. J. Med. 2009, 361, 2046–2055. [Google Scholar] [CrossRef]
- Su, H.C. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Abdollahpour, H.; Appaswamy, G.; Kotlarz, D.; Diestelhorst, J.; Beier, R.; Schäffer, A.A.; Gertz, E.M.; Schambach, A.; Kreipe, H.H.; Pfeifer, D.; et al. The phenotype of human STK4 deficiency. Blood 2012, 119, 3450–3457. [Google Scholar] [CrossRef] [PubMed]
- Nehme, N.T.; Schmid, J.P.; Debeurme, F.; André-Schmutz, I.; Lim, A.; Nitschké, P.; Rieux-Laucat, F.; Lutz, P.; Picard, C.; Mahlaoui, N.; et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 2012, 119, 3458–3468. [Google Scholar] [CrossRef] [PubMed]
- Ansari, R.; Rosen, L.B.; Lisco, A.; Gilden, D.; Holland, S.M.; Zerbe, C.S.; Bonomo, R.A.; Cohen, J.I.; Ansari, R.; Rosen, L.B.; et al. Primary and Acquired Immunodeficiencies Associated with Severe Varicella-Zoster Virus Infections. Clin. Infect. Dis. 2021, 73, e2705–e2712. [Google Scholar] [CrossRef]
- Mullen, C.A.; Anderson, K.D.; Blaese, R.M. Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: Long-term follow-up of 62 cases. Blood 1993, 82, 2961–2966. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.E.; Mullen, C.A.; Blaese, R.M.; Winkelstein, J.A. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J. Pediatr. 1994, 125, 876–885. [Google Scholar] [CrossRef]
- Lanzi, G.; Moratto, D.; Vairo, D.; Masneri, S.; Delmonte, O.; Paganini, T.; Parolini, S.; Tabellini, G.; Mazza, C.; Savoldi, G.; et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J. Exp. Med. 2012, 209, 29–34. [Google Scholar] [CrossRef]
- Schwinger, W.; Urban, C.; Ulreich, R.; Sperl, D.; Karastaneva, A.; Strenger, V.; Lackner, H.; Boztug, K.; Albert, M.H.; Benesch, M.; et al. The Phenotype and Treatment of WIP Deficiency: Literature Synopsis and Review of a Patient with Pre-transplant Serial Donor Lymphocyte Infusions to Eliminate CMV. Front. Immunol. 2018, 9, 2554. [Google Scholar] [CrossRef] [PubMed]
- Papadatou, I.; Marinakis, N.; Botsa, E.; Tzanoudaki, M.; Kanariou, M.; Orfanou, I.; Kanaka-Gantenbein, C.; Traeger-Synodinos, J.; Spoulou, V. Case Report: A Novel Synonymous ARPC1B Gene Mutation Causes a Syndrome of Combined Immunodeficiency, Asthma, and Allergy with Significant Intrafamilial Clinical Heterogeneity. Front. Immunol. 2021, 12, 634313. [Google Scholar] [CrossRef]
- Volpi, S.; Cicalese, M.P.; Tuijnenburg, P.; Tool, A.T.J.; Cuadrado, E.; Abu-Halaweh, M.; Ahanchian, H.; Alzyoud, R.; Akdemir, Z.C.; Barzaghi, F.; et al. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 2019, 143, 2296–2299. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Wegrzyn, A.; Crawford, T.O.; Winkelstein, J.A.; Carson, K.A.; Lederman, H.M. Immunodeficiency and infections in ataxia-telangiectasia. J. Pediatr. 2004, 144, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.A.; Zielen, S. Infections of the respiratory system in patients with ataxia-telangiectasia: Pulmonary Disease in Patients With Ataxia-Telangiectasia Clean R3. Pediatr. Pulmonol. 2014, 49, 389–399. [Google Scholar] [CrossRef]
- Micol, R.; Ben Slama, L.; Suarez, F.; Le Mignot, L.; Beauté, J.; Mahlaoui, N.; D’Enghien, C.D.; Laugé, A.; Hall, J.; Couturier, J.; et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J. Allergy Clin. Immunol. 2011, 128, 382–389.e1. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowska, K.; Kleijer, W.J.; Krajewska-Walasek, M.; Białecka, M.; Gutkowska, A.; Goryluk-Kozakiewicz, B.; Michałkiewicz, J.; Stachowski, J.; Gregorek, H.; Łysón-Wojciechowska, G.; et al. Eleven polish patients with microcephaly, immunodeficiency, and chromosomal instability: The Nijmegen breakage syndrome. Am. J. Med. Genet. 1995, 57, 462–471. [Google Scholar] [CrossRef] [PubMed]
- van der Burgt, I.; Chrzanowska, K.H.; Smeets, D.; Weemaes, C. Nijmegen breakage syndrome. J Med Genet 1996, 33, 153–156. [Google Scholar] [CrossRef]
- The International Nijmegen Breakage Syndrome Study Group Nijmegen breakage syndrome. Arch. Dis. Child. 2000, 82, 400–406. [CrossRef]
- Schoenaker, M.H.D.; Henriet, S.S.; Zonderland, J.; van Deuren, M.; Pan-Hammarström, Q.; Sluijs, S.J.P.-V.; Pico-Knijnenburg, I.; Weemaes, C.M.R.; Ijspeert, H. Immunodeficiency in Bloom’s Syndrome. J. Clin. Immunol. 2018, 38, 35–44. [Google Scholar] [CrossRef]
- Gennery, A.R. Immunological aspects of 22q11.2 deletion syndrome. Cell. Mol. Life Sci. 2012, 69, 17–27. [Google Scholar] [CrossRef]
- Morsheimer, M.; Brown Whitehorn, T.F.; Heimall, J.; Sullivan, K.E. The immune deficiency of chromosome 22q11.2 deletion syndrome. Am. J. Med. Genet. Part A 2017, 173, 2366–2372. [Google Scholar] [CrossRef]
- Wong, M.T.; Schölvinck, E.H.; Lambeck, A.J.; van Ravenswaaij-Arts, C.M. CHARGE syndrome: A review of the immunological aspects. Eur. J. Hum. Genet. 2015, 23, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Vakkilainen, S.; Taskinen, M.; Mäkitie, O. Immunodeficiency in cartilage-hair hypoplasia: Pathogenesis, clinical course and management. Scand. J. Immunol. 2020, 92, e12913. [Google Scholar] [CrossRef] [PubMed]
- Gamliel, A.; Lee, Y.N.; Lev, A.; AbuZaitun, O.; Rechavi, E.; Levy, S.; Simon, A.; Somech, R. Immunologic heterogeneity in two Cartilage-Hair Hypoplasia (CHH) patients with distinct clinical course. J. Investig. Allergol. Clin. Immunol. 2022, 33. [Google Scholar] [CrossRef]
- Vakkilainen, S.; Taskinen, M.; Klemetti, P.; Pukkala, E.; Mäkitie, O. A 30-Year Prospective Follow-Up Study Reveals Risk Factors for Early Death in Cartilage-Hair Hypoplasia. Front. Immunol. 2019, 10, 1581. [Google Scholar] [CrossRef]
- Saraiva, J.M.; Dinis, A.; Resende, C.; Faria, E.; Gomes, C.; Correia, A.J.; Gil, J.; Da Fonseca, N. Schimke immuno-osseous dysplasia: Case report and review of 25 patients. J. Med. Genet. 1999, 36, 786–789. [Google Scholar] [CrossRef]
