Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases
Abstract
:1. Introduction
2. Framework Ascribing Genetic Immunodeficiency to Fungal Susceptibility
- (1)
- The reported mycosis must have fulfilled standardized, diagnostic criteria of fungal disease, such as those defined by the European Organization for Research and Treatment of Cancer and Mycoses Study Group (EORTC-MSG) [1]. While initially formulated for IFD in iatrogenically immunocompromised patients, this framework provides provide a barometer for robust diagnosis. These criteria are intended to provide a strong deterrent against the misattribution of susceptibility to fungal disease based on colonization (rather than invasion), sample contamination, or non-specificity (e.g., based on certain serologic markers).
- (2)
- The mycosis must have occurred prior to any medical intervention. Some IEI require exogenous immunosuppression for autoinflammatory or autoimmune features or transplantation for failing organ function or hematopoietic reasons. Some patients with IEI may require indwelling catheters (e.g., for intravenous access), which may become contaminated and then serve as a portal of systemic entry. In addition, some patients with IEI may require surgical intervention (which may or may not be related to their IEI), but which may become a nidus for IFD (e.g., intestinal leak/perforation). These states, in themselves, can be associated with an elevated risk of IFD. A fungal infection that develops only after the use of these treatments or in transplanted states cannot be definitively attributed to the underlying IEI exclusively, although such iatrogenic cases are conducive to the generation of hypotheses (especially if observed repeatedly and/or supported by mechanistic investigations).
- (3)
- The mycosis must have occurred in an inborn error of immunity that was genetically identified and immunobiologically validated. This criterion is in place to avoid ascribing a fungal infection to a genetic variant of unproven significance.
3. Candidiasis
3.1. Chronic Mucocutaneous Candidiasis (CMC)
3.2. Invasive, “Deep-Seated” Candidiasis (IC)
4. Thermally Dimorphic Endemic Mycoses
5. Cryptococcosis
6. Pneumocystis
7. Aspergillosis
7.1. Allergic Broncho-Pulmonary Aspergillosis (ABPA)
7.2. Invasive Aspergillosis and Chronic Pulmonary Aspergillosis
8. Dermatophytosis
9. Pheohyphomycosis (Dematiaceous Fungi)
10. Mucormycosis
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassetti, M.; Azoulay, E.; Kullberg, B.-J.; Ruhnke, M.; Shoham, S.; Vazquez, J.; Giacobbe, D.R.; Calandra, T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin. Infect. Dis. 2021, 72, S121–S127. [Google Scholar] [CrossRef]
- Begum, N.; Lee, S.; Portlock, T.J.; Pellon, A.; Nasab, S.D.S.; Nielsen, J.; Uhlen, M.; Moyes, D.L.; Shoaie, S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun. Biol. 2022, 5, 1013. [Google Scholar] [CrossRef]
- Marks, M.; Marks, S.; Brazeau, M. Yeast colonization in hospitalized and nonhospitalized children. J. Pediatr. 1975, 87, 524–527. [Google Scholar] [CrossRef]
- Lay, K.M.; Russel, C. Candida species and yeasts in mouths of infants from a special care unit of a maternity hospital. Arch. Dis. Child. 1977, 52, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Ohmit, S.E.; Sobel, J.D.; Schuman, P.; Duerr, A.; Mayer, K.; Rompalo, A.; Klein, R.S. HIV Epidemiology Research Study (HERS) Group. Longitudinal Study of Mucosal Candida Species Colonization and Candidiasis among Human Immunodeficiency Virus (HIV)–Seropositive and At-Risk HIV-Seronegative Women. J. Infect. Dis. 2003, 188, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2020, 45, fuaa060. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.; Rouan, F.; Willoughby, C.; Brown, N.; Chung, P.; Ryynänen, M.; Jabs, E.; Bale, S.J.; DiGiovanna, J.J.; Uitto, J.; et al. Missense Mutations in GJB2 Encoding Connexin-26 Cause the Ectodermal Dysplasia Keratitis-Ichthyosis-Deafness Syndrome. Am. J. Hum. Genet. 2002, 70, 1341–1348. [Google Scholar] [CrossRef] [Green Version]
- Yotsumoto, S.; Hashiguchi, T.; Chen, X.; Ohtake, N.; Tomitaka, A.; Akamatsu, H.; Matsunaga, K.; Shiraishi, S.; Miura, H.; Adachi, J.; et al. Novel mutations in GJB2 encoding connexin-26 in Japanese patients with keratitis-ichthyosis-deafness syndrome. Br. J. Dermatol. 2003, 148, 649–653. [Google Scholar] [CrossRef]
- Janecke, A.R.; Hennies, H.C.; Günther, B.; Gansl, G.; Smolle, J.; Messmer, E.M.; Utermann, G.; Rittinger, O. GJB2 mutations in keratitis-ichthyosis-deafness syndrome including its fatal form. Am. J. Med Genet. Part A 2005, 133, 128–131. [Google Scholar] [CrossRef]
- Bygum, A.; Betz, R.; Kragballe, K.; Steiniche, T.; Peeters, N.; Wuyts, W.; Nöthen, M. KID Syndrome: Report of a Scandinavian Patient with Connexin-26 Gene Mutation. Acta Derm.-Venereol. 2005, 85, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Haruna, K.; Suga, Y.; Oizumi, A.; Mizuno, Y.; Endo, H.; Shimizu, T.; Hasegawa, T.; Ikeda, S. Severe form of keratitis-ichthyosis-deafness (KID) syndrome associated with septic complications. J. Dermatol. 2010, 37, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Lazic, T.; Li, Q.; Frank, M.; Uitto, J.; Zhou, L.H. Extending the Phenotypic Spectrum of Keratitis-Ichthyosis-Deafness Syndrome: Report of a Patient with GJB2 (G12R) Connexin 26 Mutation and Unusual Clinical Findings. Pediatr. Dermatol. 2012, 29, 349–357. [Google Scholar] [CrossRef]
- Mazereeuw-Hautier, J.; Chiaverini, C.; Jonca, N.; Bieth, E.; Dreyfus, I.; Maza, A.; Cardot-Leccia, N.; Perrin, C.; Lacour, J. Lethal Form of Keratitis–Ichthyosis–Deafness Syndrome Caused by the GJB2 Mutation p.Ser17Phe. Acta Derm.-Venereol. 2014, 94, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Reinholz, M.; Hermans, C.; Dietrich, A.; Ruzicka, T.; Braun-Falco, M. A case of cutaneous vegetating candidiasis in a patient with Keratitis-Ichthyosis-Deafness Syndrome. J. Eur. Acad. Dermatol. Venereol. 2015, 30, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Rerknimitr, P.; Tanizaki, H.; Otsuka, A.; Miyachi, Y.; Kabashima, K. Diminution of Langerhans cells in keratitis, ichthyosis and deafness (KID) syndrome patient with recalcitrant cutaneous candidiasis. J. Eur. Acad. Dermatol. Venereol. 2015, 30, e47–e49. [Google Scholar] [CrossRef]
- Calderón-Castrat, X.; Vega-Zuñiga, J.; Velásquez, F.; Ballona, R. Vegetating Candidiasis: A Mimicker of Squamous Cell Carcinoma in Keratitis Ichthyosis Deafness Syndrome. Pediatr. Dermatol. 2017, 34, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Bartenstein, D.; Chung, H.J.; Hussain, S. Two Cases of Chronic Candidiasis in Keratitis–Ichthyosis–Deafness Syndrome. Am. J. Dermatopathol. 2018, 40, e138–e141. [Google Scholar] [CrossRef]
- Miteva, L. Keratitis, ichthyosis, and deafness (KID) syndrome. Pediatr. Dermatol. 2002, 19, 513–516. [Google Scholar] [CrossRef]
- Coggshall, K.; Farsani, T.; Ruben, B.; McCalmont, T.H.; Berger, T.G.; Fox, L.P.; Shinkai, K. Keratitis, ichthyosis, and deafness (KID) syndrome: A review of infectious and neoplastic complications. J. Am. Acad. Dermatol. 2013, 69, 127–134.e3. [Google Scholar] [CrossRef]
- Lilly, E.; Sellitto, C.; Milstone, L.M.; White, T.W. Connexin channels in congenital skin disorders. Semin. Cell Dev. Biol. 2016, 50, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Van Campenhout, R.; Gomes, A.R.; De Groof, T.W.M.; Muyldermans, S.; Devoogdt, N.; Vinken, M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int. J. Mol. Sci. 2021, 22, 3503. [Google Scholar] [CrossRef]
- Taki, T.; Takeichi, T.; Sugiura, K.; Akiyama, M. Roles of aberrant hemichannel activities due to mutant connexin26 in the pathogenesis of KID syndrome. Sci. Rep. 2018, 8, 12824. [Google Scholar] [CrossRef] [Green Version]
- Langer, K.; Konrad, K.; Wolff, K. KeratitiSj ichthyosis and deafness (KID)-syndrome: Report of three cases and a review of the literature. Br. J. Dermatol. 1990, 122, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Harms, M.; Gilardi, S.; Levy, P.M.; Saurat, J.H. KID Syndrome (Keratitis, Ichthyosis, and Deafness) and Chronic Mucocutaneous Candidiasis: Case Report and Review of the Literature. Pediatr. Dermatol. 1984, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, S.; Murakami, S.; Miki, Y. Oral fluconazole treatment of fungating candidiasis in the keratitis, ichthyosis and deafness (KID) syndrome. Br. J. Dermatol. 1994, 131, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.H.; Thomas, I.T.; Clark, R.A.; Ochs, H.D. Defective neutrophil chemotaxis with variant ichthyosis, hyperimmunoglobulinemia E, and recurrent infections. J. Pediatr. 1975, 87, 908–911. [Google Scholar] [CrossRef]
- Kashem, S.W.; Igyártó, B.Z.; Gerami-Nejad, M.; Kumamoto, Y.; Mohammed, J.; Jarrett, E.; Drummond, R.A.; Zurawski, S.M.; Zurawski, G.; Berman, J.; et al. Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. Immunity 2015, 42, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Patini, R.; Gioco, G.; Rupe, C.; Contaldo, M.; Serpico, R.; Giuliani, M.; Lajolo, C. Oral Candida and psoriasis: Is there association? A systematic review and trial sequential analysis. Oral Dis. 2022. [Google Scholar] [CrossRef]
- Alwan, W.; Nestle, F.O. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin. Exp. Rheumatol. 2015, 33 (Suppl. 93), S2–S6. [Google Scholar]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016, 532, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minegishi, Y.; Saito, M.; Tsuchiya, S.; Tsuge, I.; Takada, H.; Hara, T.; Kawamura, N.; Ariga, T.; Pasic, S.; Stojkovic, O.; et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007, 448, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.M.; Vinh, D.C. Yeast Infections—Human Genetics on the Rise. N. Engl. J. Med. 2009, 361, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.P.; Moyes, D.L.; Ho, J.; Naglik, J.R. Candida innate immunity at the mucosa. Semin. Cell Dev. Biol. 2019, 89, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Huppler, A.R.; Verma, A.H.; Conti, H.R.; Gaffen, S.L. Neutrophils Do Not Express IL-17A in the Context of Acute Oropharyngeal Candidiasis. Pathogens 2015, 4, 559–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggor, F.E.Y.; Break, T.J.; Trevejo-Nuñez, G.; Whibley, N.; Coleman, B.M.; Bailey, R.D.; Kaplan, D.H.; Naglik, J.R.; Shan, W.; Shetty, A.C.; et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17–mediated immunity to oral mucosal candidiasis. Sci. Immunol. 2020, 5, eaba0570. [Google Scholar] [CrossRef]
- Aggor, F.E.; Bertolini, M.; Zhou, C.; Taylor, T.C.; Abbott, D.A.; Musgrove, J.; Bruno, V.M.; Hand, T.W.; Gaffen, S.L. A gut-oral microbiome–driven axis controls oropharyngeal candidiasis through retinoic acid. J. Clin. Investig. 2022, 7. [Google Scholar] [CrossRef]
- de Beaucoudrey, L.; Samarina, A.; Bustamante, J.; Cobat, A.; Boisson-Dupuis, S.; Feinberg, J.; Al-Muhsen, S.; Jannière, L.; Rose, Y.; de Suremain, M.; et al. Revisiting Human IL-12Rβ1 Deficiency. Medicine 2010, 89, 381–402. [Google Scholar] [CrossRef] [Green Version]
- Prando, C.; Samarina, A.; Bustamante, J.; Boisson-Dupuis, S.; Cobat, A.; Picard, C.; AlSum, Z.; Al-Jumaah, S.; Al-Hajjar, S.; Frayha, H.; et al. Inherited IL-12p40 Deficiency. Medicine 2013, 92, 109–122. [Google Scholar] [CrossRef]
- Okada, S.; Puel, A.; Casanova, J.-L.; Kobayashi, M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin. Transl. Immunol. 2016, 5, e114. [Google Scholar] [CrossRef]
