Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sample Size Calculation
2.2. Sputum Samples Processing
2.3. Nucleic Acid Extraction
2.4. Primers and Probe for mpt64 Gene
2.5. ddPCR System and Conditions
2.6. Lower Limit of Detection (LLD)
2.7. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 92-4-156564-0. [Google Scholar]
- Taci, N.; Yurdakul, A.S.; Ceyhan, I.; Berktas, M.B.; Oğretensoy, M. Detection of Mycobacterium Tuberculosis DNA from Peripheral Blood in Patients with HIV-Seronegative and New Cases of Smear-Positive Pulmonary Tuberculosis by Polymerase Chain Reaction. Respir. Med. 2003, 97, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, R.; Mosca, A.; D’Alagni, M.; Sabato, R.; Picca, V.; Miragliotta, G. Detection of Mycobacterium Tuberculosis DNA in Blood of Patients with Acute Pulmonary Tuberculosis by Polymerase Chain Reaction and Non-Isotopic Hybridisation Assay. J. Med. Microbiol. 1997, 46, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Devonshire, A.S.; O’Sullivan, D.M.; Honeyborne, I.; Jones, G.; Karczmarczyk, M.; Pavšič, J.; Gutteridge, A.; Milavec, M.; Mendoza, P.; Schimmel, H.; et al. The Use of Digital PCR to Improve the Application of Quantitative Molecular Diagnostic Methods for Tuberculosis. BMC Infect. Dis. 2016, 16, 366. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Liu, A.; Bai, X.; Xu, C.; Bao, F.; Feng, S.; Tao, L.; Ma, M.; Peng, Y. Use of Digital Droplet PCR to Detect Mycobacterium Tuberculosis DNA in Whole Blood-Derived DNA Samples from Patients with Pulmonary and Extrapulmonary Tuberculosis. Front. Cell. Infect. Microbiol. 2017, 7, 369. [Google Scholar] [CrossRef] [Green Version]
- Ushio, R.; Yamamoto, M.; Nakashima, K.; Watanabe, H.; Nagai, K.; Shibata, Y.; Tashiro, K.; Tsukahara, T.; Nagakura, H.; Horita, N.; et al. Digital PCR Assay Detection of Circulating Mycobacterium Tuberculosis DNA in Pulmonary Tuberculosis Patient Plasma. Tuberculosis 2016, 99, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Yadav, R.; Mewara, A.; Dhatwalia, S.K.; Sharma, M.; Gupta, D. Evaluation of In-House Mpt64 Real-Time PCR for Rapid Detection of Mycobacterium Tuberculosis in Pulmonary and Extra-Pulmonary Specimens. Braz. J. Infect. Dis. 2012, 16, 493–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinhata, J.M.W.; Cergole-Novella, M.C.; Moreira dos Santos Carmo, A.; Ruivo Ferro e Silva, R.; Ferrazoli, L.; Tavares Sacchi, C.; Siqueira de Oliveira, R. Rapid Detection of Mycobacterium Tuberculosis Complex by Real-Time PCR in Sputum Samples and Its Use in the Routine Diagnosis in a Reference Laboratory. J. Med. Microbiol. 2015, 64, 1040–1045. [Google Scholar] [CrossRef]
- Gallo, J.F.; Pinhata, J.M.W.; Chimara, E.; Gonçalves, M.G.; Fukasawa, L.O.; de Oliveira, R.S. Performance of an In-House Real-Time Polymerase Chain Reaction for Identification of Mycobacterium Tuberculosis Isolates in Laboratory Routine Diagnosis from a High Burden Setting. Mem. Inst. Oswaldo Cruz 2016, 111, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.J. Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic Algorithms. Tuberc. Respir. Dis. 2015, 78, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef]
- Sedlak, R.H.; Cook, L.; Cheng, A.; Magaret, A.; Jerome, K.R. Clinical Utility of Droplet Digital PCR for Human Cytomegalovirus. J. Clin. Microbiol. 2014, 52, 2844–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, J.; Jerome, K.R. Applications of Digital PCR for Clinical Microbiology. J. Clin. Microbiol. 2017, 55, 1621–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Chen, J.; Liu, M.; Xu, X.; Zhang, Y.; Yue, P.; Cao, W.; Ji, Z.; Su, X.; Wen, S.; et al. Application of Droplet Digital PCR to Detection of Mycobacterium Tuberculosis and Mycobacterium Leprae Infections: A Narrative Review. Infect. Drug Resist. 2022, 15, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Bahar, E.; Putra, A.E. Identification of Mycobacterium Tuberculosis Bacteria with TB Antigen MPT64 Rapid Test Against Patients with Suspect Pulmonary Tuberculosis in Lubuk Alung Pulmonary Hospital, Padang Pariaman. IOP Conf. Ser. Earth Environ. Sci. 2019, 217, 012061. [Google Scholar] [CrossRef]
- Mpt64 Immunogenic Protein Mpt64 [Mycobacterium Tuberculosis H37Rv]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/885925 (accessed on 27 December 2022).