- Santava, A.; Zapletalová, J.; Michálková, K.; Hanáková, S.; Kopřiva, F.; Šantavý, J.; Dušek, J.; Kleinová, D. Spondyloepiphyseal dysplasia with nephrotic syndrome (Schimke immunoosseous dysplasia). Am. J. Med. Genet. 1994, 49, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Grimbacher, B.; Holland, S.M.; Gallin, J.I.; Greenberg, F.; Hill, S.C.; Malech, H.L.; Miller, J.A.; O’Connell, A.C.; Puck, J.M. Hyper-IgE Syndrome with Recurrent Infections—An Autosomal Dominant Multisystem Disorder. N. Engl. J. Med. 1999, 340, 692–702. [Google Scholar] [CrossRef]
- Saikia, B.; Rawat, A.; Minz, R.W.; Suri, D.; Pandiarajan, V.; Jindal, A.; Sahu, S.; Karim, A.; Desai, M.; Taur, P.D.; et al. Clinical Profile of Hyper-IgE Syndrome in India. Front. Immunol. 2021, 12, 626593. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Walsh, T.J.; Roilides, E. Fungal infections in primary immunodeficiencies. Eur. J. Pediatr. 2007, 166, 1099–1117. [Google Scholar] [CrossRef]
- Herz-Ruelas, M.E.; Chavez-Alvarez, S.; Garza-Chapa, J.I.; Ocampo-Candiani, J.; Cab-Morales, V.A.; Kubelis-López, D.E. Netherton Syndrome: Case Report and Review of the Literature. Ski. Appendage Disord. 2021, 7, 346–350. [Google Scholar] [CrossRef]
- Eränkö, E.; Ilander, M.; Tuomiranta, M.; Mäkitie, A.; Lassila, T.; Kreutzman, A.; Klemetti, P.; Mustjoki, S.; Hannula-Jouppi, K.; Ranki, A. Immune cell phenotype and functional defects in Netherton syndrome. Orphanet J. Rare Dis. 2018, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Burda, P.; Kuster, A.; Hjalmarson, O.; Suormala, T.; Bürer, C.; Lutz, S.; Roussey, G.; Christa, L.; Asin-Cayuela, J.; Kollberg, G.; et al. Characterization and review of MTHFD1 deficiency: Four new patients, cellular delineation and response to folic and folinic acid treatment. J. Inherit. Metab. Dis. 2015, 38, 863–872. [Google Scholar] [CrossRef]
- Döffinger, R.; Smahi, A.; Bessia, C.; Geissmann, F.; Feinberg, J.; Durandy, A.; Bodemer, C.; Kenwrick, S.; Dupuis-Girod, S.; Blanche, S.; et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 2001, 27, 277–285. [Google Scholar] [CrossRef]
- Feske, S.; Picard, C.; Fischer, A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin. Immunol. 2010, 135, 169–182. [Google Scholar] [CrossRef] [PubMed]
- McCarl, C.-A.; Picard, C.; Khalil, S.; Kawasaki, T.; Röther, J.; Papolos, A.; Kutok, J.; Hivroz, C.; LeDeist, F.; Plogmann, K.; et al. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 2009, 124, 1311–1318. [Google Scholar] [CrossRef]
- Aytekin, C.; Dogu, F.; Tanir, G.; Guloglu, D.; Santisteban, I.; Hershfield, M.S.; Ikinciogullari, A. Purine nucleoside phosphorylase deficiency with fatal course in two sisters. Eur. J. Pediatr. 2010, 169, 311–314. [Google Scholar] [CrossRef]
- Parvaneh, N.; Ashrafi, M.-R.; Yeganeh, M.; Pouladi, N.; Sayarifar, F.; Parvaneh, L. Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency. Brain Dev. 2007, 29, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Mou, W.; Yang, S.; Guo, R.; Fu, L.; Zhang, L.; Guo, W.; Du, J.; He, J.; Ren, Q.; Hao, C.; et al. A Novel Homozygous TTC7A Missense Mutation Results in Familial Multiple Intestinal Atresia and Combined Immunodeficiency. Front. Immunol. 2021, 12, 759308. [Google Scholar] [CrossRef]
- Mandiá, N.; Pérez-Muñuzuri, A.; López-Suárez, O.; López-Sanguos, C.; Bautista-Casanovas, A.; Couce, M.-L. Congenital intestinal atresias with multiple episodes of sepsis: A case report and review of literature. Medicine 2018, 97, e10939. [Google Scholar] [CrossRef]
- Moreno, L.A.; Gottrand, F.; Turck, D.; Manouvrier-Hanu, S.; Mazingue, F.; Morisot, C.; Le Deist, F.; Ricour, C.; Nihoul-Feketé, C.; Debeugny, P.; et al. Severe combined immunodeficiency syndrome associated with autosomal recessive familial multiple gastrointestinal atresias: Study of a family. Am. J. Med. Genet. 1990, 37, 143–146. [Google Scholar] [CrossRef]
- Ali, Y.A.H.; Rahman, S.; Bhat, V.; Al Thani, S.; Ismail, A.; Bassiouny, I. Hereditary multiple intestinal atresia (HMIA) with severe combined immunodeficiency (SCID): A case report of two siblings and review of the literature on MIA, HMIA and HMIA with immunodeficiency over the last 50 years. BMJ Case Rep. 2011, 2011, bcr0520103031. [Google Scholar] [CrossRef]
- Fischer, R.T.; Friend, B.; Talmon, G.A.; Grant, W.J.; Quiros-Tejeira, R.E.; Langnas, A.N.; Coccia, P.F. Intestinal transplantation in children with multiple intestinal atresias and immunodeficiency. Pediatr. Transplant. 2014, 18, 190–196. [Google Scholar] [CrossRef]
- Avitzur, Y.; Guo, C.; Mastropaolo, L.A.; Bahrami, E.; Chen, H.; Zhao, Z.; Elkadri, A.; Dhillon, S.; Murchie, R.; Fattouh, R.; et al. Mutations in Tetratricopeptide Repeat Domain 7A Result in a Severe Form of Very Early Onset Inflammatory Bowel Disease. Gastroenterology 2014, 146, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.H.; Mcdonald, G.; Alton, H.; Gordon, S.B. Pneumonia in the immunocompetent patient. Br. J. Radiol. 2010, 83, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- McGarry, T.; Giosa, R.; Rohman, M.; Huang, C.T. Pneumatocele Formation in Adult Pneumonia. Chest 1987, 92, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Lougaris, V.; Badolato, R.; Ferrari, S.; Plebani, A. Hyper immunoglobulin M syndrome due to CD40 deficiency: Clinical, molecular, and immunological features. Immunol. Rev. 2005, 203, 48–66. [Google Scholar] [CrossRef]
- Hostoffer, R.W.; Berger, M.; Clark, H.T.; Schreiber, J.R. Disseminated Histoplasma capsulatum in a patient with hyper IgM immunodeficiency. Pediatrics 1994, 94, 234–236. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Chung, J.-H.; Shin, J.-H.; Hwang, T.-J.; Kim, K.-S.; Lee, J.-H.; Nam, J.-H.; Park, C.-S.; Juhng, S.-W.; Choi, C.; et al. Lymphonodular Cryptococcosis Diagnosed by Fine Needle Aspiration Cytology in Hyper-IgM Syndrome. A case report. Acta Cytol. 2001, 45, 241–244. [Google Scholar] [CrossRef]