- Béziat, V.; Li, J.; Lin, J.-X.; Ma, C.S.; Li, P.; Bousfiha, A.; Pellier, I.; Zoghi, S.; Baris, S.; Keles, S.; et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci. Immunol. 2018, 3, eaat4956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassi, A.; Lazaroski, S.; Wu, G.; Haslam, S.M.; Fliegauf, M.; Mellouli, F.; Patiroglu, T.; Unal, E.; Ozdemir, M.A.; Jouhadi, Z.; et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J. Allergy Clin. Immunol. 2014, 133, 1410–1419.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winslow, A.; Jalazo, E.R.; Evans, A.; Winstead, M.; Moran, T. A De Novo Cause of PGM3 Deficiency Treated with Hematopoietic Stem Cell Transplantation. J. Clin. Immunol. 2022, 42, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, M.; Jamee, M.; Enayat, J.; Abdollahimajd, F.; Mesdaghi, M.; Khoddami, M.; Segarra-Roca, A.; Frohne, A.; Dmytrus, J.; Keramatipour, M.; et al. Novel PGM3 mutation in two siblings with combined immunodeficiency and childhood bullous pemphigoid: A case report and review of the literature. Allergy Asthma Clin. Immunol. 2022, 18, 111. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Plantinga, T.S.; Hoischen, A.; Smeekens, S.P.; Joosten, L.A.; Gilissen, C.; Arts, P.; Rosentul, D.C.; Carmichael, A.J.; der Graaf, C.A.S.-V.; et al. STAT1 Mutations in Autosomal Dominant Chronic Mucocutaneous Candidiasis. N. Engl. J. Med. 2011, 365, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Okada, S.; Kong, X.-F.; Kreins, A.Y.; Cypowyj, S.; Abhyankar, A.; Toubiana, J.; Itan, Y.; Audry, M.; Nitschke, P.; et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 2011, 208, 1635–1648. [Google Scholar] [CrossRef] [Green Version]
- Toubiana, J.; Okada, S.; Hiller, J.; Oleastro, M.; Gomez, M.L.; Becerra, J.C.A.; Ouachée-Chardin, M.; Fouyssac, F.; Girisha, K.; Etzioni, A.; et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016, 127, 3154–3164. [Google Scholar] [CrossRef]
- Okada, S.; Markle, J.G.; Deenick, E.K.; Mele, F.; Averbuch, D.; Lagos, M.; Alzahrani, M.; Al-Muhsen, S.; Halwani, R.; Ma, C.S.; et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 2015, 349, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Glocker, E.-O.; Hennigs, A.; Nabavi, M.; Schäffer, A.A.; Woellner, C.; Salzer, U.; Pfeifer, D.; Veelken, H.; Warnatz, K.; Tahami, F.; et al. A Homozygous CARD9 Mutation in a Family with Susceptibility to Fungal Infections. N. Engl. J. Med. 2009, 361, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Drewniak, A.; Gazendam, R.P.; Tool, A.T.J.; van Houdt, M.; Jansen, M.H.; van Hamme, J.L.; van Leeuwen, E.M.M.; Roos, D.; Scalais, E.; de Beaufort, C.; et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 2013, 121, 2385–2392. [Google Scholar] [CrossRef]
- Gavino, C.; Cotter, A.; Lichtenstein, D.; Lejtenyi, D.; Fortin, C.; Legault, C.; Alirezaie, N.; Majewski, J.; Sheppard, D.C.; Behr, M.A.; et al. CARD9 Deficiency and Spontaneous Central Nervous System Candidiasis: Complete Clinical Remission With GM-CSF Therapy. Clin. Infect. Dis. 2014, 59, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavino, C.; Hamel, N.; Bin Zeng, J.; Legault, C.; Guiot, M.-C.; Chankowsky, J.; Lejtenyi, D.; Lemire, M.; Alarie, I.; Dufresne, S.; et al. Impaired RASGRF1/ERK–mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J. Allergy Clin. Immunol. 2015, 137, 1178–1188.e7. [Google Scholar] [CrossRef] [Green Version]
- Corvilain, E.; Casanova, J.-L.; Puel, A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J. Clin. Immunol. 2018, 38, 656–693. [Google Scholar] [CrossRef]
- Puel, A.; Cypowyj, S.; Bustamante, J.; Wright, J.F.; Liu, L.; Lim, H.K.; Migaud, M.; Israel, L.; Chrabieh, M.; Audry, M.; et al. Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity. Science 2011, 332, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Fellmann, F.; Angelini, F.; Wassenberg, J.; Perreau, M.; Arenas-Ramirez, N.; Simon, G.; Boyman, O.; Demaria, O.; Christen-Zaech, S.; Hohl, D.; et al. IL-17 receptor A and adenosine deaminase 2 deficiency in siblings with recurrent infections and chronic inflammation. J. Allergy Clin. Immunol. 2015, 137, 1189–1196.e2. [Google Scholar] [CrossRef] [Green Version]
- Lévy, R.; Okada, S.; Béziat, V.; Moriya, K.; Liu, C.; Chai, L.Y.A.; Migaud, M.; Hauck, F.; Al Ali, A.; Cyrus, C.; et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc. Natl. Acad. Sci. USA 2016, 113, E8277–E8285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frede, N.; Rojas-Restrepo, J.; de Oteyza, A.C.G.; Buchta, M.; Hübscher, K.; Gámez-Díaz, L.; Proietti, M.; Saghafi, S.; Chavoshzadeh, Z.; Soler-Palacin, P.; et al. Genetic Analysis of a Cohort of 275 Patients with Hyper-IgE Syndromes and/or Chronic Mucocutaneous Candidiasis. J. Clin. Immunol. 2021, 41, 1804–1838. [Google Scholar] [CrossRef]
- Ling, Y.; Cypowyj, S.; Aytekin, C.; Galicchio, M.; Camcioglu, Y.; Nepesov, S.; Ikinciogullari, A.; Dogu, F.; Belkadi, A.; Levy, R.; et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 2015, 212, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Boisson, B.; Wang, C.; Pedergnana, V.; Wu, L.; Cypowyj, S.; Rybojad, M.; Belkadi, A.; Picard, C.; Abel, L.; Fieschi, C.; et al. An ACT1 Mutation Selectively Abolishes Interleukin-17 Responses in Humans with Chronic Mucocutaneous Candidiasis. Immunity 2013, 39, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Bhattad, S.; Dinakar, C.; Pinnamaraju, H.; Ganapathy, A.; Mannan, A. Chronic Mucocutaneous Candidiasis in an Adolescent Boy Due to a Novel Mutation in TRAF3IP2. J. Clin. Immunol. 2019, 39, 596–599. [Google Scholar] [CrossRef]
- Shafer, S.; Yao, Y.; Comrie, W.; Cook, S.; Zhang, Y.; Yesil, G.; Karakoç-Aydiner, E.; Baris, S.; Cokugras, H.; Aydemir, S.; et al. Two patients with chronic mucocutaneous candidiasis caused by TRAF3IP2 deficiency. J. Allergy Clin. Immunol. 2020, 148, 256–261.e2. [Google Scholar] [CrossRef] [PubMed]
- Marujo, F.; Pelham, S.J.; Freixo, J.; Cordeiro, A.I.; Martins, C.; Casanova, J.-L.; Lei, W.-T.; Puel, A.; Neves, J.F. A Novel TRAF3IP2 Mutation Causing Chronic Mucocutaneous Candidiasis. J. Clin. Immunol. 2020, 41, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Lobo, P.B.; Lei, W.; Pelham, S.J.; Hernández, P.G.; Villaoslada, I.; de Felipe, B.; Lucena, J.M.; Casanova, J.; Olbrich, P.; Puel, A.; et al. Biallelic TRAF3IP2 variants causing chronic mucocutaneous candidiasis in a child harboring a STAT1 variant. Pediatr. Allergy Immunol. 2021, 32, 1804–1812. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ritelli, M.; Ma, C.S.; Rao, G.; Habib, T.; Corvilain, E.; Bougarn, S.; Cypowyj, S.; Grodecká, L.; Lévy, R.; et al. Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Sci. Immunol. 2019, 4, eaax7965. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, V.; Break, T.J.; Gaffen, S.L.; Moutsopoulos, N.M.; Lionakis, M.S. Infections in the monogenic autoimmune syndrome APECED. Curr. Opin. Immunol. 2021, 72, 286–297. [Google Scholar] [CrossRef]
- Philippot, Q.; Casanova, J.-L.; Puel, A. Candidiasis in patients with APS-1: Low IL-17, high IFN-γ, or both? Curr. Opin. Immunol. 2021, 72, 318–323. [Google Scholar] [CrossRef]
- Naglik, J.R.; König, A.; Hube, B.; Gaffen, S.L. Candida albicans–epithelial interactions and induction of mucosal innate immunity. Curr. Opin. Microbiol. 2017, 40, 104–112. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Moutsopoulos, N.M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci. Immunol. 2020, 5, eaau4594. [Google Scholar] [CrossRef]
- Baker, R.D. Leukopenia and Therapy in Leukemia as Factors Predisposing to Fatal Mycoses: Mucormycosis, Aspergillosis, and Cryptococcosis. Am. J. Clin. Pathol. 1962, 37, 358–373. [Google Scholar] [CrossRef] [Green Version]
- Bodey, G.P.; Buckley, M.; Sathe, Y.S.; Freireich, E.J. Quantitative Relationships Between Circulating Leukocytes and Infection in Patients with Acute Leukemia. Ann. Intern. Med. 1966, 64, 328–340. [Google Scholar] [CrossRef]
- Bodey, G.P. Fungal infections complicating acute leukemia. J. Chronic Dis. 1966, 19, 667–687. [Google Scholar] [CrossRef]
- Donadieu, J.; Beaupain, B.; Fenneteau, O.; Bellanné-Chantelot, C. Congenital neutropenia in the era of genomics: Classification, diagnosis, and natural history. Br. J. Haematol. 2017, 179, 557–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.C.; Springer, T.A. LEUKOCYTE ADHESION DEFICIENCY: An Inherited Defect in the Mac-1, LFA-1, and p150,95 Glycoproteins. Annu. Rev. Med. 1987, 38, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.S.; Shigeoka, A.O.; Li, W.; Adams, R.H.; Prescott, S.M.; McIntyre, T.M.; Zimmerman, G.A.; Lorant, D.E. A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by β1 and β2 integrins. Blood 2001, 97, 767–776. [Google Scholar] [CrossRef]
- Engel, M.E.; Hickstein, D.D.; Bauer, T.R.; Calder, C.; Manes, B.; Frangoul, H. Matched unrelated bone marrow transplantation with reduced-intensity conditioning for leukocyte adhesion deficiency. Bone Marrow Transplant. 2006, 37, 717–718. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.P.; Weathers, D.R. Leukocyte adhesion deficiency type 1: An important consideration in the clinical differential diagnosis of prepubertal periodontitis. A case report and review of the literature. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 105, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, D.D.M.; Beitler, B.; Martinez, G.A.; Pereira, J.; Filho, J.U.A.; Klautau, G.; Lian, Y.C.; Della Negra, M.; Duarte, A.J.D.S. CD18 deficiency evolving to megakaryocytic (M7) acute myeloid leukemia: Case report. Blood Cells Mol. Dis. 2014, 53, 180–184. [Google Scholar] [CrossRef]
- Serwas, N.K.; Huemer, J.; Dieckmann, R.; Mejstrikova, E.; Garncarz, W.; Litzman, J.; Hoeger, B.; Zapletal, O.; Janda, A.; Bennett, K.L.; et al. CEBPE-Mutant Specific Granule Deficiency Correlates With Aberrant Granule Organization and Substantial Proteome Alterations in Neutrophils. Front. Immunol. 2018, 9, 588. [Google Scholar] [CrossRef] [Green Version]
- Borregaard, N.; Sørensen, O.E.; Theilgaard-Mönch, K. Neutrophil granules: A library of innate immunity proteins. Trends Immunol. 2007, 28, 340–345. [Google Scholar] [CrossRef]
- Mouy, R.; Veber, F.; Blanche, S.; Donadieu, J.; Brauner, R.; Levron, J.-C.; Griscelli, C.; Fischer, A. Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J. Pediatr. 1994, 125, 998–1003. [Google Scholar] [CrossRef]
- Petropoulou, T.; Liese, J.; Tintelnot, K.; Gahr, M.; Belohradsky, B.H. Long-term treatment of patients with itraconazole for the prevention of Aspergillus infections in patients with chronic granulomatous disease (CGD). Mycoses 1994, 37 (Suppl. 2), 64–69. [Google Scholar] [PubMed]