- Marín, M.; de Viedma, D.G.; Ruíz-Serrano, M.J.; Bouza, E. Rapid Direct Detection of Multiple Rifampin and Isoniazid Resistance Mutations in Mycobacterium Tuberculosis in Respiratory Samples by Real-Time PCR. Antimicrob. Agents Chemother. 2004, 48, 4293. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Torres, M.J.; Llanos, A.C.; Arroyo, A.; Palomares, J.C.; Aznar, J. Direct Detection of Rifampin- and Isoniazid-Resistant Mycobacterium Tuberculosis in Auramine-Rhodamine-Positive Sputum Specimens by Real-Time PCR. J. Clin. Microbiol. 2004, 42, 1585–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, T.; Maeda, S.; Tamaru, A.; Imai, S.; Hase, A.; Kobayashi, K. Dual-Probe Assay for Rapid Detection of Drug-Resistant Mycobacterium tuberculosis by Real-Time PCR. J. Clin. Microbiol. 2004, 42, 5277–5285. [Google Scholar] [CrossRef] [Green Version]
- Comín, J.; Otal, I.; Samper, S. In-Depth Analysis of IS6110 Genomic Variability in the Mycobacterium Tuberculosis Complex. Front. Microbiol. 2022, 13, 767912. [Google Scholar] [CrossRef]
- Wall, S.; Ghanekar, K.; McFadden, J.; Dale, J.W. Context-Sensitive Transposition of IS6110 in Mycobacteria. Microbiology (Reading) 1999, 145, 3169–3176. [Google Scholar] [CrossRef] [Green Version]
- Lok, K.H.; Benjamin, W.H.; Kimerling, M.E.; Pruitt, V.; Lathan, M.; Razeq, J.; Hooper, N.; Cronin, W.; Dunlap, N.E. Molecular Differentiation of Mycobacterium Tuberculosis Strains without IS6110 Insertions. Emerg. Infect. Dis. 2002, 8, 1310–1313. [Google Scholar] [CrossRef]
- Lan, Y.; Rosen, G.; Hershberg, R. Marker Genes That Are Less Conserved in Their Sequences Are Useful for Predicting Genome-Wide Similarity Levels between Closely Related Prokaryotic Strains. Microbiome 2016, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Mortensen, M.S.; Schjørring, S.; Trivedi, U.; Vestergaard, G.; Stokholm, J.; Bisgaard, H.; Krogfelt, K.A.; Sørensen, S.J. Amplicon Sequencing Provides More Accurate Microbiome Information in Healthy Children Compared to Culturing. Commun. Biol. 2019, 2, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.W.; Tan, J.A.M.A.; Wong, S.C.; Tan, C.B.; Yap, H.K.; Low, P.S.; Chia, J.N.; Tay, J.S.H. DNA Amplification by the Polymerase Chain Reaction for the Rapid Diagnosis of Tuberculous Meningitis. Comparison of Protocols Involving Three Mycobacterial DNA Sequences, IS6110, 65 KDa Antigen, and MPB64. J. Neurol. Sci. 1994, 123, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Nakayama, T. Novel Technique of Quantitative Nested Real-Time PCR Assay for Mycobacterium Tuberculosis DNA. J. Clin. Microbiol. 2006, 44, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Khan, M.T.; Ali, S.; Khan, T.A.; Khan, A.S.; Ullah, N.; Higazi, H.; Ali, S.; Mohamed, S.; Qasim, M. Novel Mutations in MPT64 Secretory Protein of Mycobacterium Tuberculosis Complex. Int. J. Environ. Res. Public Health 2023, 20, 2530. [Google Scholar] [CrossRef]