- Obregon, R.G.; Lynch, D.A.; Kaske, T.; Newell, J.D.; Kirkpatrick, C.H. Radiologic Findings of Adult Primary Immunodeficiency Disorders. Contribution of CT. Chest 1994, 106, 490–495. [Google Scholar] [CrossRef]
- Kalha, I.; Sellin, J.H. Common variable immunodeficiency and the gastrointestinal tract. Curr. Gastroenterol. Rep. 2004, 6, 377–383. [Google Scholar] [CrossRef]
- Wood, P.; Stanworth, S.; Burton, J.; Jones, A.; Peckham, D.G.; Green, T.; Hyde, C.; Chapel, H. Recognition, clinical diagnosis and management of patients with primary antibody deficiencies: A systematic review. Clin. Exp. Immunol. 2007, 149, 410–423. [Google Scholar] [CrossRef]
- Lai Ping So, A.; Mayer, L. Gastrointestinal manifestations of primary immunodeficiency disorders. Semin. Gastrointest. Dis. 1997, 8, 22–32. [Google Scholar] [PubMed]
- Kobrynski, L.J.; Mayer, L. Diagnosis and treatment of primary immunodeficiency disease in patients with gastrointestinal symptoms. Clin. Immunol. 2011, 139, 238–248. [Google Scholar] [CrossRef]
- Hutto, J.O.; Bryan, C.S.; Greene, F.L.; White, C.J.; Gallin, J.I. Cryptococcosis of the colon resembling Crohn’s disease in a patient with the hyperimmunoglobulinemia E-recurrent infection (Job’s) syndrome. Gastroenterology 1988, 94, 808–812. [Google Scholar] [CrossRef]
- Alberti-Flor, J.J.; Granda, A. Ileocecal Histoplasmosis Mimicking Crohn’s Disease in a Patient with Job’s Syndrome. Digestion 1986, 33, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Bishu, S.; Madhavan, D.; Perez, P.; Civitello, L.; Liu, S.; Fessler, M.; Holland, S.M.; Jain, A.; Pao, M. CD40 Ligand Deficiency: Neurologic Sequelae with Radiographic Correlation. Pediatr. Neurol. 2009, 41, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Halliday, E. Enteroviral Infections in Primary Immunodeficiency (PID): A Survey of Morbidity and Mortality. J. Infect. 2003, 46, 1–8. [Google Scholar] [CrossRef]
- Yong, P.; Post, F.A.; Gilmour, K.C.; Grosse-Kreul, D.; King, A.; Easterbrook, P.; Ibrahim, M. Cerebral toxoplasmosis in a middle-aged man as first presentation of primary immunodeficiency due to a hypomorphic mutation in the CD40 ligand gene. J. Clin. Pathol. 2008, 61, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Aschermann, Z.; Gomori, E.; Kovacs, G.G.; Pal, E.; Simon, G.; Komoly, S.; Marodi, L.; Illes, Z. X-linked Hyper-IgM Syndrome Associated with a Rapid Course of Multifocal Leukoencephalopathy. Arch. Neurol. 2007, 64, 273–276. [Google Scholar] [CrossRef]
- Kariyappa, M.; Kommalur, A.; Jayaram, S.; Javarappa, P.; Ambazhagan, A. Recurrent Meningitis in Hyper IgE Syndrome. Indian J. Pediatr. 2015, 82, 385–386. [Google Scholar] [CrossRef]
- Rijkers, G.T.; Sanders, L.A.; Zegers, B.J. Anti-capsular polysaccharide antibody deficiency states. Immunodeficiency 1993, 5, 1–21. [Google Scholar] [PubMed]
- Evans, D.I.K.; Holzel, A. Immune Deficiency State in a Girl with Eczema and Low Serum IgM: Possible Female Variant of Wiskott-Aldrich Syndrome. Arch. Dis. Child. 1970, 45, 527–533. [Google Scholar] [CrossRef]
- Wright, B.A. Median rhomboid glossitis: Not a misnomer: Review of the literature and histologic study of twenty-eight cases. Oral Surgery Oral Med. Oral Pathol. 1978, 46, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A. Primary T-Lymphocyte Immunodeficiencies. Clin. Rev. Allergy Immunol. 2001, 20, 3–26. [Google Scholar] [CrossRef] [PubMed]
- LeibundGut-Landmann, S.; Groß, O.; Robinson, M.J.; Osorio, F.; Slack, E.; Tsoni, S.V.; Schweighoffer, E.; Tybulewicz, V.; Brown, G.; Ruland, J.; et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 2007, 8, 630–638. [Google Scholar] [CrossRef]
- Egri, N.; Esteve-Solé, A.; Deyà-Martínez, O.; de Landazuri, I.O.; Vlagea, A.; Garcia, A.; Cardozo, C.; Garcia-Vidal, C.; Bartolomé, C.S.; Español-Rego, M.; et al. Primary immunodeficiency and chronic mucocutaneous candidiasis: Pathophysiological, diagnostic, and therapeutic approaches. Allergol. Immunopathol. 2021, 49, 118–127. [Google Scholar] [CrossRef]
- Zheng, J.; van de Veerdonk, F.L.; Crossland, K.L.; Smeekens, S.P.; Chan, C.M.; Al Shehri, T.; Abinun, M.; Gennery, A.R.; Mann, J.; Lendrem, D.W.; et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur. J. Immunol. 2015, 45, 2834–2846. [Google Scholar] [CrossRef]
- Riccardi, N.; Rotulo, G.A.; Castagnola, E. Definition of Opportunistic Infections in Immunocompromised Children on the Basis of Etiologies and Clinical Features: A Summary for Practical Purposes. Curr. Pediatr. Rev. 2019, 15, 197–206. [Google Scholar] [CrossRef]
- Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol. 2011, 127, 1329–1341.e2. [Google Scholar] [CrossRef]
- Georgiadou, S.P.; Pongas, G.; Fitzgerald, N.E.; Lewis, R.E.; Rytting, M.; Marom, E.M.; Kontoyiannis, D.P. Invasive Mold Infections in Pediatric Cancer Patients Reflect Heterogeneity in Etiology, Presentation, and Outcome: A 10-Year, Single-Institution, Retrospective Study. J. Pediatr. Infect. Dis. Soc. 2012, 1, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Pana, Z.D.; Roilides, E.; Warris, A.; Groll, A.H.; Zaoutis, T. Epidemiology of Invasive Fungal Disease in Children. J. Pediatr. Infect. Dis. Soc. 2017, 6, S3–S11. [Google Scholar] [CrossRef]
- Sobh, A.; Bonilla, F.A. Vaccination in Primary Immunodeficiency Disorders. J. Allergy Clin. Immunol. Pract. 2016, 4, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukaiti, N.; Reid, B.; Lavi, S.; Al-Zaharani, D.; Atkinson, A.; Roifman, C.M.; Grunebaum, E. Safety and efficacy of measles, mumps, and rubella vaccine in patients with DiGeorge syndrome. J. Allergy Clin. Immunol. 2010, 126, 868–869. [Google Scholar] [CrossRef]
- Moens, L.; Van Eyck, L.; Jochmans, D.; Mitera, T.; Frans, G.; Bossuyt, X.; Matthys, P.; Neyts, J.; Ciancanelli, M.; Zhang, S.-Y.; et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J. Allergy Clin. Immunol. 2017, 139, 1995–1997.e9. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.-L.; Jouanguy, E.; Lamhamedi, S.; Blanche, S.; Fischer, A. Immunological conditions of children with BCG disseminated infection. Lancet 1995, 346, 581. [Google Scholar] [CrossRef] [PubMed]