- Gallin, J.I.; Alling, D.W.; Malech, H.L.; Wesley, R.; Koziol, D.; Marciano, B.; Eisenstein, E.M.; Turner, M.L.; DeCarlo, E.S.; Starling, J.M.; et al. Itraconazole to Prevent Fungal Infections in Chronic Granulomatous Disease. N. Engl. J. Med. 2003, 348, 2416–2422. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Michalopoulos, A.; Falagas, M.E. Fluconazole versus itraconazole for antifungal prophylaxis in neutropenic patients with haematological malignancies: A meta-analysis of randomised-controlled trials. Br. J. Haematol. 2005, 131, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Robenshtok, E.; Gafter-Gvili, A.; Goldberg, E.; Weinberger, M.; Yeshurun, M.; Leibovici, L.; Paul, M. Antifungal Prophylaxis in Cancer Patients After Chemotherapy or Hematopoietic Stem-Cell Transplantation: Systematic Review and Meta-Analysis. J. Clin. Oncol. 2007, 25, 5471–5489. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, P.; Zhou, R.; Xu, J.; Shao, X.; Yang, Y.; Ouyang, J. Prophylaxis with itraconazole is more effective than prophylaxis with fluconazole in neutropenic patients with hematological malignancies: A meta-analysis of randomized-controlled trials. Med. Oncol. 2009, 27, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Ethier, M.; Science, M.; Beyene, J.; Briel, M.; Lehrnbecher, T.; Sung, L. Mould-active compared with fluconazole prophylaxis to prevent invasive fungal diseases in cancer patients receiving chemotherapy or haematopoietic stem-cell transplantation: A systematic review and meta-analysis of randomised controlled trials. Br. J. Cancer 2012, 106, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.; Cho, C.; Smith, S.; Dudding, B. Cervical lymphadenitis due to Candida albicans infection. J. Pediatr. 1975, 86, 812–813. [Google Scholar] [CrossRef]
- Orson, J.M.; Greco, R.G. Death from Torulopsis in chronic granulomatous disease. J. Pediatr. 1975, 87, 333. [Google Scholar] [CrossRef]
- Cohen, M.S.; Isturiz, R.E.; Malech, H.; Root, R.K.; Wilfert, C.M.; Gutman, L.; Buckley, R.H. Fungal infection in chronic granulomatous disease: The importance of the phagocyte in defense against fungi. Am. J. Med. 1981, 71, 59–66. [Google Scholar] [CrossRef]
- Fleischmann, J.; Church, J.A.; Lehrer, R.I. Case Report: Primary Candida Meningitis Chronic Granulomatous Disease. Am. J. Med. Sci. 1986, 291, 334–341. [Google Scholar] [CrossRef]
- Levy, O.; Bourquin, J.-P.; McQueen, A.; Cantor, A.B.; Lachenauer, C.; Malley, R. Fatal disseminated candida lusitaniae infection in an infant with chronic granulomatous disease. Pediatr. Infect. Dis. J. 2002, 21, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Estrada, B.; Mancao, M.Y.; Polski, J.M.; Figarola, M.S. Candida lusitaniae and Chronic Granulomatous Disease. Pediatr. Infect. Dis. J. 2006, 25, 758–759. [Google Scholar] [CrossRef]
- Piwoz, J.A.; Stadtmauer, G.J.; Bottone, E.J.; Weitzman, I.; Shlasko, E.; Cunningham-Rundles, C. Trichosporon inkin lung abscesses presenting as a penetrating chest wall mass. Pediatr. Infect. Dis. J. 2000, 19, 1025–1027. [Google Scholar] [CrossRef]
- Wynne, S.M.; Kwon-Chung, K.J.; Shea, Y.R.; Filie, A.C.; Varma, A.; Lupo, P.; Holland, S.M. Invasive infection with Trichosporon inkin in 2 siblings with chronic granulomatous disease. J. Allergy Clin. Immunol. 2004, 114, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Kenney, R.T.; Kwon-Chung, K.J.; Witebsky, F.G.; Melnick, D.A.; Malech, H.L.; Gallin, J.I. Invasive Infection with Sarcinosporon inkin in a Patient with Chronic Granulomatous Disease. Am. J. Clin. Pathol. 1990, 94, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussa, A.Y.; Singh, V.K.; Randhawa, U.S.; Khan, Z.U. Disseminated fatal trichosporonosis: First case due to Trichosporon inkin. J. Mycol. Médicale 1998, 8, 196–199. [Google Scholar]
- Hajjar, J.; Restrepo, A.; Javeri, H.; Wiederhold, N.P.; Papanastassiou, A.M.; Patterson, T.F. Multiple Brain Abscesses Caused by Trichosporon inkin in a Patient with X-Linked Chronic Granulomatous Disease (CGD) Successfully Treated with Antifungal Therapy. J. Clin. Immunol. 2017, 37, 519–523. [Google Scholar] [CrossRef]
- Parrillo, O.J. Disseminated mycotic disease. J. Am. Med. Assoc. 1950, 144, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.A.; Kalz, G.G.; Lotspeich, E.S. Ependymitis and meningitis due to candida (monilia) albicans. Arch. Neurol. Psychiatry 1945, 54, 361–366. [Google Scholar] [CrossRef]
- Bélisle, G.; Lachance, W.; Leblanc, G. Meningitis caused by Candida albicans. Report of a case and discussion. L’union Med. Can. 1968, 97, 710–715. [Google Scholar]
- Black, J.T. Cerebral candidiasis: Case report of brain abscess secondary to Candida albicans, and review of literature. J. Neurol. Neurosurg. Psychiatry 1970, 33, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, M.; Gourdeau, M.; Hébert, J. Familial Chronic Mucocutaneous Candidiasis Complicated by Deep Candida Infection. Am. J. Med. Sci. 1994, 307, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Borha, A.; Parienti, J.-J.; Emery, E.; Coskun, O.; Khouri, S.; Derlon, J.-M. Granulome cérébral à Candida albicans chez un patient immunocompétent. Cas clinique. Neurochirurgie 2009, 55, 57–62. [Google Scholar] [CrossRef]
- Dalliere, C.C.; Thouvenot, E.; Baptista, G.; Le Moing, V.; Charif, M. Méningomyéloradiculite à Candida albicans chez un sujet immunocompétent. Rev. Neurol. 2010, 166, 741–744. [Google Scholar] [CrossRef]
- Hoarau, G.; Kerdraon, O.; Lagree, M.; Vinchon, M.; François, N.; Dubos, F.; Sendid, B. Detection of (1,3)-β-D-glucans in situ in a Candida albicans brain granuloma. J. Infect. 2013, 67, 622–624. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Mahdaviani, A.; Barbati, E.; Chaussade, H.; Koumar, Y.; Levy, R.; Denis, B.; Brunel, A.-S.; Martin, S.; Loop, M.; et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species–induced meningoencephalitis, colitis, or both. J. Allergy Clin. Immunol. 2015, 135, 1558–1568.e2. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.; Garcez, T.; Newman, W.; Denning, D. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016, 2016, bcr2015214117. [Google Scholar] [CrossRef] [Green Version]
- Rieber, N.; Gazendam, R.P.; Freeman, A.F.; Hsu, A.P.; Collar, A.L.; Sugui, J.A.; Drummond, R.A.; Rongkavilit, C.; Hoffman, K.; Henderson, C.; et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. J. Clin. Investig. 2016, 1, e89890. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Li, X.; Shi, R.; Zhao, X.; Xu, H.; Wang, B.; Wang, X.; Hu, W.; Cao, H.; Zheng, J. Recurrent fungal infections in a Chinese patient with CARD 9 deficiency and a review of 48 cases. Br. J. Dermatol. 2018, 180, 1221–1225. [Google Scholar] [CrossRef]
- Drummond, R.; Collar, A.; Swamydas, M.; Rodriguez, C.A.; Lim, J.K.; Mendez, L.M.; Fink, D.L.; Hsu, A.P.; Zhai, B.; Karauzum, H.; et al. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System. PLoS Pathog. 2015, 11, e1005293. [Google Scholar] [CrossRef]
- Martino, R.; Sureda, A.; Brunet, S. Disseminated Candidiasis in Patients with Acute Leukemia. Clin. Infect. Dis. 1998, 26, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Pagano, L.; Mele, L.; Fianchi, L.; Melillo, L.; Martino, B.; D’Antonio, D.; Tosti, M.E.; Posteraro, B.; Sanguinetti, M.; Trapè, G.; et al. Chronic disseminated candidiasis in patients with hematologic malignancies. Clinical features and outcome of 29 episodes. Haematologica 2002, 87, 535–541. [Google Scholar]
- Duffy, D.; Rouilly, V.; Libri, V.; Hasan, M.; Beitz, B.; David, M.; Urrutia, A.; Bisiaux, A.; LaBrie, S.T.; Dubois, A.; et al. Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli. Immunity 2014, 40, 436–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeekens, S.P.; Ng, A.; Kumar, V.; Johnson, M.D.; Plantinga, T.S.; van Diemen, C.; Arts, P.; Verwiel, E.T.P.; Gresnigt, M.S.; Fransen, K.; et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun. 2013, 4, 1342. [Google Scholar] [CrossRef] [Green Version]
- Celmeli, F.; Oztoprak, N.; Turkkahraman, D.; Seyman, D.; Mutlu, E.; Frede, N.; Köksoy, S.; Grimbacher, B. Successful Granulocyte Colony-stimulating Factor Treatment of Relapsing Candida albicans Meningoencephalitis Caused by CARD9 Deficiency. Pediatr. Infect. Dis. J. 2016, 35, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Shen, N.; Hu, J.; Tao, Y.; Mo, X.; Cao, Q. Complete clinical remission of invasive Candida infection with CARD9 deficiency after G-CSF treatment. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101417. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Telles, F.; Mercier, T.; Maertens, J.; Sola, C.B.S.; Bonfim, C.; Lortholary, O.; Constantino-Silva, R.M.N.; Schrijvers, R.; Hagen, F.; Meis, J.F.; et al. Successful Allogenic Stem Cell Transplantation in Patients with Inherited CARD9 Deficiency. J. Clin. Immunol. 2019, 39, 462–469. [Google Scholar] [CrossRef]
- Erman, B.; Fırtına, S.; Aksoy, B.A.; Aydogdu, S.; Genç, G.E.; Doğan, Ö.; Bozkurt, C.; Fışgın, T.; Çipe, F.E. Invasive Saprochaete capitata Infection in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. J. Clin. Immunol. 2020, 40, 466–474. [Google Scholar] [CrossRef]
- Sari, S.; Dalgic, B.; Muehlenbachs, A.; DeLeon-Carnes, M.; Goldsmith, C.S.; Ekinci, O.; Jain, D.; Keating, M.K.; Vilarinho, S. Prototheca zopfii Colitis in Inherited CARD9 Deficiency. J. Infect. Dis. 2018, 218, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.; Toda, M.; Benedict, K.; Caceres, D.; Litvintseva, A. Endemic and Other Dimorphic Mycoses in The Americas. J. Fungi 2021, 7, 151. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Hagen, F.; Puccia, R.; Hahn, R.C.; de Camargo, Z.P. Paracoccidioides and Paracoccidioidomycosis in the 21st Century. Mycopathologia 2023, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, R.; Chen, S. An Overlooked and Underrated Endemic Mycosis—Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin. Microbiol. Rev. 2023, e00051-22. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, T.N.; Fierer, J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2018, 9, 1426–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, T.C.; Stokes, W.R. A case of pseudo-lupus vulgaris caused by a blastomyces. J. Exp. Med. 1898, 3, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Kaffenberger, B.H.; Shetlar, D.; Norton, S.A.; Rosenbach, M. The effect of climate change on skin disease in North America. J. Am. Acad. Dermatol. 2016, 76, 140–147. [Google Scholar] [CrossRef]
- Hernandez, H.; Martinez, L.R. Relationship of environmental disturbances and the infectious potential of fungi. Microbiology 2018, 164, 233–241. [Google Scholar] [CrossRef]
- Brown, E.; McTaggart, L.R.; Dunn, D.; Pszczolko, E.; Tsui, K.G.; Morris, S.K.; Stephens, D.; Kus, J.V.; Richardson, S.E. Epidemiology and Geographic Distribution of Blastomycosis, Histoplasmosis, and Coccidioidomycosis, Ontario, Canada, 1990–2015. Emerg. Infect. Dis. 2018, 24, 1257–1266. [Google Scholar] [CrossRef] [Green Version]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A global view on fungal infections in humans and animals: Infections caused by dimorphic fungi and dermatophytoses. J. Appl. Microbiol. 2021, 131, 2688–2704. [Google Scholar] [CrossRef]
- Chapman, S.W.; Dismukes, W.E.; Proia, L.A.; Bradsher, R.W.; Pappas, P.G.; Threlkeld, M.G.; Kauffman, C.A. Clinical Practice Guidelines for the Management of Blastomycosis: 2008 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 1801–1812. [Google Scholar] [CrossRef]
- Garcia, S.C.G.; Alanis, J.C.S.; Flores, M.G.; Gonzalez, S.E.G.; Cabrera, L.V.; Candiani, J.O. Coccidioidomycosis and the skin: A comprehensive review. An. Bras. Dermatol. 2015, 90, 610–619. [Google Scholar] [CrossRef]
- Dukik, K.; Muñoz, J.F.; Jiang, Y.; Feng, P.; Sigler, L.; Stielow, J.B.; Freeke, J.; Jamalian, A.; Ende, B.G.V.D.; McEwen, J.G.; et al. Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales). Mycoses 2017, 60, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.L.; Reyes-Montes, M.D.R.; Estrada-Bárcenas, D.A.; Zancopé-Oliveira, R.M.; Rodríguez-Arellanes, G.; Ramírez, J.A. Considerations about the Geographic Distribution of Histoplasma Species. Appl. Environ. Microbiol. 2022, 88, e02010-21. [Google Scholar] [CrossRef] [PubMed]