- Nimesh, M.; Joon, D.; Pathak, A.K.; Saluja, D. Comparative Study of Diagnostic Accuracy of Established PCR Assays and In-House Developed SdaA PCR Method for Detection of Mycobacterium Tuberculosis in Symptomatic Patients with Pulmonary Tuberculosis. J. Infect. 2013, 67, 399–407. [Google Scholar] [CrossRef]
- Handbook on Tuberculosis Laboratory Diagnostic Methods in the European Union—Updated 2018. Available online: http://ecdc.europa.eu/en/publications-data/handbook-tuberculosis-laboratory-diagnostic-methods-european-union-updated-2018 (accessed on 18 April 2019).
- Moaddab, S.R.; Farajnia, S.; Kardan, D.; Zamanlou, S.; Alikhani, M.Y. Isoniazid MIC and KatG Gene Mutations among Mycobacterium Tuberculosis Isolates in Northwest of Iran. Iran. J. Basic Med. Sci. 2011, 14, 540. [Google Scholar]
- Bulletin_6311.Pdf. Available online: http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6311.pdf (accessed on 9 March 2017).
- Jones, M.; Williams, J.; Gärtner, K.; Phillips, R.; Hurst, J.; Frater, J. Low Copy Target Detection by Droplet Digital PCR through Application of a Novel Open Access Bioinformatic Pipeline,‘Definetherain. ’ J. Virol. Methods 2014, 202, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Moraa Orina, G.; Adoka Ong’wen, S.; Stephen Amolo, A.; Thomas Orindi, O. Comparative Study of Smear Microscopy, Gene Xpert and Culture and Sensitivity Assays in Detection of Mycobacterium Tuberculosis on Sputum Samples among Tuberculosis Suspected Cases in Nyamira County Referral Hospital. Mycobact. Dis. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; et al. Application of Droplet Digital PCR to Detect the Pathogens of Infectious Diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-H.; Ho, C.-M.; Lu, J.-J. Diagnosis of Tuberculosis by PCR-Based Amplification of Mpt64 Gene from Peripheral Blood. Int. J. Biomed. Lab Sci. 2013, 2, 25–30. [Google Scholar]
- Cao, X.-J.; Li, Y.-P.; Wang, J.-Y.; Zhou, J.; Guo, X.-G. MPT64 Assays for the Rapid Detection of Mycobacterium Tuberculosis. BMC Infect. Dis. 2021, 21, 336. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Bajaj, A.; Bhatia, V.; Dutt, S. Comparative Study of GeneXpert with ZN Stain and Culture in Samples of Suspected Pulmonary Tuberculosis. J. Clin. Diagn. Res. 2016, 10, DC09–DC12. [Google Scholar] [CrossRef]
- Rimal, R.; Shrestha, D.; Pyakurel, S.; Poudel, R.; Shrestha, P.; Rai, K.R.; Ghimire, G.R.; Rai, G.; Rai, S.K. Diagnostic Performance of GeneXpert MTB/RIF in Detecting MTB in Smear-Negative Presumptive TB Patients. BMC Infect Dis 2022, 22, 321. [Google Scholar] [CrossRef] [PubMed]