- Nissen, T.N.; Birk, N.M.; Kjærgaard, J.; Thøstesen, L.M.; Pihl, G.T.; Hoffmann, T.; Jeppesen, D.L.; Kofoed, P.-E.; Greisen, G.; Benn, C.S.; et al. Adverse reactions to the Bacillus Calmette–Guérin (BCG) vaccine in new-born infants—An evaluation of the Danish strain 1331 SSI in a randomized clinical trial. Vaccine 2016, 34, 2477–2482. [Google Scholar] [CrossRef]
- Hassanzad, M.; Valinejadi, A.; Darougar, S.; Hashemitari, S.K.; Velayati, A.A. Disseminated Bacille Calmette-Guérin Infection at a Glance: A Mini Review of the Literature. Adv. Respir. Med. 2019, 87, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Ahn, T.S.; Han, B.; Krogstad, P.; Bun, C.; Kohn, L.A.; Garcia-Lloret, M.I.; Damoiseaux, R.; Butte, M.J. Commercial immunoglobulin products contain cross-reactive but not neutralizing antibodies against SARS-CoV-2. J. Allergy Clin. Immunol. 2021, 147, 876–877. [Google Scholar] [CrossRef] [PubMed]
- Delmonte, O.M.; Bergerson, J.R.E.; Burbelo, P.D.; Durkee-Shock, J.R.; Dobbs, K.; Bosticardo, M.; Keller, M.D.; McDermott, D.H.; Rao, V.K.; Dimitrova, D.; et al. Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of immunity. J. Allergy Clin. Immunol. 2021, 148, 1192–1197. [Google Scholar] [CrossRef]
- Hagin, D.; Freund, T.; Navon, M.; Halperin, T.; Adir, D.; Marom, R.; Levi, I.; Benor, S.; Alcalay, Y.; Freund, N.T. Immunogenicity of Pfizer-BioNTech COVID-19 vaccine in patients with inborn errors of immunity. J. Allergy Clin. Immunol. 2021, 148, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Squire, J.; Joshi, A. Seroconversion after coronavirus disease 2019 vaccination in patients with immune deficiency. Ann. Allergy, Asthma Immunol. 2021, 127, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Ochs, H.D.; Smith, C.I.E.; Puck, J. (Eds.) CD40 and CD40 Ligand deficiencies. In Primary Immunodeficiency Diseases: A Molecular and Genetic Approach, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014. [Google Scholar]
- Ferrari, S.; Giliani, S.; Insalaco, A.; Al-Ghonaium, A.; Soresina, A.R.; Loubser, M.; Avanzini, M.A.; Marconi, M.; Badolato, R.; Ugazio, A.G.; et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. UAS 2001, 98, 12614–12619. [Google Scholar] [CrossRef] [PubMed]
- Al-Saud, B.K.; Al-Sum, Z.; Alassiri, H.; Al-Ghonaium, A.; Al-Muhsen, S.; Al-Dhekri, H.; Arnaout, R.; Alsmadi, O.; Borrero, E.; Abu-Staiteh, A.; et al. Clinical, Immunological, and Molecular Characterization of Hyper-IgM Syndrome Due to CD40 Deficiency in Eleven Patients. J. Clin. Immunol. 2013, 33, 1325–1335. [Google Scholar] [CrossRef]
- Madkaikar, M.; Gupta, M.; Chavan, S.; Italia, K.; Desai, M.; Merchant, R.; Radhakrishnan, N.; Ghosh, K. X-linked hyper IgM syndrome: Clinical, immunological and molecular features in patients from India. Blood Cells, Mol. Dis. 2014, 53, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Kutukculer, N.; Moratto, D.; Aydinok, Y.; Lougaris, V.; Aksoylar, S.; Plebani, A.; Genel, F.; Notarangelo, L.D. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J. Pediatr. 2003, 142, 194–196. [Google Scholar] [CrossRef]
- Rawat, A.; Mathew, B.; Pandiarajan, V.; Jindal, A.; Sharma, M.; Suri, D.; Gupta, A.; Goel, S.; Karim, A.; Saikia, B.; et al. Clinical and molecular features of X-linked hyper IgM syndrome—An experience from North India. Clin. Immunol. 2018, 195, 59–66. [Google Scholar] [CrossRef]
- França, T.T.; Barreiros, L.A.; Al-Ramadi, B.K.; Ochs, H.D.; Cabral-Marques, O.; Condino-Neto, A. CD40 ligand deficiency: Treatment strategies and novel therapeutic perspectives. Expert Rev. Clin. Immunol. 2019, 15, 529–540. [Google Scholar] [CrossRef]
- Shrestha, D.; Szöllősi, J.; Jenei, A. Bare lymphocyte syndrome: An opportunity to discover our immune system. Immunol. Lett. 2012, 141, 147–157. [Google Scholar] [CrossRef]
- Ochs, H.D.; Smith, C.I.E.; Puck, J. (Eds.) Peptide transporter defects in human Leukocyte antigen class I deficiency. In Primary Immunodeficiency Diseases: A Molecular and Genetic Approach, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014. [Google Scholar]
- Abolhassani, H.; El-Sherbiny, Y.M.; Arumugakani, G.; Carter, C.; Richards, S.; Lawless, D.; Wood, P.; Buckland, M.; Heydarzadeh, M.; Aghamohammadi, A.; et al. Expanding Clinical Phenotype and Novel Insights into the Pathogenesis of ICOS Deficiency. J. Clin. Immunol. 2020, 40, 277–288. [Google Scholar] [CrossRef]
- Yong, P.F.K.; Salzer, U.; Grimbacher, B. The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol. Rev. 2009, 229, 101–113. [Google Scholar] [CrossRef]
- Chou, J.; Massaad, M.J.; Cangemi, B.; Bainter, W.; Platt, C.; Badran, Y.R.; Raphael, B.P.; Kamin, D.S.; Goldsmith, J.D.; Pai, S.-Y.; et al. A novel mutation in ICOS presenting as hypogammaglobulinemia with susceptibility to opportunistic pathogens. J. Allergy Clin. Immunol. 2015, 136, 794–797.e1. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, K.R.; McGhee, S.; Winkler, S.; Sassi, A.; Woellner, C.; Lopez-Herrera, G.; Chen, A.; Kim, H.S.; Lloret, M.G.; Schulze, I.; et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 2009, 124, 1289–1302.e4. [Google Scholar] [CrossRef] [PubMed]
- Mizesko, M.C.; Banerjee, P.P.; Monaco-Shawver, L.; Mace, E.M.; Bernal, W.E.; Sawalle-Belohradsky, J.; Belohradsky, B.H.; Heinz, V.; Freeman, A.F.; Sullivan, K.E.; et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 2013, 131, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Randall, K.L.; Chan, S.S.-Y.; Ma, C.; Fung, I.T.H.; Mei, Y.; Yabaş, M.; Tan, A.; Arkwright, P.; Al Suwairi, W.; Reyes, S.O.L.; et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 2011, 208, 2305–2320. [Google Scholar] [CrossRef] [PubMed]