- Darling, S.T. A protozoön general infection producing pseudotubercles in the lungs and focal necroses in the liver, spleen and lymphnodes. J. Am. Med. Assoc. 1906, 46, 1283–1285. [Google Scholar] [CrossRef] [Green Version]
- Vinh, D.C.; Embil, J.M. Histoplasmosis, Blastomycosis, Coccidioidomycosis, and Other Dimorphic Fungi. In Principles and Practice of Hospital Medicine, 2nd ed.; McKean, S.C., Ross, J.J., Dressler, D.D., Scheurer, D.B., Eds.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Furtado, T.A.; Wilson, J.W.; Plunkett, O.A. South american blastomycosis or paracoccidioidomycosis. AMA Arch. Dermatol. Syphilol. 1954, 70, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.C.; Hagen, F.; Mendes, R.P.; Burger, E.; Nery, A.F.; Siqueira, N.P.; Guevara, A.; Rodrigues, A.M.; de Camargo, Z.P. Paracoccidioidomycosis: Current Status and Future Trends. Clin. Microbiol. Rev. 2022, 35, e00233-21. [Google Scholar] [CrossRef]
- Sporotrichosis. JAMA 1909, 15, 1192. [CrossRef]
- De Carolis, E.; Posteraro, B.; Sanguinetti, M. Old and New Insights into Sporothrix schenckii Complex Biology and Identification. Pathogens 2022, 11, 297. [Google Scholar] [CrossRef]
- Capponi, M.; Segretain, G.; Sureau, P. Penicillosis from Rhizomys sinensis. Bull. Soc. Pathol. Exot. 1956, 49, 418–421. [Google Scholar]
- Segretain, G. Penicillium Marneffei N. Sp., Agent D’une Mycose Du Système Réticulo-Endothélial. Mycopathologia 1959, 11, 327–353. [Google Scholar] [CrossRef]
- Pruksaphon, K.; Nosanchuk, J.D.; Ratanabanangkoon, K.; Youngchim, S. Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J. Fungi 2022, 8, 200. [Google Scholar] [CrossRef]
- DiSalvo, M.A.F.; Fickling, A.M.; Ajello, L. Infection Caused by Penicillium marneffei: Description of First Natural Infection in Man. Am. J. Clin. Pathol. 1973, 60, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Jayanetra, P.; Prajaktam, R.; Ajello, L.; Sathaphatayavongs, B.; Lolekha, S.; Padhye, A.A.; Vathesatogit, P.; Atichartakarn, V.; Nitiyanant, P. Penicilliosis marneffei in Thailand: Report of Five Human Cases. Am. J. Trop. Med. Hyg. 1984, 33, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, H.; Fan, J.; Lan, X.; Liu, G.; Zhang, J.; Zhong, X.; Pang, Y.; Wang, J.; He, Z. Genomic analysis provides insights into the transmission and pathogenicity of Talaromyces marneffei. Fungal Genet. Biol. 2019, 130, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S.; Dat, V.Q.; Thanh, N.T.; Ly, V.T.; Chan, J.F.-W.; Yuen, K.-Y.; Ning, C.; Liang, H.; Li, L.; Chowdhary, A.; et al. A global call for talaromycosis to be recognised as a neglected tropical disease. Lancet Glob. Health 2021, 9, e1618–e1622. [Google Scholar] [CrossRef]
- Cao, C.; Xi, L.; Chaturvedi, V. Talaromycosis (Penicilliosis) Due to Talaromyces (Penicillium) marneffei: Insights into the Clinical Trends of a Major Fungal Disease 60 Years After the Discovery of the Pathogen. Mycopathologia 2019, 184, 709–720. [Google Scholar] [CrossRef]
- Döffinger, R.; Dupuis, S.; Picard, C.; Fieschi, C.; Feinberg, J.; Barcenas-Morales, G.; Casanova, J.-L. Inherited disorders of IL-12- and IFNγ-mediated immunity: A molecular genetics update. Mol. Immunol. 2002, 38, 903–909. [Google Scholar] [CrossRef]
- Rosain, J.; Kong, X.; Martinez-Barricarte, R.; Oleaga-Quintas, C.; Ramirez-Alejo, N.; Markle, J.; Okada, S.; Boisson-Dupuis, S.; Casanova, J.; Bustamante, J. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol. Cell Biol. 2018, 97, 360–367. [Google Scholar] [CrossRef]
- Kerner, G.; Rosain, J.; Guérin, A.; Al-Khabaz, A.; Oleaga-Quintas, C.; Rapaport, F.; Massaad, M.J.; Ding, J.-Y.; Khan, T.; Al Ali, F.; et al. Inherited human IFN-γ deficiency underlies mycobacterial disease. J. Clin. Investig. 2020, 130, 3158–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Vosse, E.; Haverkamp, M.H.; Ramirez-Alejo, N.; Martinez-Gallo, M.; Blancas-Galicia, L.; Metin, A.; Garty, B.Z.; Sun-Tan, Ç.; Broides, A.; de Paus, R.A.; et al. IL-12Rβ1 Deficiency: Mutation Update and Description of the IL12RB1 Variation Database. Hum. Mutat. 2013, 34, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Alaki, E.M.; Aljobair, F.; Alaklobi, F.; Al Shamrani, M.; Al-Zahim, F.; Dongues, A.; Casanova, J.-L. Chronic Disseminated Salmonellosis in a Patient With Interleukin-12p40 Deficiency. Pediatr. Infect. Dis. J. 2018, 37, 90–93. [Google Scholar] [CrossRef]
- Mahdaviani, S.A.; Mansouri, D.; Jamee, M.; Zaki-Dizaji, M.; Aghdam, K.R.; Mortaz, E.; Khorasanizadeh, M.; Eskian, M.; Movahedi, M.; Ghaffaripour, H.; et al. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical and Genetic Features of 32 Iranian Patients. J. Clin. Immunol. 2020, 40, 872–882. [Google Scholar] [CrossRef]
- Vicuña, A.K.P.; Nakashimada, M.Y.; Lara, X.L.; Flores, E.M.; Núñez, M.E.N.; Lona-Reyes, J.C.; Nieto, L.H.; Vázquez, M.G.R.; Santos, J.B.; Iñiguez, L.; et al. Mendelian Susceptibility to Mycobacterial Disease: Retrospective Clinical and Genetic Study in Mexico. J. Clin. Immunol. 2023, 43, 123–135. [Google Scholar] [CrossRef]
- Tanir, G.; Dogu, F.; Tuygun, N.; Ikinciogullari, A.; Aytekin, C.; Aydemir, C.; Yuksek, M.; Boduroglu, E.C.; De Beaucoudrey, L.; Fieschi, C.; et al. Complete deficiency of the IL-12 receptor β1 chain: Three unrelated Turkish children with unusual clinical features. Eur. J. Pediatr. 2006, 165, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Rosain, J.; Oleaga-Quintas, C.; Deswarte, C.; Verdin, H.; Marot, S.; Syridou, G.; Mansouri, M.; Mahdaviani, S.A.; Venegas-Montoya, E.; Tsolia, M.; et al. A Variety of Alu-Mediated Copy Number Variations Can Underlie IL-12Rβ1 Deficiency. J. Clin. Immunol. 2018, 38, 617–627. [Google Scholar] [CrossRef] [PubMed]
- León-Lara, X.; Hernández-Nieto, L.; Zamora, C.V.; Rodríguez-D’Cid, R.; Gutiérrez, M.E.C.; Espinosa-Padilla, S.; Bustamante, J.; Puel, A.; Blancas-Galicia, L. Disseminated Infectious Disease Caused by Histoplasma capsulatum in an Adult Patient as First Manifestation of Inherited IL-12Rβ1 Deficiency. J. Clin. Immunol. 2020, 40, 1051–1054. [Google Scholar] [CrossRef]
- de Souza, T.L.; Fernandes, R.C.D.S.C.; Da Silva, J.A.; Júnior, V.G.A.; Coelho, A.G.; Faria, A.C.S.; Simão, N.M.M.S.; Filho, J.T.S.; Deswarte, C.; Boisson-Dupuis, S.; et al. Microbial Disease Spectrum Linked to a Novel IL-12Rβ1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression. Front. Microbiol. 2017, 8, 616. [Google Scholar] [CrossRef]
- Zerbe, C.S.; Holland, S.M. Disseminated Histoplasmosis in Persons with Interferon- Receptor 1 Deficiency. Clin. Infect. Dis. 2005, 41, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Vinh, D.; Masannat, F.; Dzioba, R.B.; Galgiani, J.N.; Holland, S.M. Refractory Disseminated Coccidioidomycosis and Mycobacteriosis in Interferon-γ Receptor 1 Deficiency. Clin. Infect. Dis. 2009, 49, e62–e65. [Google Scholar] [CrossRef]
- Vinh, D.; Schwartz, B.; Hsu, A.; Miranda, D.J.; Valdez, P.A.; Fink, D.; Lau, K.P.; Long-Priel, D.; Kuhns, D.B.; Uzel, G.; et al. Interleukin-12 Receptor 1 Deficiency Predisposing to Disseminated Coccidioidomycosis. Clin. Infect. Dis. 2011, 52, e99–e102. [Google Scholar] [CrossRef] [Green Version]
- De Moraes-Vasconcelos, D.; Grumach, A.; Yamaguti, A.; Andrade, M.E.B.; Fieschi, C.; De Beaucoudrey, L.; Casanova, J.-L.; Duarte, A.J.S. Paracoccidioides brasiliensis Disseminated Disease in a Patient with Inherited Deficiency in the 1 Subunit of the Interleukin (IL)-12/IL-23 Receptor. Clin. Infect. Dis. 2005, 41, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Pedroza, L.A.; Guerrero, N.; Stray-Pedersen, A.; Tafur, C.; Macias, R.; Muñoz, G.; Akdemir, Z.C.; Jhangiani, S.N.; Watkin, L.B.; Chinn, I.K.; et al. First Case of CD40LG Deficiency in Ecuador, Diagnosed after Whole Exome Sequencing in a Patient with Severe Cutaneous Histoplasmosis. Front. Pediatr. 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelstein, J.A.; Marino, M.C.; Ochs, H.; Fuleihan, R.; Scholl, P.R.; Geha, R.; Stiehm, E.R.; Conley, M.E. The X-Linked Hyper-IgM Syndrome. Medicine 2003, 82, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Danielian, S.; Oleastro, M.; Rivas, M.E.; Cantisano, C.; Zelazko, M. Clinical Follow-Up of 11 Argentinian CD40L-Deficient Patients with 7 Unique Mutations Including the So-Called “Milder” Mutants. J. Clin. Immunol. 2007, 27, 455–459. [Google Scholar] [CrossRef]
- Cabral-Marques, O.; Schimke, L.-F.; Pereira, P.V.S.; Falcai, A.; de Oliveira, J.B.; Hackett, M.J.; Errante, P.R.; Weber, C.W.; Ferreira, J.F.; Kuntze, G.; et al. Expanding the Clinical and Genetic Spectrum of Human CD40L Deficiency: The Occurrence of Paracoccidioidomycosis and Other Unusual Infections in Brazilian Patients. J. Clin. Immunol. 2011, 32, 212–220. [Google Scholar] [CrossRef]
- Marques, O.C.; Arslanian, C.; Ramos, R.N.; Morato, M.; Schimke, L.; Pereira, P.V.S.; Jancar, S.; Ferreira, J.F.; Weber, C.W.; Kuntze, G.; et al. Dendritic cells from X-linked hyper-IgM patients present impaired responses to Candida albicans and Paracoccidioides brasiliensis. J. Allergy Clin. Immunol. 2012, 129, 778–786. [Google Scholar] [CrossRef]
- Du, X.; Tang, W.; Chen, X.; Zeng, T.; Wang, Y.; Chen, Z.; Xu, T.; Zhou, L.; Tang, X.; An, Y.; et al. Clinical, genetic and immunological characteristics of 40 Chinese patients with CD40 ligand deficiency. Scand. J. Immunol. 2019, 90, e12798. [Google Scholar] [CrossRef]
- Lee, P.P.; Lao-Araya, M.; Yang, J.; Chan, K.-W.; Ma, H.; Pei, L.-C.; Kui, L.; Mao, H.; Yang, W.; Zhao, X.; et al. Application of Flow Cytometry in the Diagnostics Pipeline of Primary Immunodeficiencies Underlying Disseminated Talaromyces marneffei Infection in HIV-Negative Children. Front. Immunol. 2019, 10, 2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Luo, Y.; Li, X.; Li, Y.; Xia, Y.; He, T.; Huang, Y.; Xu, Y.; Yang, Z.; Ling, J.; et al. Talaromyces marneffei Infections in 8 Chinese Children with Inborn Errors of Immunity. Mycopathologia 2022, 187, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Huang, L.; Yang, D.; Zhang, C.; Zeng, Q.; Yin, G.; Lu, G.; Shen, K. Respiratory infections in X-linked hyper-IgM syndrome with CD40LG mutation: A case series of seven children in China. BMC Pediatr. 2022, 22, 675. [Google Scholar] [CrossRef]
- Spinner, M.A.; Ker, J.P.; Stoudenmire, C.J.; Fadare, O.; Mace, E.; Orange, J.S.; Hsu, A.; Holland, S.M. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus–associated hemophagocytic lymphohistiocytosis. J. Allergy Clin. Immunol. 2015, 137, 638–640. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, E.P.; Hsu, A.P.; Pechacek, J.; Bax, H.I.; Dias, D.L.; Paulson, M.L.; Chandrasekaran, P.; Rosen, L.B.; Carvalho, D.S.; Ding, L.; et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J. Allergy Clin. Immunol. 2013, 131, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Tan, J.; Qian, S.; Wu, S.; Chen, Q. Case Report: Disseminated Talaromyces marneffei Infection in a Patient With Chronic Mucocutaneous Candidiasis and a Novel STAT1 Gain-of-Function Mutation. Front. Immunol. 2021, 12, 682350. [Google Scholar] [CrossRef]