- Afghani, B.; Lieberman, J.M.; Duke, M.B.; Stutman, H.R. Comparison of Quantitative Polymerase Chain Reaction, Acid Fast Bacilli Smear, and Culture Results in Patients Receiving Therapy for Pulmonary Tuberculosis. Diagn. Microbiol. Infect. Dis. 1997, 29, 73–79. [Google Scholar] [CrossRef]
Characteristics | TB Diagnosis 1 n (%) | Non-TB Diagnosis 2 n (%) | Total, n (%) | p Value |
---|---|---|---|---|
Age (Mean ± SD) | 53.6 ± 15.6 | 60.2 ± 17.7 | 57.5 ± 17.2 | |
Age group (in years) | 0.050 * | |||
≤20 | 2 (2.7) | 2 (1.9) | 4 (2.2) | |
21–40 | 15 (20.3) | 11 (10.4) | 26 (14.4) | |
41–60 | 30 (40.5) | 34 (32.1) | 64 (35.6) | |
61–80 | 24 (32.4) | 44 (41.5) | 68 (37.8) | |
≥80 | 3 (4.1) | 15 (14.1) | 18 (10.0) | |
Gender | 0.266 | |||
Female | 22 (29.7) | 40 (37.7) | 62 (34.4) | |
Male | 52 (70.3) | 66 (62.3) | 118 (65.6) | |
Province 3 | 0.292 | |||
Chaiyaphum | 2 (2.7) | 0 (0.0) | 2 (1.1) | |
Kalasin | 0 (0.0) | 1 (0.9) | 1 (0.6) | |
Khon Kaen | 72 (97.3) | 103 (97.3) | 175 (97.1) | |
Mukdahan | 0 (0.0) | 1 (0.9) | 1 (0.6) | |
Udon Thani | 0 (0.0) | 1 (0.9) | 1 (0.6) | |
Type of patient | 0.000 *** | |||
Non-TB | 0 (0.0) | 106 (100) | 106 (58.9) | |
New TB | 71 (95.9) | 0 (0.0) | 71 (39.4) | |
Relapse | 3 (4.1) | 0 (0.0) | 3 (1.7) |
Methods | TB * n (%) | Non-TB n (%) | Total n (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
AFB smear microscopy | 41.9 | 100 | 100 | 71.1 | |||
Positive | 31 (41.9) | 0 (0) | 31 (17.2) | ||||
Negative | 43 (58.1) | 106 (100) | 149 (82.8) | ||||
GeneXpert MTB/RIF assay | 82.4 | 100 | 100 | 89.1 | |||
Detected | 61 (82.4) | 0 (0) | 61 (33.9) | ||||
Not detected | 13 (17.6) | 106 (100) | 119 (66.1) | ||||
ddPCR, mpt64 | 100 | 95.3 | 93.7 | 100 | |||
Detected | 74 (100) | 5 (4.7) | 79 (43.9) | ||||
Not detected | 0 (0) | 101 (95.3) | 101 (56.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, Y.W.; Faksri, K.; Sangka, A.; Tomanakan, K.; Namwat, W. Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64. Pathogens 2023, 12, 345. https://doi.org/10.3390/pathogens12020345
Aung YW, Faksri K, Sangka A, Tomanakan K, Namwat W. Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64. Pathogens. 2023; 12(2):345. https://doi.org/10.3390/pathogens12020345
Chicago/Turabian StyleAung, Ye Win, Kiatichai Faksri, Arunnee Sangka, Kanchana Tomanakan, and Wises Namwat. 2023. "Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64" Pathogens 12, no. 2: 345. https://doi.org/10.3390/pathogens12020345
APA StyleAung, Y. W., Faksri, K., Sangka, A., Tomanakan, K., & Namwat, W. (2023). Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64. Pathogens, 12(2), 345. https://doi.org/10.3390/pathogens12020345