- Ochs, H.D.; Smith, C.I.E.; Puck, J. (Eds.) Hyper-IgE recurrent infection syndromes. In Primary Immunodeficiency Diseases: A Molecular and Genetic Approach, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014. [Google Scholar]
- Pan, D. The Hippo Signaling Pathway in Development and Cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef]
- Saglam, A.; Cagdas, D.; Aydin, B.; Keles, S.; Reisli, I.; Arslankoz, S.; Katipoglu, K.; Uner, A. STK4 deficiency and EBV-associated lymphoproliferative disorders, emphasis on histomorphology, and review of literature. Virchows Arch. 2022, 480, 393–401. [Google Scholar] [CrossRef]
- Picard, C.; Dogniaux, S.; Chemin, K.; Maciorowski, Z.; Lim, A.; Mazerolles, F.; Rieux-Laucat, F.; Stolzenberg, M.-C.; Debre, M.; Magny, J.-P.; et al. Hypomorphic mutation ofZAP70in human results in a late onset immunodeficiency and no autoimmunity. Eur. J. Immunol. 2009, 39, 1966–1976. [Google Scholar] [CrossRef]
- Cuvelier, G.D.E.; Rubin, T.S.; Wall, D.A.; Schroeder, M.L. Long-Term Outcomes of Hematopoietic Stem Cell Transplantation for ZAP70 Deficiency. J. Clin. Immunol. 2016, 36, 713–724. [Google Scholar] [CrossRef]
- Schroeder, M.L.; Triggs-Raine, B.; Zelinski, T. Genotyping an immunodeficiency causing c.1624–11G>A ZAP70 mutation in Canadian Mennonites. BMC Med. Genet. 2016, 17, 50. [Google Scholar] [CrossRef]
- Nunes-Santos, C.J.; Kuehn, H.S.; Rosenzweig, S.D. IKAROS–Associated Diseases in Primary Immunodeficiency Patients. Immunol. Allergy Clin. North Am. 2020, 40, 461–470. [Google Scholar] [CrossRef]
- Rich, R.R.; Fleisher, T.A.; Shearer, W.T.; Schroeder, H.W. (Eds.) Primary T-Cell Immunodeficiencies. In Clinical Immunology: Principles and Practice, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ochs, H.D.; Smith, C.I.E.; Puck, J. (Eds.) Wiskott-Aldrich Syndrome. In Primary Immunodeficiency Diseases: A Molecular and Genetic Approach, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2014. [Google Scholar]
- Buchbinder, D.; Nugent, D.; Fillipovich, A. Wiskott–Aldrich syndrome: Diagnosis, current management, and emerging treatments. Appl. Clin. Genet. 2014, 7, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.H.; Bittner, T.C.; Nonoyama, S.; Notarangelo, L.D.; Burns, S.; Imai, K.; Espanol, T.; Fasth, A.; Pellier, I.; Strauss, G.; et al. X-linked thrombocytopenia (XLT) due to WAS mutations: Clinical characteristics, long-term outcome, and treatment options. Blood 2010, 115, 3231–3238. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Mazza, C.; Christie, J.R.; Giliani, S.; Fiorini, M.; Mella, P.; Gandellini, F.; Stewart, D.M.; Zhu, Q.; Nelson, D.L.; et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): Hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 2004, 104, 4010–4019. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Morio, T.; Zhu, Y.; Jin, Y.; Itoh, S.; Kajiwara, M.; Yata, J.-I.; Mizutani, S.; Ochs, H.D.; Nonoyama, S. Clinical course of patients with WASP gene mutations. Blood 2004, 103, 456–464. [Google Scholar] [CrossRef]
- Pfajfer, L.; Seidel, M.G.; Houmadi, R.; Rey-Barroso, J.; Hirschmugl, T.; Salzer, E.; Antón, I.M.; Urban, C.; Schwinger, W.; Boztug, K.; et al. WIP deficiency severely affects human lymphocyte architecture during migration and synapse assembly. Blood 2017, 130, 1949–1953. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.W.; Tool, A.T.; van der Bijl, I.; de Boer, M.; van Houdt, M.; de Cuyper, I.M.; Roos, D.; van Alphen, F.; van Leeuwen, K.; Cambridge, E.L.; et al. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 2017, 140, 273–277.e10. [Google Scholar] [CrossRef]
- Brigida, I.; Zoccolillo, M.; Cicalese, M.P.; Pfajfer, L.; Barzaghi, F.; Scala, S.; Oleaga-Quintas, C.; Álvarez-Álvarez, J.A.; Sereni, L.; Giannelli, S.; et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 2018, 132, 2362–2374. [Google Scholar] [CrossRef]
- Boder, E.; Sedgwick, R.P. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 1958, 21, 526–554. [Google Scholar] [CrossRef]
- Amirifar, P.; Ranjouri, M.R.; Yazdani, R.; Abolhassani, H.; Aghamohammadi, A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr. Allergy Immunol. 2019, 30, 277–288. [Google Scholar] [CrossRef]
- Méndez-Echevarría, A.; Caminoa, M.B.; del Rosal, T.; Casas, I.; Pozo, F.; Pascual-Pascual, S.; García-Romero, M.; Cámara, C.; Calvo, C. The Role of Respiratory Viruses in Children with Ataxia-Telangiectasia. Viruses 2021, 13, 867. [Google Scholar] [CrossRef]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: A review. Orphanet J. Rare Dis. 2016, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Digweed, M.; Sperling, K. Nijmegen breakage syndrome: Clinical manifestation of defective response to DNA double-strand breaks. DNA Repair 2004, 3, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Vogiatzi, M.G.; Sanz, M.M.; German, J. Evaluation of Short Stature, Carbohydrate Metabolism and Other Endocrinopathies in Bloom’s Syndrome. Horm. Res. Paediatr. 2006, 66, 111–117. [Google Scholar] [CrossRef] [PubMed]
- German, J.; Sanz, M.M.; Ciocci, S.; Ye, T.Z.; Ellis, N.A. Syndrome-causing mutations of theBLMgene in persons in the Bloom’s Syndrome Registry. Hum. Mutat. 2007, 28, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Jyonouchi, S.; McDonald-McGinn, D.M.; Bale, S.; Zackai, E.H.; Sullivan, K.E. CHARGE (Coloboma, Heart Defect, Atresia Choanae, Retarded Growth and Development, Genital Hypoplasia, Ear Anomalies/Deafness) Syndrome and Chromosome 22q11.2 Deletion Syndrome: A Comparison of Immunologic and Nonimmunologic Phenotypic Features. Pediatrics 2009, 123, e871–e877. [Google Scholar] [CrossRef] [PubMed]
- Gennery, A.R.; Slatter, M.A.; Rice, J.; Hoefsloot, L.H.; Barge, D.; McLean-Tooke, A.; Montgomery, T.; Goodship, J.A.; Burt, A.D.; Flood, T.J.; et al. Mutations in CHD7 in patients with CHARGE syndrome cause T–B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome. Clin. Exp. Immunol. 2008, 153, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.E.; Jawad, A.F.; Randall, P.; Driscoll, D.A.; Emanuel, B.S.; McDonald-McGinn, D.M.; Zackai, E.H. Lack of Correlation between Impaired T Cell Production, Immunodeficiency, and Other Phenotypic Features in Chromosome 22q11.2 Deletion Syndromes. Clin. Immunol. Immunopathol. 1998, 86, 141–146. [Google Scholar] [CrossRef]