- Vinh, D.; Patel, S.; Uzel, G.; Anderson, V.L.; Freeman, A.F.; Olivier, K.N.; Spalding, C.; Hughes, S.; Pittaluga, S.; Raffeld, M.; et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 2010, 115, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Calvo, K.R.; Vinh, D.C.; Maric, I.; Wang, W.; Noel, P.; Stetler-Stevenson, M.; Arthur, D.C.; Raffeld, M.; Dutra, A.; Pak, E.; et al. Myelodysplasia in autosomal dominant and sporadic monocytopenia immunodeficiency syndrome: Diagnostic features and clinical implications. Haematologica 2011, 96, 1221–1225. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Sampaio, E.P.; Khan, J.; Calvo, K.; Lemieux, J.E.; Patel, S.; Frucht, D.M.; Vinh, D.; Auth, R.D.; Freeman, A.F.; et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 2011, 118, 2653–2655. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.E.; Griffin, H.R.; Bigley, V.; Reynard, L.N.; Hussain, R.; Haniffa, M.; Lakey, J.; Rahman, T.; Wang, X.-N.; McGovern, N.; et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 2011, 118, 2656–2658. [Google Scholar] [CrossRef]
- Hahn, C.; Chong, C.E.; Carmichael, C.; Wilkins, E.J.; Brautigan, P.J.; Li, X.-C.; Babic, M.; Lin, M.; Carmagnac, A.; Lee, Y.K.; et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 2011, 43, 1012–1017. [Google Scholar] [CrossRef]
- Ostergaard, P.; Simpson, M.; Connell, F.C.; Steward, C.; Brice, G.; Woollard, W.J.; Dafou, D.; Kilo, T.; Smithson, S.; Lunt, P.; et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 2011, 43, 929–931. [Google Scholar] [CrossRef] [Green Version]
- Pasquet, M.; Bellanné-Chantelot, C.; Tavitian, S.; Prade, N.; Beaupain, B.; LaRochelle, O.; Petit, A.; Rohrlich, P.S.; Ferrand, C.; Neste, E.V.D.; et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood 2013, 121, 822–829. [Google Scholar] [CrossRef]
- Dorn, J.M.; Patnaik, M.S.; Van Hee, M.; Smith, M.J.; Lagerstedt, S.A.; Newman, C.C.; Boyce, T.G.; Abraham, R.S. WILD syndrome is GATA2 deficiency: A novel deletion in the GATA2 gene. J. Allergy Clin. Immunol. Pract. 2017, 5, 1149–1152.e1. [Google Scholar] [CrossRef]
- Kuriyama, Y.; Hattori, M.; Mitsui, T.; Nakano, H.; Oikawa, D.; Tokunaga, F.; Ishikawa, O.; Shimizu, A. Generalized verrucosis caused by various human papillomaviruses in a patient with GATA2 deficiency. J. Dermatol. 2018, 45, e108–e109. [Google Scholar] [CrossRef] [PubMed]
- Lasbury, M.E.; Tang, X.; Durant, P.J.; Lee, C.-H. Effect of Transcription Factor GATA-2 on Phagocytic Activity of Alveolar Macrophages from Pneumocystis carinii -Infected Hosts. Infect. Immun. 2003, 71, 4943–4952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes-De-Almeida, D.P.; Andrade, F.G.; dos Santos-Bueno, F.V.; Freitas, D.F.S.; Soares-Lima, S.C.; Zancopé-Oliveira, R.M.; Pombo-De-Oliveira, M.S. GATA2 variants in patients with non-tuberculous mycobacterial or fungal infections without known immunodeficiencies. Hematol. Transfus. Cell Ther. 2022. [Google Scholar] [CrossRef] [PubMed]
- Chapgier, A.; Boisson-Dupuis, S.; Jouanguy, E.; Vogt, G.; Feinberg, J.; Prochnicka-Chalufour, A.; Casrouge, A.; Yang, K.; Soudais, C.; Fieschi, C.; et al. Novel STAT1 Alleles in Otherwise Healthy Patients with Mycobacterial Disease. PLoS Genet. 2006, 2, e131. [Google Scholar] [CrossRef] [PubMed]
- Chapgier, A.; Kong, X.-F.; Boisson-Dupuis, S.; Jouanguy, E.; Averbuch, D.; Feinberg, J.; Zhang, S.-Y.; Bustamante, J.; Vogt, G.; Lejeune, J.; et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Investig. 2009, 119, 1502–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisson-Dupuis, S.; Jouanguy, E.; Al-Hajjar, S.; Fieschi, C.; Al-Mohsen, I.Z.; Al-Jumaah, S.; Yang, K.; Chapgier, A.; Eidenschenk, C.; Eid, P.; et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 2003, 33, 388–391. [Google Scholar] [CrossRef]
- Bustamante, J. Mendelian susceptibility to mycobacterial disease: Recent discoveries. Hum. Genet. 2020, 139, 993–1000. [Google Scholar] [CrossRef]
- Alberti-Flor, J.J.; Granda, A. Ileocecal Histoplasmosis Mimicking Crohn’s Disease in a Patient with Job’s Syndrome. Digestion 1986, 33, 176–180. [Google Scholar] [CrossRef]
- Cappell, M.S.; Manzione, N.C. Recurrent colonic histoplasmosis after standard therapy with amphotericin B in a patient with Job’s syndrome. Am. J. Gastroenterol. 1991, 86, 119–120. [Google Scholar]
- Desai, K.; Huston, D.P.; Harriman, G.R. Previously undiagnosed hyper-IgE syndrome in an adult with multiple systemic fungal infections. J. Allergy Clin. Immunol. 1996, 98, 1123–1124. [Google Scholar] [CrossRef]
- Vinh, D.C.; Sugui, J.A.; Hsu, A.P.; Freeman, A.F.; Holland, S.M. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J. Allergy Clin. Immunol. 2010, 125, 1389–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odio, C.D.; Milligan, K.L.; McGowan, K.; Spergel, A.K.R.; Bishop, R.; Boris, L.; Urban, A.; Welch, P.; Heller, T.; Kleiner, D.; et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J. Allergy Clin. Immunol. 2015, 136, 1411–1413.e2. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.P.W.; Chan, K.-W.; Ho, M.H.-K.; Chen, X.-Y.; Li, C.-H.; Chu, K.-M.; Zeng, H.-S.; Lau, Y.L. Penicilliosis in Children without HIV Infection—Are They Immunodeficient? Clin. Infect. Dis. 2011, 54, e8–e19. [Google Scholar] [CrossRef]
- Netea, M.G.; Kullberg, B.J.; van Der Meer, J.W.M. Severely impaired IL-12/IL-18/IFNgamma axis in patients with hyper IgE syndrome. Eur. J. Clin. Investig. 2005, 35, 718–721. [Google Scholar] [CrossRef]
- Danion, F.; Aimanianda, V.; Bayry, J.; Duréault, A.; Wong, S.; Bougnoux, M.-E.; Tcherakian, C.; Alyanakian, M.-A.; Guegan, H.; Puel, A.; et al. Aspergillus fumigatus Infection in Humans With STAT3-Deficiency Is Associated With Defective Interferon-Gamma and Th17 Responses. Front. Immunol. 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béziat, V.; Rapaport, F.; Hu, J.; Titeux, M.; Claustres, M.B.D.; Bourgey, M.; Griffin, H.; Bandet, E.; Ma, C.S.; Sherkat, R.; et al. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 2021, 184, 3812–3828.e30. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, C.S.; Ling, Y.; Bousfiha, A.; Camcioglu, Y.; Jacquot, S.; Payne, K.; Crestani, E.; Roncagalli, R.; Belkadi, A.; et al. Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J. Exp. Med. 2016, 213, 2413–2435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazami, A.M.; Al-Helale, M.; Alhissi, S.; Al-Saud, B.; Alajlan, H.; Monies, D.; Shah, Z.; Abouelhoda, M.; Arnaout, R.; Al-Dhekri, H.; et al. Novel CARMIL2 Mutations in Patients with Variable Clinical Dermatitis, Infections, and Combined Immunodeficiency. Front. Immunol. 2018, 9, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurolap, A.; Adiv, O.E.; Konnikova, L.; Werner, L.; Gonzaga-Jauregui, C.; Steinberg, M.; Mitsialis, V.; Mory, A.; Nunberg, M.Y.; Wall, S.; et al. A Unique Presentation of Infantile-Onset Colitis and Eosinophilic Disease without Recurrent Infections Resulting from a Novel Homozygous CARMIL2 Variant. J. Clin. Immunol. 2019, 39, 430–439. [Google Scholar] [CrossRef]
- Marangi, G.; Garcovich, S.; Sante, G.; Orteschi, D.; Frangella, S.; Scaldaferri, F.; Genuardi, M.; Peris, K.; Gurrieri, F.; Zollino, M. Complex Muco-cutaneous Manifestations of CARMIL2-associated Combined Immunodeficiency: A Novel Presentation of Dysfunctional Epithelial Barriers. Acta Derm.-Venereol. 2020, 100, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccari, M.E.; Speckmann, C.; Heeg, M.; Reimer, A.; Casetti, F.; Has, C.; Ehl, S.; Castro, C.N. Profound immunodeficiency with severe skin disease explained by concomitant novel CARMIL2 and PLEC1 loss-of-function mutations. Clin. Immunol. 2019, 208, 108228. [Google Scholar] [CrossRef]
- Atschekzei, F.; Jacobs, R.; Wetzke, M.; Sogkas, G.; Schröder, C.; Ahrenstorf, G.; Dhingra, A.; Ott, H.; Baumann, U.; Schmidt, R.E. A Novel CARMIL2 Mutation Resulting in Combined Immunodeficiency Manifesting with Dermatitis, Fungal, and Viral Skin Infections As Well as Selective Antibody Deficiency. J. Clin. Immunol. 2019, 39, 274–276. [Google Scholar] [CrossRef]
- Kolukisa, B.; Baser, D.; Akcam, B.; Danielson, J.; Eltan, S.B.; Haliloglu, Y.; Sefer, A.P.; Babayeva, R.; Akgun, G.; Charbonnier, L.; et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 2021, 77, 1004–1019. [Google Scholar] [CrossRef]
- Lévy, R.; Gothe, F.; Momenilandi, M.; Magg, T.; Materna, M.; Peters, P.; Raedler, J.; Philippot, Q.; Rack-Hoch, A.L.; Langlais, D.; et al. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J. Exp. Med. 2023, 220, e20220275. [Google Scholar] [CrossRef] [PubMed]
- Stepensky, P.; Keller, B.; Buchta, M.; Kienzler, A.-K.; Elpeleg, O.; Somech, R.; Cohen, S.; Shachar, I.; Miosge, L.A.; Schlesier, M.; et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J. Allergy Clin. Immunol. 2013, 131, 477–485.e1. [Google Scholar] [CrossRef]
- Greil, J.; Rausch, T.; Giese, T.; Bandapalli, O.R.; Daniel, V.; Bekeredjian-Ding, I.; Stütz, A.M.; Drees, C.; Roth, S.; Ruland, J.; et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J. Allergy Clin. Immunol. 2013, 131, 1376–1383.e3. [Google Scholar] [CrossRef]
- Snow, A.L.; Xiao, W.; Stinson, J.R.; Lu, W.; Chaigne-Delalande, B.; Zheng, L.; Pittaluga, S.; Matthews, H.F.; Schmitz, R.; Jhavar, S.; et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J. Exp. Med. 2012, 209, 2247–2261. [Google Scholar] [CrossRef]
- Brohl, A.; Stinson, J.R.; Su, H.C.; Badgett, T.; Jennings, C.D.; Sukumar, G.; Sindiri, S.; Wang, W.; Kardava, L.; Moir, S.; et al. Germline CARD11 Mutation in a Patient with Severe Congenital B Cell Lymphocytosis. J. Clin. Immunol. 2014, 35, 32–46. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Biggs, C.M.; Blanchard-Rohner, G.; Fung, S.-Y.; Sharma, M.; Turvey, S.E. Germline CBM-opathies: From immunodeficiency to atopy. J. Allergy Clin. Immunol. 2019, 143, 1661–1673. [Google Scholar] [CrossRef]
- Grimbacher, B.; Hutloff, A.; Schlesier, M.; Glocker, E.; Warnatz, K.; Dräger, R.; Eibel, H.; Fischer, B.; Schäffer, A.A.; Mages, H.W.; et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 2003, 4, 261–268. [Google Scholar] [CrossRef]
- Salzer, U.; Maul-Pavicic, A.; Cunningham-Rundles, C.; Urschel, S.; Belohradsky, B.H.; Litzman, J.; Holm, A.; Franco, J.L.; Plebani, A.; Hammarstrom, L.; et al. ICOS deficiency in patients with common variable immunodeficiency. Clin. Immunol. 2004, 113, 234–240. [Google Scholar] [CrossRef]
- Bossaller, L.; Burger, J.; Draeger, R.; Grimbacher, B.; Knoth, R.; Plebani, A.; Durandy, A.; Baumann, U.; Schlesier, M.; Welcher, A.A.; et al. ICOS Deficiency Is Associated with a Severe Reduction of CXCR5+CD4 Germinal Center Th Cells. J. Immunol. 2006, 177, 4927–4932. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Matsumoto, K.; Saito, H.; Nanki, T.; Miyasaka, N.; Kobata, T.; Azuma, M.; Lee, S.-K.; Mizutani, S.; Morio, T. Impaired CD4 and CD8 Effector Function and Decreased Memory T Cell Populations in ICOS-Deficient Patients. J. Immunol. 2009, 182, 5515–5527. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.; Massaad, M.J.; Cangemi, B.; Bainter, W.; Platt, C.; Badran, Y.R.; Raphael, B.P.; Kamin, D.S.; Goldsmith, J.D.; Pai, S.-Y.; et al. A novel mutation in ICOS presenting as hypogammaglobulinemia with susceptibility to opportunistic pathogens. J. Allergy Clin. Immunol. 2015, 136, 794–797.e1. [Google Scholar] [CrossRef] [Green Version]
- Abolhassani, H.; El-Sherbiny, Y.M.; Arumugakani, G.; Carter, C.; Richards, S.; Lawless, D.; Wood, P.; Buckland, M.; Heydarzadeh, M.; Aghamohammadi, A.; et al. Expanding Clinical Phenotype and Novel Insights into the Pathogenesis of ICOS Deficiency. J. Clin. Immunol. 2010, 40, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Roussel, L.; Landekic, M.; Golizeh, M.; Gavino, C.; Zhong, M.-C.; Chen, J.; Faubert, D.; Blanchet-Cohen, A.; Dansereau, L.; Parent, M.-A.; et al. Loss of human ICOSL results in combined immunodeficiency. J. Exp. Med. 2018, 215, 3151–3164. [Google Scholar] [CrossRef]
- Loo, V.G.; Roussel, L.; Bernier, S.; Perez, A.; Vinh, D.C. Late-Onset Combined Immunodeficiency with Refractory CMV Disease due to ICOSL Deficiency. J. Clin. Immunol. 2022, 42, 206–209. [Google Scholar] [CrossRef]
- Kuberski, T.T.; Servi, R.J.; Rubin, P.J. Successful Treatment of a Critically Ill Patient with Disseminated Coccidioidomycosis, Using Adjunctive Interferon-γ. Clin. Infect. Dis. 2004, 38, 910–912. [Google Scholar] [CrossRef]
- Duplessis, C.A.; Tilley, D.; Bavaro, M.; Hale, B.; Holland, S.M. Two cases illustrating successful adjunctive interferon-γ immunotherapy in refractory disseminated coccidioidomycosis. J. Infect. 2011, 63, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.; Thauland, T.J.; Huang, A.Y.; Bun, C.; Fitzwater, S.; Krogstad, P.; Douine, E.D.; Nelson, S.F.; Lee, H.; Garcia-Lloret, M.I.; et al. Disseminated Coccidioidomycosis Treated with Interferon-γ and Dupilumab. N. Engl. J. Med. 2020, 382, 2337–2343. [Google Scholar] [CrossRef]
- Madariaga, L.; Amurrio, C.; Martín, G.; García-Cebrian, F.; Bicandi, J.; Lardelli, P.; Suarez, M.D.; Cisterna, R. Detection of anti-interferon-gamma autoantibodies in subjects infected by Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998, 2, 62–68. [Google Scholar]
- Doffinger, R.; Helbert, M.R.; Morales, G.B.; Yang, K.; Dupuis, S.; Ceron-Gutierrez, L.; Espitia-Pinzon, C.; Barnes, N.; Bothamley, G.; Casanova, J.; et al. Autoantibodies to Interferon-γ in a Patient with Selective Susceptibility to Mycobacterial Infection and Organ-Specific Autoimmunity. Clin. Infect. Dis. 2004, 38, e10–e14. [Google Scholar] [CrossRef]
- Höflich, C.; Sabat, R.; Rosseau, S.; Temmesfeld, B.; Slevogt, H.; Döcke, W.D.; Grütz, G.; Meisel, C.; Halle, E.; Göbel, U.B.; et al. Naturally occurring anti–IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 2004, 103, 673–675. [Google Scholar] [CrossRef]
- Kampmann, B.; Hemingway, C.; Stephens, A.; Davidson, R.; Goodsall, A.; Anderson, S.; Nicol, M.; Schölvinck, E.; Relman, D.; Waddell, S.; et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. J. Clin. Investig. 2005, 115, 2480–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.Y.; Ding, L.; Brown, M.R.; Lantz, L.; Gay, T.; Cohen, S.; Martyak, L.A.; Kubak, B.; Holland, S.M. Anti-IFN-γ Autoantibodies in Disseminated Nontuberculous Mycobacterial Infections. J. Immunol. 2005, 175, 4769–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koya, T.; Tsubata, C.; Kagamu, H.; Koyama, K.-I.; Hayashi, M.; Takada, T.; Gejyo, F.; Kuwabara, K.; Itoh, T.; Tanabe, Y. Anti-interferon-γ autoantibody in a patient with disseminated Mycobacterium avium complex. J. Infect. Chemother. 2009, 15, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.K.; Burbelo, P.D.; Chetchotisakd, P.; Suputtamongkol, Y.; Kiertiburanakul, S.; Shaw, P.A.; Kirk, J.L.; Jutivorakool, K.; Zaman, R.; Ding, L.; et al. Adult-Onset Immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 2012, 367, 725–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongkulab, P.; Wipasa, J.; Chaiwarith, R.; Supparatpinyo, K. Autoantibody to Interferon-gamma Associated with Adult-Onset Immunodeficiency in Non-HIV Individuals in Northern Thailand. PLoS ONE 2013, 8, e76371. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.; Lau, S.K.; Yuen, K.Y.; Woo, P.C. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg. Microbes Infect. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Wipasa, J.; Chaiwarith, R.; Chawansuntati, K.; Praparattanapan, J.; Rattanathammethee, K.; Supparatpinyo, K. Characterization of anti-interferon-γ antibodies in HIV-negative immunodeficient patients infected with unusual intracellular microorganisms. Exp. Biol. Med. 2018, 243, 621–626. [Google Scholar] [CrossRef]
- Su, S.-S.; Zhang, S.-N.; Ye, J.-R.; Xu, L.-N.; Lin, P.-C.; Xu, H.-Y.; Wu, Q.; Li, Y.-P. Disseminated Talaromyces marneffei And Mycobacterium avium Infection Accompanied Sweet’s Syndrome In A Patient With Anti-Interferon-γ Autoantibodies: A Case Report. Infect. Drug Resist. 2019, 12, 3189–3195. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Qiu, Y.; Tang, S.; Zhang, J.; Pan, M.; Zhong, X. Characterization of Anti–Interferon-γ Antibodies in HIV-Negative Patients Infected With Disseminated Talaromyces marneffei and Cryptococcosis. Open Forum Infect. Dis. 2019, 6, ofz208. [Google Scholar] [CrossRef] [Green Version]
- Wongkamhla, T.; Chongtrakool, P.; Jitmuang, A. A case report of Talaromyces marneffei Oro-pharyngo-laryngitis: A rare manifestation of Talaromycosis. BMC Infect. Dis. 2019, 19, 1034. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Si, L.; Li, Y.; Zhang, J.; Deng, J.; Bai, J.; Li, M.; He, Z. Talaromyces marneffei infection relapse presenting as osteolytic destruction followed by suspected nontuberculous mycobacterium infection during 6 years of follow-up: A case update. Int. J. Infect. Dis. 2020, 93, 208–210. [Google Scholar] [CrossRef]
- Jin, W.; Liu, J.; Chen, K.; Shen, L.; Zhou, Y.; Wang, L. Coinfection by Talaromyces marneffei and Mycobacterium abscessus in a human immunodeficiency virus-negative patient with anti-interferon-γ autoantibody: A case report. J. Int. Med. Res. 2021, 49, 0300060520976471. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-M.; Li, Z.-T.; Li, S.-Q.; Guan, W.-J.; Qiu, Y.; Lei, Z.-Y.; Zhan, Y.-Q.; Zhou, H.; Lin, S.; Wang, X.; et al. Clinical findings of Talaromyces marneffei infection among patients with anti-interferon-γ immunodeficiency: A prospective cohort study. BMC Infect. Dis. 2021, 21, 587. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Yang, Z.; Qiu, Y.; Zeng, W.; Liu, G.; Zhang, J. Talaromyces Marneffei Infection in Lung Cancer Patients with Positive AIGAs: A Rare Case Report. Infect. Drug Resist. 2021, 14, 5005–5013. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Pan, M.; Yang, Z.; Zeng, W.; Zhang, H.; Li, Z.; Zhang, J. Talaromyces marneffei and Mycobacterium tuberculosis co-infection in a patient with high titer anti-interferon-γ autoantibodies: A case report. BMC Infect. Dis. 2022, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Fang, G.; Ye, F.; Zeng, W.; Tang, M.; Wei, X.; Yang, J.; Li, Z.; Zhang, J. Pathogen spectrum and immunotherapy in patients with anti-IFN-γ autoantibodies: A multicenter retrospective study and systematic review. Front. Immunol. 2022, 13, 1051673. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.H.; Ortega-Villa, A.M.; Hunsberger, S.; Chetchotisakd, P.; Anunnatsiri, S.; Mootsikapun, P.; Rosen, L.B.; Zerbe, C.S.; Holland, S.M. Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the United States. Clin. Infect. Dis. 2020, 71, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.S.-F.; Chan, J.F.-W.; Chen, M.; Tsang, O.T.-Y.; Mok, M.Y.; Lai, R.W.-M.; Lee, R.; Que, T.-L.; Tse, H.; Li, I.W.-S.; et al. Disseminated Penicilliosis, Recurrent Bacteremic Nontyphoidal Salmonellosis, and Burkholderiosis Associated with Acquired Immunodeficiency Due to Autoantibody against Gamma Interferon. Clin. Vaccine Immunol. 2010, 17, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Kampitak, T.; Suwanpimolkul, G.; Browne, S.; Suankratay, C. Anti-interferon-γ autoantibody and opportunistic infections: Case series and review of the literature. Infection 2010, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.-W.; Yee, K.-S.; Tang, B.S.-F.; Cheng, V.C.-C.; Hung, I.F.-N.; Yuen, K.-Y. Adult-onset immunodeficiency due to anti-interferon-gamma autoantibody in mainland Chinese. Chin. Med. J. 2014, 127, 1189–1190. [Google Scholar] [PubMed]
- Chi, C.-Y.; Chu, C.-C.; Liu, J.-P.; Lin, C.-H.; Ho, M.-W.; Lo, W.-J.; Lin, P.-C.; Chen, H.-J.; Chou, C.-H.; Feng, J.-Y.; et al. Anti–IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 2013, 121, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Pithukpakorn, M.; Roothumnong, E.; Angkasekwinai, N.; Suktitipat, B.; Assawamakin, A.; Luangwedchakarn, V.; Umrod, P.; Thongnoppakhun, W.; Foongladda, S.; Suputtamongkol, Y. HLA-DRB1 and HLA-DQB1 Are Associated with Adult-Onset Immunodeficiency with Acquired Anti-Interferon-Gamma Autoantibodies. PLoS ONE 2015, 10, e0128481. [Google Scholar] [CrossRef]
- Caruso, A.; Foresti, I.; Gribaudo, G.; Bonfanti, C.; Pollara, P.; Dolei, A.; Landolfo, S.; Turano, A. Anti-interferon-gamma antibodies in sera from HIV infected patients. J. Biol. Regul. Homeost. Agents 1989, 3, 8–12. [Google Scholar] [PubMed]
- Zeng, W.; Tang, M.; Yang, M.; Fang, G.; Tang, S.; Zhang, J. Intravenous Cyclophosphamide Therapy for Anti-IFN-γ Autoantibody-Associated Talaromyces marneffei Infection. Open Forum Infect. Dis. 2022, 9, ofac612. [Google Scholar] [CrossRef]
- Ochoa, S.; Ding, L.; Kreuzburg, S.; Treat, J.; Holland, S.M.; Zerbe, C.S. Daratumumab (Anti-CD38) for Treatment of Disseminated Nontuberculous Mycobacteria in a Patient With Anti–Interferon-γ Autoantibodies. Clin. Infect. Dis. 2021, 72, 2206–2208. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Bennett, J.E.; Wickes, B.L.; Meyer, W.; Cuomo, C.A.; Wollenburg, K.R.; Bicanic, T.A.; Castañeda, E.; Chang, Y.C.; Chen, J.; et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. mSphere 2017, 2, e00357-16. [Google Scholar] [CrossRef] [Green Version]
- Hagen, F.; Lumbsch, H.T.; Arsenijevic, V.A.; Badali, H.; Bertout, S.; Billmyre, R.B.; Bragulat, M.R.; Cabañes, F.J.; Carbia, M.; Chakrabarti, A.; et al. Importance of Resolving Fungal Nomenclature: The Case of Multiple Pathogenic Species in the Cryptococcus Genus. Msphere 2017, 2, e00238-17. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-H.; England, M.R.; Salvator, H.; Anjum, S.; Park, Y.-D.; Marr, K.A.; Chu, L.A.; Govender, N.P.; Lockhart, S.R.; Desnos-Ollivier, M.; et al. Cryptococcus gattii Species Complex as an Opportunistic Pathogen: Underlying Medical Conditions Associated with the Infection. Mbio 2021, 12, e02708-21. [Google Scholar] [CrossRef] [PubMed]
- Rezai, M.S.; Khotael, G.; Kheirkhah, M.; Hedayat, T.; Geramishoar, M.M.; Mahjoub, F. Cryptococcosis and Deficiency of Interleukin12r. Pediatr. Infect. Dis. J. 2008, 27, 673. [Google Scholar] [CrossRef] [PubMed]
- Jirapongsananuruk, O.; Luangwedchakarn, V.; Niemela, J.E.; Pacharn, P.; Visitsunthorn, N.; Thepthai, C.; Vichyanond, P.; Piboonpocanun, S.; Fleisher, T.A. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac. J. Allergy Immunol. 2012, 30, 79. [Google Scholar] [PubMed]
- Sood, V.; Ramachandran, R.; Pilania, R.; Prabhakar, A.; Inamdar, N.; Pattanashetti, N.; Joshi, V.; Sharma, M.; Rawat, A.; Kohli, H.; et al. Disseminated Cryptococcosis in a Deceptively Immunocompetent Adolescent. Int. J. Rare Dis. Disord. 2019, 2, 013. [Google Scholar]
- Jo, E.K.; Kim, H.S.; Lee, M.Y.; Iseki, M.; Lee, J.H.; Song, C.H.; Park, J.K.; Hwang, T.J.; Kook, H. X-linked Hyper-IgM Syndrome Associated with Cryptosporidium parvum and Cryptococcus neoformans Infections: The First Case with Molecular Diagnosis in Korea. J. Korean Med. Sci. 2002, 17, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.; Espanol-Boren, T.; Thomas, C.; Fischer, A.; Tovo, P.; Bordigoni, P.; Resnick, I.; Fasth, A.; Baer, M.; Gomez, L.; et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 1997, 131, 47–54. [Google Scholar] [CrossRef]