- Piliero, L.M.; Sanford, A.N.; McDonald-McGinn, D.M.; Zackai, E.H.; Sullivan, K.E. T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 2004, 103, 1020–1025. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Baker, M.W.; Markert, M.L. Interpreting low T-cell receptor excision circles in newborns with DiGeorge anomaly: Importance of assessing naive T-cell markers. J. Allergy Clin. Immunol. 2011, 128, 1375–1376. [Google Scholar] [CrossRef]
- Jawad, A.F.; McDonald-McGinn, D.M.; Zackai, E.; Sullivan, K.E. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J. Pediatr. 2001, 139, 715–723. [Google Scholar] [CrossRef]
- Rider, N.L.; Morton, D.H.; Puffenberger, E.; Hendrickson, C.L.; Robinson, D.L.; Strauss, K.A. Immunologic and clinical features of 25 Amish patients with RMRP 70 A→G cartilage hair hypoplasia. Clin. Immunol. 2009, 131, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Spranger, J.; Hinkel, G.K.; Stöss, H.; Thoenes, W.; Wargowski, D.; Zepp, F. Schimke immuno-osseous dysplasia: A newly recognized multisystem disease. J. Pediatr. 1991, 119, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Ehrich, J.H.H.; Offner, G.; Schirg, E.; Hoyer, P.F.; Helmchen, U.; Brodehl, J. Association of spondylo-epiphyseal dysplasia with nephrotic syndrome. Pediatr. Nephrol. 1990, 4, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, R.; Komar, P.; Cvorić, A.; Nikolić, V.; Sinotić, M.; Zdravković, D.; Ognjanović, M.; Abinun, M. Focal Glomerular Sclerosis and Nephrotic Syndrome in Spondyloepiphyseal Dysplasia. Nephron 1994, 66, 219–224. [Google Scholar] [CrossRef]
- Freeman, A.F.; Kleiner, D.E.; Nadiminti, H.; Davis, J.; Quezado, M.; Anderson, V.; Puck, J.M.; Holland, S.M. Causes of death in hyper-IgE syndrome. J. Allergy Clin. Immunol. 2007, 119, 1234–1240. [Google Scholar] [CrossRef]
- Melia, E.; Freeman, A.F.; Shea, Y.R.; Hsu, A.P.; Holland, S.M.; Olivier, K.N. Pulmonary nontuberculous mycobacterial infections in hyper-IgE syndrome. J. Allergy Clin. Immunol. 2009, 124, 617–618. [Google Scholar] [CrossRef]
- Odio, C.D.; Milligan, K.L.; McGowan, K.; Spergel, A.K.R.; Bishop, R.; Boris, L.; Urban, A.; Welch, P.; Heller, T.; Kleiner, D.; et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J. Allergy Clin. Immunol. 2015, 136, 1411–1413.e2. [Google Scholar] [CrossRef]
- Galgiani, J.N.; Ampel, N.M.; Blair, J.E.; Catanzaro, A.; Johnson, R.H.; Stevens, D.A.; Williams, P.L. Coccidioidomycosis. Clin. Infect. Dis. 2005, 41, 1217–1223. [Google Scholar] [CrossRef]
- O’Connell, A.C.; Puck, J.M.; Grimbacher, B.; Facchetti, F.; Majorana, A.; Gallin, J.I.; Malech, H.; Holland, S.M. Delayed eruption of permanent teeth in hyperimmunoglobulinemia E recurrent infection syndrome. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology 2000, 89, 177–185. [Google Scholar] [CrossRef]
- Leonard, G.; Posadas, E.; Herrmann, P.; Anderson, V.; Jaffe, E.; Holland, S.; Wilson, W. Non-Hodgkin’s Lymphoma in Job’s Syndrome: A Case Report and Literature Review. Leuk. Lymphoma 2004, 45, 2521–2525. [Google Scholar] [CrossRef]
- Minegishi, Y.; Saito, M.; Nagasawa, M.; Takada, H.; Hara, T.; Tsuchiya, S.; Agematsu, K.; Yamada, M.; Kawamura, N.; Ariga, T.; et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J. Exp. Med. 2009, 206, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Hill, H.; Quie, P.; Pabst, H.; Ochs, H.; Clark, R.; Klebanoff, S.; Wedgwood, R. Defect in neutrophil granulocyte chemotaxis in job’s syndrome of recurrent "cold" staphylococcal abscesses. Lancet 1974, 304, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.H.; Wray, B.B.; Belmaker, E.Z. Extreme hyperimmunoglobulinemia e and undue susceptibility to infection. Pediatrics 1972, 49, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gernez, Y.; Freeman, A.F.; Holland, S.M.; Garabedian, E.; Patel, N.C.; Puck, J.M.; Sullivan, K.E.; Akhter, J.; Secord, E.; Chen, K.; et al. Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry. J. Allergy Clin. Immunol. Pract. 2018, 6, 996–1001. [Google Scholar] [CrossRef]
- Netherton, E.W. A Unique Case of Trichorrhexis Nodosa—“Bamboo Hairs”. AMA Arch. Dermatol. 1958, 78, 483–487. [Google Scholar] [CrossRef]
- Watkins, D.; Schwartzentruber, J.; Ganesh, J.; Orange, J.; Kaplan, B.S.; Nunez, L.D.; Majewski, J.; Rosenblatt, D.S. Novel inborn error of folate metabolism: Identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J. Med. Genet. 2011, 48, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, K.A.; Pengelly, R.J.; Gao, Y.; Morgan, M.; Patel, S.V.; Davies, E.G.; Ennis, S.; Faust, S.N.; Williams, A.P. Precision Molecular Diagnosis Defines Specific Therapy in Combined Immunodeficiency with Megaloblastic Anemia Secondary to MTHFD1 Deficiency. J. Allergy Clin. Immunol. Pract. 2016, 4, 1160–1166.e10. [Google Scholar] [CrossRef]
- Fusco, F.; Pescatore, A.; Conte, M.I.; Mirabelli, P.; Paciolla, M.; Esposito, E.; Lioi, M.B.; Ursini, M.V. EDA-ID and IP, Two Faces of the Same Coin: How the SameIKBKG/NEMOMutation Affecting the NF-κB Pathway Can Cause Immunodeficiency and/or Inflammation. Int. Rev. Immunol. 2015, 34, 445–459. [Google Scholar] [CrossRef]
- Picard, C.; Casanova, J.-L.; Puel, A. Infectious Diseases in Patients with IRAK-4, MyD88, NEMO, or IκBα Deficiency. Clin. Microbiol. Rev. 2011, 24, 490–497. [Google Scholar] [CrossRef]
- Pai, S.-Y.; Levy, O.; Jabara, H.H.; Glickman, J.N.; Stoler-Barak, L.; Sachs, J.; Nurko, S.; Orange, J.S.; Geha, R.S. Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-κB essential modulator deficiency. J. Allergy Clin. Immunol. 2008, 122, 1113–1118.e1. [Google Scholar] [CrossRef]