- Mitsui-Sekinaka, K.; Imai, K.; Sato, H.; Tomizawa, D.; Kajiwara, M.; Nagasawa, M.; Morio, T.; Nonoyama, S. Clinical features and hematopoietic stem cell transplantations for CD40 ligand deficiency in Japan. J. Allergy Clin. Immunol. 2015, 136, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- França, T.T.; Leite, L.F.B.; Maximo, T.A.; Lambert, C.G.L.; Zurro, N.B.; Forte, W.C.N.; Condino-Neto, A. A Novel de Novo Mutation in the CD40 Ligand Gene in a Patient With a Mild X-Linked Hyper-IgM Phenotype Initially Diagnosed as CVID: New Aspects of Old Diseases. Front. Pediatr. 2018, 6, 130. [Google Scholar] [CrossRef]
- Romani, L.; Williamson, P.R.; Di Cesare, S.; Di Matteo, G.; De Luca, M.; Carsetti, R.; Figà-Talamanca, L.; Cancrini, C.; Rossi, P.; Finocchi, A. Cryptococcal Meningitis and Post-Infectious Inflammatory Response Syndrome in a Patient With X-Linked Hyper IgM Syndrome: A Case Report and Review of the Literature. Front. Immunol. 2021, 12, 2757. [Google Scholar] [CrossRef]
- Malheiro, L.; Lazzara, D.; Xerinda, S.; Pinheiro, M.D.; Sarmento, A. Cryptococcal meningoencephalitis in a patient with hyper immunoglobulin M (IgM) syndrome: A case report. BMC Res. Notes 2014, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Al-Banyan, M.; Alqahtani, A.; Sheikh, F.; Khaliq, A.M.R.; Al Rayes, H.; Al-Tarifi, A.; Al-Saud, B.; Arnaout, R.K. Cryptococcal Meningoencephalitis in a Patient with Hyper IgM Syndrome Due to CD40 Deficiency: Case Report and Literature Review. Am. J. Infect. Dis. 2019, 15, 24–28. [Google Scholar] [CrossRef]
- Françoise, U.; Lafont, E.; Suarez, F.; Lanternier, F.; Lortholary, O. Disseminated Cryptococcosis in a Patient with CD40 Ligand Deficiency. J. Clin. Immunol. 2022, 42, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, K.; Kawanami, T.; Hoshina, T.; Ishimura, M.; Yamasaki, K.; Okada, S.; Kanegane, H.; Yatera, K.; Kusuhara, K. Impaired B-Cell Differentiation in a Patient With STAT1 Gain-of-Function Mutation. Front. Immunol. 2020, 11, 557521. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Gao, G.; Xing, S.; Zhou, L.; Tang, X.; Zhao, X.; An, Y. Clinical Relevance of Gain- and Loss-of-Function Germline Mutations in STAT1: A Systematic Review. Front. Immunol. 2021, 12, 654406. [Google Scholar] [CrossRef]
- Grimbacher, B.; Holland, S.M.; Gallin, J.I.; Greenberg, F.; Hill, S.C.; Malech, H.L.; Miller, J.A.; O’Connell, A.C.; Puck, J.M. Hyper-IgE Syndrome with Recurrent Infections—An Autosomal Dominant Multisystem Disorder. N. Engl. J. Med. 1999, 340, 692–702. [Google Scholar] [CrossRef]
- Holland, S.; DeLeo, F.R.; Elloumi, H.Z.; Hsu, A.P.; Uzel, G.; Brodsky, N.; Freeman, A.F.; Demidowich, A.; Davis, J.; Turner, M.L.C.; et al. STAT3 Mutations in the Hyper-IgE Syndrome. N. Engl. J. Med. 2007, 357, 1608–1619. [Google Scholar] [CrossRef]
- Rujirachun, P.; Sangwongwanich, J.; Chayakulkeeree, M. Triple infection with Cryptococcus, varicella-zoster virus, and Mycobacterium abscessus in a patient with anti-interferon-gamma autoantibodies: A case report. BMC Infect. Dis. 2020, 20, 232. [Google Scholar] [CrossRef]
- Chetchotisakd, P.; Anunnatsiri, S.; Nithichanon, A.; Lertmemongkolchai, G. Cryptococcosis in Anti-Interferon-Gamma Autoantibody-Positive Patients: A Different Clinical Manifestation from HIV-Infected Patients. Jpn. J. Infect. Dis. 2017, 70, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Rosen, L.B.; Freeman, A.F.; Yang, L.M.; Jutivorakool, K.; Olivier, K.N.; Angkasekwinai, N.; Suputtamongkol, Y.; Bennett, J.E.; Pyrgos, V.; Williamson, P.R.; et al. Anti–GM-CSF Autoantibodies in Patients with Cryptococcal Meningitis. J. Immunol. 2013, 190, 3959–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saijo, T.; Chen, J.; Chen, S.C.A.; Rosen, L.B.; Yi, J.; Sorrell, T.; Bennett, J.E.; Holland, S.M.; Browne, S.K.; Kwon-Chung, K.J. Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies Are a Risk Factor for Central Nervous System Infection by Cryptococcus gattii in Otherwise Immunocompetent Patients. Mbio 2014, 5, e00912-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, B.C.; Nakata, K.; Bonella, F.; Campo, I.; Griese, M.; Hamilton, J.; Wang, T.; Morgan, C.; Cottin, V.; McCarthy, C. Pulmonary alveolar proteinosis. Nat. Rev. Dis. Prim. 2019, 5, 16. [Google Scholar] [CrossRef]
- Rosen, S.H.; Castleman, B.; Liebow, A.A.; Enzinger, F.M.; Hunt, R.T.N. Pulmonary Alveolar Proteinosis. N. Engl. J. Med. 1958, 258, 1123–1142. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, W.A.; Campbell, R.A.; Edwards, M.J. Pulmonary alveolar proteinosis and pulmonary cryptococcosis in an adolescent boy. J. Pediatr. 1972, 80, 450–456. [Google Scholar] [CrossRef]
- Lee, Y.C.G.; Chew, G.T.; Robinson, B.W.S. Pulmonary and meningeal cryptococcosis in pulmonary alveolar proteinosis. Aust. N. Z. J. Med. 1999, 29, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Punatar, A.D.; Kusne, S.; Blair, J.E.; Seville, M.T.; Vikram, H.R. Opportunistic infections in patients with pulmonary alveolar proteinosis. J. Infect. 2012, 65, 173–179. [Google Scholar] [CrossRef]
- Ataya, A.; Knight, V.; Carey, B.C.; Lee, E.; Tarling, E.J.; Wang, T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front. Immunol. 2021, 12, 4958. [Google Scholar] [CrossRef] [PubMed]
- Berthoux, C.; Mailhe, M.; Vély, F.; Gauthier, C.; Mège, J.-L.; Lagier, J.-C.; Melenotte, C. Granulocyte Macrophage Colony-Stimulating Factor-Specific Autoantibodies and Cerebral Nocardia With Pulmonary Alveolar Proteinosis. Open Forum Infect. Dis. 2021, 8, ofaa612. [Google Scholar] [CrossRef]
- Rosen, L.B.; Pereira, N.R.; Figueiredo, C.; Fiske, L.C.; Ressner, R.A.; Hong, J.C.; Gregg, K.S.; Henry, T.L.; Pak, K.J.; Baumgarten, K.L.; et al. Nocardia-Induced Granulocyte Macrophage Colony-Stimulating Factor Is Neutralized by Autoantibodies in Disseminated/Extrapulmonary Nocardiosis. Clin. Infect. Dis. 2015, 60, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Garrido, L.; Mata-Essayag, S.; de Capriles, C.H.; Landaeta, M.E.; Pacheco, I.; Fuentes, Z. Pulmonary histoplasmosis: Unusual histopathologic findings. Pathol.-Res. Pract. 2006, 202, 373–378. [Google Scholar] [CrossRef]
- Edman, J.C.; Kovacs, J.A.; Masur, H.; Santi, D.V.; Elwood, H.J.; Sogin, M.L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the Fungi. Nature 1988, 334, 519–522. [Google Scholar] [CrossRef]
- Cissé, O.H.; Hauser, P.M. Genomics and evolution of Pneumocystis species. Infect. Genet. Evol. 2018, 65, 308–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meer, G.; Brug, S.L. Infection à Pneumocystis chez l’homme et chez les animaux. Ann. Soc. Belg Med. Trop. 1942, 22, 301–309. [Google Scholar]
- Sternberg, S.D.; Rosenthal, J.H. Interstitial plasma cell pneumonia. J. Pediatr. 1955, 46, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.P.; Montgomery, J.R.; South, M.A.; Wilson, R. A Special Report: Four-year Study of a Boy with Combined Immune Deficiency Maintained in Strict Reverse Isolation from Birth. Pediatr. Res. 1977, 11, 63–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leggiadro, R.J.; Winkelstein, J.A.; Hughes, W.T. Prevalence of Pneumocystis carinii pneumonitis in severe combined immunodeficiency. J. Pediatr. 1981, 99, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, D.; Delage, G.; Brochu, P.; Michaud, J.; Jasmin, G.; Joncas, J.H.; Lapointe, N. Pathogens in children with severe combined immune deficiency disease or AIDS. Can. Med. Assoc. J. 1986, 135, 33–38. [Google Scholar]
- Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men--New York City and California. MMWR Morb. Mortal. Wkly. Rep. 1981, 30, 305–308.
- Gottlieb, M.S.; Schroff, R.; Schanker, H.M.; Weisman, J.D.; Fan, P.T.; Wolf, R.A.; Saxon, A. Pneumocystis carinii Pneumonia and Mucosal Candidiasis in Previously Healthy Homosexual Men. N. Engl. J. Med. 1981, 305, 1425–1431. [Google Scholar] [CrossRef]
- Siegal, F.P.; Lopez, C.; Hammer, G.S.; Brown, A.E.; Kornfeld, S.J.; Gold, J.; Hassett, J.; Hirschman, S.Z.; Cunningham-Rundles, C.; Adelsberg, B.R.; et al. Severe Acquired Immunodeficiency in Male Homosexuals, Manifested by Chronic Perianal Ulcerative Herpes Simplex Lesions. N. Engl. J. Med. 1981, 305, 1439–1444. [Google Scholar] [CrossRef]
- Pifer, L.L.; Hughes, W.T.; Stagno, S.; Woods, D. Pneumocystis carinii Infection: Evidence for High Prevalence in Normal and Immunosuppressed Children. Pediatrics 1978, 61, 35–41. [Google Scholar] [CrossRef]
- Vargas, S.L.; Hughes, W.T.; Santolaya, M.E.; Ulloa, A.V.; Ponce, C.A.; Cabrera, C.E.; Cumsille, F.; Gigliotti, F. Search for Primary Infection by Pneumocystis carinii in a Cohort of Normal, Healthy Infants. Clin. Infect. Dis. 2001, 32, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, C.; Rueda, Z.V. Transmission and Colonization of Pneumocystis jirovecii. J. Fungi 2021, 7, 979. [Google Scholar] [CrossRef] [PubMed]
- Berrington, J.; Flood, T.J.; Abinun, M.; Galloway, A.; Cant, A.J. Unsuspected Pneumocystis carinii pneumonia at presentation of severe primary immunodeficiency. Arch. Dis. Child. 2000, 82, 144–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, S.; Etzioni, A. MHC class I and II deficiencies. J. Allergy Clin. Immunol. 2014, 134, 269–275. [Google Scholar] [CrossRef]
- Hsu, A.P. Not too little, not too much: The impact of mutation types in Wiskott-Aldrich syndrome and RAC2 patients. Clin. Exp. Immunol. 2023. [Google Scholar] [CrossRef]
- Hirbod-Mobarakeh, A.; Aghamohammadi, A.; Rezaei, N. Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: From bedside to bench and back again. Expert Rev. Clin. Immunol. 2014, 10, 91–105. [Google Scholar] [CrossRef]
- Cetin, E.; Lee, E.Y. Pneumocystis carinii pneumonia in an infant with hypogammaglobulinemia. Pediatr. Radiol. 2006, 37, 329. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Yuan, J.X.; Qin, L.; Tang, L.F. Pulmonary Alveolar Proteinosis Due to Pneumocystis carinii in Type 1 Hyper-IgM Syndrome: A Case Report. Front. Pediatr. 2020, 8, 264. [Google Scholar] [CrossRef]
- Elenga, N.; Dulorme, F.; Basile, G.D.S.; Mahamat, A. Pneumocystis jiroveci Pneumonia Revealing De Novo Mutation Causing X-Linked Hyper-IgM Syndrome in an Infant Male. The First Case Reported From French Guiana. J. Pediatr. Hematol. 2012, 34, 528–530. [Google Scholar] [CrossRef]
- Leone, V.; Tommasini, A.; Andolina, M.; Runti, G.; De Vonderweid, U.; Campello, C.; Notarangelo, L.; Ventura, A. Elective bone marrow transplantation in a child with X-linked hyper-IgM syndrome presenting with acute respiratory distress syndrome. Bone Marrow Transplant. 2002, 30, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.H.; Meng, X.Y.; Bai, Z.J.; Li, Y.; Wu, S.Y. X-Linked Hyper IgM Syndrome Manifesting as Recurrent Pneumocystis jirovecii Pneumonia: A Case Report. J. Trop. Pediatr. 2020, 66, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shin, J.A.; Han, S.B.; Chung, N.-G.; Jeong, D.C. Pneumocystis jirovecii pneumonia as an initial manifestation of hyper-IgM syndrome in an infant. Medicine 2019, 98, e14559. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y.; Ma, J.; Li, C. X-linked hyper IgM syndrome with severe eosinophilia: A case report and review of the literature. BMC Pediatr. 2022, 22, 178. [Google Scholar] [CrossRef]
- Li, J.; Miao, H.; Wu, L.; Fang, Y. Interstitial pneumonia as the initial presentation in an infant with a novel mutation of CD40 ligand-associated X-linked hyper-IgM syndrome. Medicine 2020, 99, e20505. [Google Scholar] [CrossRef]
- Cunningham, C.K.; Bonville, C.A.; Ochs, H.D.; Seyama, K.; John, P.A.; Rotbart, H.A.; Weiner, L.B. Enteroviral meningoencephalitis as a complication of X-linked hyper IgM syndrome. J. Pediatr. 1999, 134, 584–588. [Google Scholar] [CrossRef]