- Roberts, C.M.L.; Angus, J.E.; Leach, I.H.; McDermott, E.M.; Walker, D.A.; Ravenscroft, J.C. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur. J. Pediatr. 2010, 169, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, V.M.; Lofgren, S.M.; Mann, J.A.; Austin, J.P.; Nolt, D.; Shereck, E.B.; Saldaña, B.D.; Zonana, J.; Krol, A.L. Hypohidrotic Ectodermal Dysplasia, Osteopetrosis, Lymphedema, and Immunodeficiency in an Infant with Multiple Opportunistic Infections. Pediatr. Dermatol. 2014, 31, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Robert, V.; Triffaux, E.; Savignac, M.; Pelletier, L. Calcium signaling in T lymphocytes. Med. Sci. 2012, 28, 773–779. [Google Scholar] [CrossRef]
- Roos, J.; Digregorio, P.J.; Yeromin, A.V.; Ohlsen, K.; Lioudyno, M.; Zhang, S.; Safrina, O.; Kozak, J.A.; Wagner, S.L.; Cahalan, M.D.; et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 2005, 169, 435–445. [Google Scholar] [CrossRef]
- Liou, J.; Kim, M.L.; Do Heo, W.; Jones, J.T.; Myers, J.W.; Ferrell, J.E., Jr.; Meyer, T. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx. Curr. Biol. 2005, 15, 1235–1241. [Google Scholar] [CrossRef]
- Picard, C.; McCarl, C.-A.; Papolos, A.; Khalil, S.; Lüthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; et al. STIM1Mutation Associated with a Syndrome of Immunodeficiency and Autoimmunity. N. Engl. J. Med. 2009, 360, 1971–1980. [Google Scholar] [CrossRef]
- Feske, S. ORAI1 and STIM1 deficiency in human and mice: Roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 2009, 231, 189–209. [Google Scholar] [CrossRef]
- Markert, M.L. Purine nucleoside phosphorylase deficiency. Immunodefic. Rev. 1991, 3, 45–81. [Google Scholar]
- Wilcox, W.D. Abnormal serum uric acid levels in children. J. Pediatr. 1996, 128, 731–741. [Google Scholar] [CrossRef]
- Notarangelo, L.D. Multiple intestinal atresia with combined immune deficiency. Curr. Opin. Pediatr. 2014, 26, 690–696. [Google Scholar] [CrossRef]
- Gennery, A. Recent advances in understanding RAG deficiencies. F1000Research 2019, 8, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, C.; Huck, K.; Gudowius, S.; Megahed, M.; Feyen, O.; Hubner, B.; Schneider, D.T.; Manfras, B.; Pannicke, U.; Willemze, R.; et al. An Immunodeficiency Disease withRAGMutations and Granulomas. N. Engl. J. Med. 2008, 358, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Sharapova, S.O.; Migas, A.; Guryanova, I.; Aleshkevich, S.; Kletski, S.; Durandy, A.; Belevtsev, M. Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14years old male. Hum. Immunol. 2013, 74, 18–22. [Google Scholar] [CrossRef] [PubMed]
Disease—Inheritance | Genetic Defect | Bacterial Infections | Viral Infections | Fungal/Protozoal Infections |
---|---|---|---|---|
CD40 ligand Deficiency XL | CD40 ligand | URTI, LRTI—S. pneumoniae, Pseudomonas [7] Otitis, sinusitis. Talaromyces marneffei S. aureus, S. epidermidis, E. faecium, S. pneumoniae, S. maltophilia and P. aeruginosa [8]TB lymphadenitis [8] | CMV, EBV and parainfluenza virus [8] | Pneumocystis jirovecii [7,8,9,10] C. parvum [7,11] Trichosporon cutaneum Toxoplasmosis [8] |
CD40 AR | CD40 | Rec pneumonia Septic arthritis [12] | ||
ICOS AR | ICOS | Enteritis Salmonella, Campylobacter Impetigo S. aureus Bacteremia Helicobacter cinaedi Sepsis E. coli [13] | Recurrent herpes labialis, herpes keratitis H. simplex, Colitis HHV6 Vulvovaginitis, IBD—like symptoms CMV Enteritis Norovirus Adenovirus [13] | Enteritis Cryptosporidium Pneumonia P. jirovecii Acute respiratory failure Candida [13] |
MHC Class I AR | TAP1 TAP2 TAPBP B2M | Recurrent sinobronchial infections H. influenzae, S. pneumoniae Staph. aureus Klebsiella spp. E. coli, P. aeruginosa [14,15,16] | Severe viral infections do not occur in isolated MHC class 1 deficiency [16,17,18] | |
MHC Class II AR | CTIIA RFXANK RFX5 RFXAP | Chronic enterocolitis by Pseudomonas aeruginosa, Escherichia coli Salmonella enteritidis [19,20,21] Klebsiella pneumoniae, Enterobacter cloacae, Campylobacter jejuni, Proteus mirabilis, and P. morgani [22,23,24,25] Burkholderia cepacia [26] Recurrent pneumonia by Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae [21,23,27] Adult patient recurrent lung infections Strep. viridans, S.marcensens, E.coli (Candida) & Osteomyelitis by P.mirabilis and S.aureus [28] Bacterial Cholangitis by Pseudomonas, Enterococcus and Streptococcus spp. [21,23] BCGosis [23,29,30] Meningitis E. coli [31] | Meningoencephalitis by Enterovirus, HSV, Adenovirus, live polio virus vaccine [20,21,25,29,31,32] Diffuse interstitial pneumonia by CMV, RSV, enterovirus, adenovirus [20,21,23,32] Hepatitis by CMV [32] Diarrhoea by Rotavirus [22] HPV [33] | Protracted diarrhoea by Candida PCP [22,25,31,32,34,35] G. lamblia C. parvum (sclerosing cholangitis) [20,21,22,23,36] |
ZAP 70 AR | ZAP70 | Severe LRI [37] Recurrent gastroenteritis, recurrent LRI Recurrent pneumonia BCG osis [38] | oral candidiasis [37] Oral thrush [38] | |
IKAROS AD | IKZF1 | Severe bacterial infections [39] Recurrent sinopulmonary infections [40] Recurrent sinopulmonary infections, meningiits S. pneumoniae Chronic/recurrent diarrhea C. difficile, B. hominis | Warts HPV Recurrent herpes labialis HSV Mumps Meningitis [39,40] | PCP Pneumonia [39,40] |
DOCK8 AR | DOCK8 | Recurrent respiratory infections Abscesses [41] Recurrent otitis externa, Otitis media, sinusitis, mastoiditis, Salmonella enteritis Abscesses, osteomyelitis due to S.aureus H.influenzae meningitis [42] Otitis media, mastoiditis, sinusitis, pneumonia, bronchitis. recurrent GI infections Salmonella enteritis and Giardiasis. Sepsis, meningitis [43] | Recurrent herpes zoster, molluscum contagiosum [41] H. simplex—orolabial, anogenital, keratitis [42] Cutaneous viral infections VZV, HSV, MCV, HPV Keratitis, chronic orolabial, anogenital HSV [43] | Mucocutaneous candidiasis [41] Cryptococcal meningitis Nail candidiasis Giardiasis [42] Pneumonia PCP, Histoplasmosis Mucocutaneous candidiasis [43] |
STK4 AR | STK4 | Recurrent upper and lower respiratory infections Recurrent rhinosinusitis Recurrent skin abscesses Staphylococcal pneumonia Septicemia [44] Recurrent skin, lower respiratory infections S. pneumoniae, H. influenzae Recurrent pneumonitis, sinusitis [45] | Disseminated warts [44] Recurrent perioral H. simplex Extensive M. contagiosum Persistent EBV viremia [45] Recurrent Herpes zoster [46] | Mucocutaneous candidiasis [44] |
Wiskott Aldrich Syndrome XL | WAS | otitis media, sinusitis, pneumonia, meningitis, sepsis, and colitis S. pneumoniae, N. meningitidis, H. influenzae [47] | Systemic varicella, CMV infection [48] | P. jirovecii, C. albicans [48] |
WIP Deficiency AR | WIPF1 | S. epidermidis K. pneumoniae Vesicular lesions—skin [49] | CMV pneumonitis Rotavirus enteritis RSV Respiratory distress syndrome [50] Rotavirus Enteritis [49] | |
Arp2/3-mediated filament branching defect AR | ARPC1B | Recurrent pneumonia, recurrent lymphadenitis, skin abscesses [51] Bacterial enterocolitis Erysipelas Skin abscess Recurrent otitis media [52] | Recurrent viral URI Recurrent bronchiolitis[51] Extensive warts M.contagiosum Chronic CMV [52] | |
Ataxia Telangiectasia AR | ATM | Recurrent URI and LRI Sinusitis, otitis bronchitis, pneumonia Sepsis [53] | Warts, herpes simplex, molluscum contagiosum,, herpes zoster, Uncomplicated varicella, recurrent varicella [54] Varicella pneumonia [55] | Candidal esophagitis Invasive Aspergillosis [55] P. jirovecii pneumonia [55] |
Nijmegen Breakage syndrome AR | NBS1 | Pneumonia, bronchitis, otitis media, sinusitis, mastoiditis Urinary tract infections, gastrointestinal infections [56,57,58] | ||
Bloom syndrome AR | BLM | Otitis media Bronchitis Pneumonia [59] | ||
DiGeorge syndrome AD | Large deletion (3Mb) typically in chromosome 22 (TBX1) | Complete DGS Recurrent severe infections, chronic diarrhoea Partial DGS Recurrent sinusitis, otitis, bronchitis, pneumonia [60] Surgical infections Bacterial superinfection after viral infections [61] | Viral infections [61] | |
CHARGE Syndrome AD | CHD7 SEMA3E | Otitis media, sinusitis, Pneumonia, Conjunctivitis, sepsis Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter Septic shock [62] | Recurrent oral candidiasis | |
Cartilage Hair Hypoplasia AR | RMRP | otitis media, sinusitis and pneumonia, H. influenzae, M. catarrhalis S. pneumoniae Sepsis [63] Recurrent lung and GI infections [64] | Severe varicella VZV pneumonia CMV pneumonia Disseminated HSV, EBV, VZV, Parvovirus [63] Refractory warts, recurrent mucocutaneous HSV infections, severe varicella. [65] | Pneumonia PCP, Aspergillus Thrush [63] Candida oesophagitis [65] |
Schimke Immuno-osseous Dysplasia AR | SMARCAL1 | Sepsis Bacterial pneumonia [66] | H. zoster [66] CMV Pneumonia and encephalitis [67] | |
Job syndrome HIES AD | STAT3 | Abscesses, furuncles, cellulitis S.aureus [68] Recurrent skin abscesses, pneumonia Pyopneumothorax, empyema S. aureus M. abscessus complex M. tuberculosis Potts spine, abscess BCG Injection site abscess [69] | Skin infections C. albicans [68] Candidiasis Oral, nails, lungs, skin Mediastinal mass A. niger [69] Aspergillomas, mycotic aneurysms, Colonization of pneumatocoeles Aspergillus sp Meningitis, gastrointestinal disease C. neoformans Endophthalmitis, endocarditis, visceral disease Candida Ileocaecal histoplasmosis H. capsulatum [70] | |
Comel—Netherton Syndrome AR | SPINK5 | Sepsis [71] Bacterial skin infections Conjunctivitis Otitis externa [72] | ||
Methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1) deficiency AR | MTHFD1 | Varicella Influenza [73] | ||
EDA-ID due to NEMO /IKBKG deficiency (ectodermal dysplasia, immune deficiency) XL | IKBG | Skin infections, pneumonia, osteomyelitis, arthritis, meningitis, sepsis, colitis S. aureus, S. pneumonia, P. aeruginosa, Mycobacteria [74] cellulitis, osteomyelitis lymphadenitis, pneumonia, disseminated infections M. avium M. kansasii S. typhimurium Klebsiella S. marcescens | Encephalitis HSV Gastroenteritis Adenovirus CMV | Pneumonia P. carinii Mucocutaneous candidiasis Candida |
ORAI1 AR | ORAI1 | Pneumonia, Enteritis Meningitis Pyelonephritis [75] BCGitis Otitis Pyelonephritis Meningitis Pneumonia Chronic diarrhoea [76] | Rotavirus enteritis CMV infection [75] Interstitial pneumonia CMV infection [76] | Toxoplasma Encephalitis Chlamydia pneumonia [75] Candidiasis [76] |
STIM1 AR | STIM1 | Sepsis S. pneumoniae E. coli Otitis media, Pneumonia [75] | CMV, VZV EBV infection Enteroviral encephalitis [75] | |
Purine nucleoside phosphorylase (PNP) deficiency AR | PNP | Recurrent sinopulmonary infections lymphadenitis Liver abscess Disseminated BCG disease [77] | Progressive multifocal leukoencephalopathy JC virus [78] | Liver abscess A. fumigatus [77] |
Immunodeficiency with multiple intestinal atresias AR | TTC7A | Sepsis by Streptococcus faecalis, Pseudomonas aeruginosa Enterobacter cloacae, Klebsiella oxytoca Methicillin-Resistant Staphylococcus Staphylococcus hemolyticus, Staphylococcus epidermidis, E faecalis [79,80,81,82] | Respiratory infection by Adenovirus [83] | Uncontrolled Candida infection [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, K.; Govindaraj, G. Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023, 12, 272. https://doi.org/10.3390/pathogens12020272
George K, Govindaraj G. Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens. 2023; 12(2):272. https://doi.org/10.3390/pathogens12020272
Chicago/Turabian StyleGeorge, Kalpana, and Geeta Govindaraj. 2023. "Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review" Pathogens 12, no. 2: 272. https://doi.org/10.3390/pathogens12020272
APA StyleGeorge, K., & Govindaraj, G. (2023). Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens, 12(2), 272. https://doi.org/10.3390/pathogens12020272