- Milledge, J.; Kakakios, A.; Gillis, J.; Fitzgerald, D.A. Pneumocystis carinii pneumonia as a presenting feature of X-linked hyper-IgM syndrome. J. Paediatr. Child Health 2003, 39, 704–706. [Google Scholar] [CrossRef]
- Thomas, C.; Basile, G.D.S.; Le Deist, F.; Theophile, D.; Benkerrou, M.; Haddad, E.; Blanche, S.; Fischer, A. Correction of X-Linked Hyper-IgM Syndrome by Allogeneic Bone Marrow Transplantation. N. Engl. J. Med. 1995, 333, 426–429. [Google Scholar] [CrossRef]
- Lee, W.-I.; Torgerson, T.R.; Schumacher, M.J.; Yel, L.; Zhu, Q.; Ochs, H.D. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 2005, 105, 1881–1890. [Google Scholar] [CrossRef]
- Pickell, J.A.; Gallagher, J.L.; Chang, Y.; Patel, N.C. Normal CD40L Expression in an Infant with X-Linked Hyper IgM Syndrome By Gene Sequencing. J. Allergy Clin. Immunol. 2015, 135, AB12. [Google Scholar] [CrossRef]
- Dupuis-Girod, S.; Corradini, N.; Hadj-Rabia, S.; Fournet, J.-C.; Faivre, L.; Le Deist, F.; Durand, P.; Döffinger, R.; Smahi, A.; Israel, A.; et al. Osteopetrosis, Lymphedema, Anhidrotic Ectodermal Dysplasia, and Immunodeficiency in a Boy and Incontinentia Pigmenti in His Mother. Pediatrics 2002, 109, e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salt, B.H.; Niemela, J.E.; Pandey, R.; Hanson, E.P.; Deering, R.P.; Quinones, R.; Jain, A.; Orange, J.S.; Gelfand, E.W. IKBKG (nuclear factor-κB essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J. Allergy Clin. Immunol. 2008, 121, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Carlberg, V.M.; Lofgren, S.M.; Mann, J.A.; Austin, J.P.; Nolt, D.; Shereck, E.B.; Saldaña, B.D.; Zonana, J.; Krol, A.L. Hypohidrotic Ectodermal Dysplasia, Osteopetrosis, Lymphedema, and Immunodeficiency in an Infant with Multiple Opportunistic Infections. Pediatr. Dermatol. 2014, 31, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.; Van Wengen, A.; Hoeve, M.A.; Dam, M.T.; Van Der Burg, M.; Van Dongen, J.; van de Vosse, E.; Van Tol, M.; Bredius, R.; Ottenhoff, T.H.; et al. The Same IκBα Mutation in Two Related Individuals Leads to Completely Different Clinical Syndromes. J. Exp. Med. 2004, 200, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Maffucci, P.; Filion, C.A.; Boisson, B.; Itan, Y.; Shang, L.; Casanova, J.-L.; Cunningham-Rundles, C. Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency. Front. Immunol. 2016, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Mandola, A.B.; Sharfe, N.; Nagdi, Z.; Dadi, H.; Vong, L.; Merico, D.; Ngan, B.; Reid, B.; Roifman, C.M. Combined immunodeficiency caused by a novel homozygous NFKB1 mutation. J. Allergy Clin. Immunol. 2021, 147, 727–733.e2. [Google Scholar] [CrossRef]
- Boutboul, D.; Kuehn, H.S.; Van De Wyngaert, Z.; Niemela, J.E.; Callebaut, I.; Stoddard, J.; Lenoir, C.; Barlogis, V.; Farnarier, C.; Vely, F.; et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J. Clin. Investig. 2018, 128, 3071–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, M.; Morio, T. AIOLOS Variants Causing Immunodeficiency in Human and Mice. Front. Immunol. 2022, 13, 1502. [Google Scholar] [CrossRef]
- González-Lara, M.F.; Wisniowski-Yáñez, A.; Pérez-Patrigeon, S.; Hsu, A.P.; Holland, S.M.; Cuellar-Rodríguez, J.M. Pneumocystis jiroveci pneumonia and GATA2 deficiency: Expanding the spectrum of the disease. J. Infect. 2017, 74, 425–427. [Google Scholar] [CrossRef]
- Gaspar, H.B.; Ferrando, M.; Caragol, I.; Hernandez, M.; Bertran, J.M.; De Gracia, X.; Lester, T.; Kinnon, C.; Ashton, E.; Espanol, T. Kinase mutant Btk results in atypical X-linked agammaglobulinaemia phenotype. Clin. Exp. Immunol. 2000, 120, 346–350. [Google Scholar] [CrossRef]
- Jongco, A.M.; Gough, J.D.; Sarnataro, K.; Rosenthal, D.W.; Moreau, J.; Ponda, P.; Bonagura, V.R. X-linked agammaglobulinemia presenting as polymicrobial pneumonia, including Pneumocystis jirovecii. Ann. Allergy Asthma Immunol. 2014, 112, 74–75.e2. [Google Scholar] [CrossRef] [Green Version]
- Brunet, B.A.; Rodriguez, R. Unusual presentation of combined immunodeficiency in a child with homozygous DOCK8 mutation. Ann. Allergy Asthma Immunol. 2017, 119, 294–295. [Google Scholar] [CrossRef]
- Denning, D.W.; Cadranel, J.; Beigelman-Aubry, C.; Ader, F.; Chakrabarti, A.; Blot, S.; Ullmann, A.J.; Dimopoulos, G.; Lange, C.; Dimopoulos, C.L. on behalf of the European Society for Clinical Microbiology and Infectious Diseases and European Respiratory Society. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur. Respir. J. 2016, 47, 45–68. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latgé, J.-P. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef] [Green Version]
- Li, B.C.; Huh, S.M.; Prieto, M.D.; Hong, G.; Schwarz, C.; Moss, R.B.; Quon, B.S. Biomarkers for the Diagnosis of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 1909–1930.e4. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Khan, A.; Aggarwal, A.N.; Gupta, D. Link between CFTR mutations and ABPA: A systematic review and meta-analysis. Mycoses 2011, 55, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Lebecque, P.; Pepermans, X.; Marchand, E.; Leonard, A.; Leal, T. ABPA in adulthood: A CFTR-related disorder. Thorax 2011, 66, 540–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaid, M.; Kaur, S.; Sambatakou, H.; Madan, T.; Denning, D.W.; Sarma, P.U. Distinct alleles of mannose-binding lectin (MBL) and surfactant proteins A (SP-A) in patients with chronic cavitary pulmonary aspergillosis and allergic bronchopulmonary aspergillosis. Clin. Chem. Lab. Med. 2007, 45, 183–186. [Google Scholar] [CrossRef]
- Carvalho, A.; Pasqualotto, A.C.; Pitzurra, L.; Romani, L.; Denning, D.W.; Rodrigues, F. Polymorphisms in Toll-Like Receptor Genes and Susceptibility to Pulmonary Aspergillosis. J. Infect. Dis. 2008, 197, 618–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overton, N.L.D.; Brakhage, A.A.; Thywißen, A.; Denning, D.W.; Bowyer, P. Mutations in EEA1 are associated with allergic bronchopulmonary aspergillosis and affect phagocytosis of Aspergillus fumigatus by human macrophages. PLoS ONE 2018, 13, e0185706. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, N.; Datta, K.; Askin, F.B.; Staab, J.F.; Marr, K.A. Cystic Fibrosis Transmembrane Conductance Regulator Regulates Epithelial Cell Response to Aspergillus and Resultant Pulmonary Inflammation. Am. J. Respir. Crit. Care Med. 2012, 185, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Hartl, D.; Griese, M.; Kappler, M.; Zissel, G.; Reinhardt, D.; Rebhan, C.; Schendel, D.J.; Krauss-Etschmann, S. Pulmonary TH2 response in Pseudomonas aeruginosa–infected patients with cystic fibrosis. J. Allergy Clin. Immunol. 2006, 117, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, A.P.; Hutchinson, P.S.; Albers, G.M.; Consolino, J.; Smick, J.; Kurup, V.P. Increased sensitivity to IL-4 in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 2004, 59, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Roos, D. Chronic Granulomatous Disease. Methods Mol. Biol. 2019, 1982, 531–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinh, D.C.; Shea, Y.R.; Sugui, J.A.; Parrilla-Castellar, E.R.; Freeman, A.F.; Campbell, J.W.; Pittaluga, S.; Jones, P.A.; Zelazny, A.; Kleiner, D.; et al. Invasive Aspergillosis Due to Neosartorya udagawae. Clin. Infect. Dis. 2009, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Hasui, M.; The Study Group of Phagocyte Disorders of Japan. Chronic granulomatous disease in Japan: Incidence and natural history. Pediatr. Int. 1999, 41, 589–593. [Google Scholar] [CrossRef]
- Soler-Palacin, P.; Margareto, C.; Llobet, P.; Asensio, O.; Hernandez-Gonzalez, M.; Caragol, I.; Español, T. Chronic granulomatous disease in pediatric patients: 25 years of experience. Allergol. Immunopathol. 2007, 35, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Vinh, D.C.; Shea, Y.R.; Jones, P.A.; Freeman, A.F.; Zelazny, A.; Holland, S.M. Chronic Invasive Aspergillosis caused by Aspergillus viridinutans. Emerg. Infect. Dis. 2009, 15, 1292–1294. [Google Scholar] [CrossRef]
- Sabino, R.; Ferreira, J.A.; Moss, R.B.; Valente, J.; Veríssimo, C.; Carolino, E.; Clemons, K.V.; Everson, C.; Banaei, N.; Penner, J.; et al. Molecular epidemiology of Aspergillus collected from cystic fibrosis patients. J. Cyst. Fibros. 2015, 14, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Talbot, J.J.; Barrs, V.R. One-health pathogens in the Aspergillus viridinutans complex. Med. Mycol. 2018, 56, 1–12. [Google Scholar] [CrossRef]
- Seyedmousavi, S.; Lionakis, M.S.; Parta, M.; Peterson, S.W.; Kwon-Chung, K.J. Emerging Aspergillus Species Almost Exclusively Associated with Primary Immunodeficiencies. Open Forum Infect. Dis. 2018, 5, ofy213. [Google Scholar] [CrossRef] [Green Version]
- Winkelstein, J.A.; Marino, M.C.; Johnston, R.B.; Boyle, J.; Curnutte, J.; Gallin, J.I.; Malech, H.; Holland, S.M.; Ochs, H.; Quie, P.; et al. Chronic Granulomatous Disease: Report on a National Registry of 368 Patients. Medicine 2000, 79, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murayama, S.; Takanashi, S.; Takahashi, K.; Miyatsuka, S.; Fujita, T.; Ichinohe, S.; Koike, Y.; Kohagizawa, T.; Mori, H.; et al. Clinical features and prognoses of 23 patients with chronic granulomatous disease followed for 21 years by a single hospital in Japan. Eur. J. Pediatr. 2008, 167, 1389–1394. [Google Scholar] [CrossRef]
- Martire, B.; Rondelli, R.; Soresina, A.; Pignata, C.; Broccoletti, T.; Finocchi, A.; Rossi, P.; Gattorno, M.; Rabusin, M.; Azzari, C.; et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with Chronic Granulomatous Disease: An Italian multicenter study. Clin. Immunol. 2008, 126, 155–164. [Google Scholar] [CrossRef]
- Tavakoli, M.; Rivero-Menendez, O.; Abastabar, M.; Hedayati, M.T.; Sabino, R.; Siopi, M.; Zarrinfar, H.; Nouripour-Sisakht, S.; Lee, H.; Valadan, R.; et al. Genetic diversity and antifungal susceptibility patterns of Aspergillus nidulans complex obtained from clinical and environmental sources. Mycoses 2020, 63, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.H.; DeCarlo, E.S.; Kwon-Chung, K.J.; Malech, H.; Gallin, J.I.; Holland, S.M. Aspergillus nidulans Infection in Chronic Granulomatous Disease. Medicine 1998, 77, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Liu, H.; Barker, B.M.; Snarr, B.D.; Gravelat, F.N.; Al Abdallah, Q.; Gavino, C.; Baistrocchi, S.R.; Ostapska, H.; Xiao, T.; et al. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog. 2015, 11, e1005187. [Google Scholar] [CrossRef] [Green Version]
- Verweij, P.E.; Weemaes, C.M.; Curfs, J.H.A.J.; Bretagne, S.; Meis, J.F.G.M. Failure to Detect Circulating Aspergillus Markers in a Patient with Chronic Granulomatous Disease and Invasive Aspergillosis. J. Clin. Microbiol. 2000, 38, 3900–3901. [Google Scholar] [CrossRef] [Green Version]
- Blumental, S.; Mouy, R.; Mahlaoui, N.; Bougnoux, M.-E.; Debré, M.; Beauté, J.; Lortholary, O.; Blanche, S.; Fischer, A. Invasive Mold Infections in Chronic Granulomatous Disease: A 25-Year Retrospective Survey. Clin. Infect. Dis. 2011, 53, e159–e169. [Google Scholar] [CrossRef]
- Siddiqui, S.; Anderson, V.L.; Hilligoss, D.M.; Abinun, M.; Kuijpers, T.W.; Masur, H.; Witebsky, F.G.; Shea, Y.R.; Gallin, J.I.; Malech, H.; et al. Fulminant Mulch Pneumonitis: An Emergency Presentation of Chronic Granulomatous Disease. Clin. Infect. Dis. 2007, 45, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Ameratunga, R.; Woon, S.-T.; Vyas, J.; Roberts, S. Fulminant Mulch Pneumonitis in Undiagnosed Chronic Granulomatous Disease: A Medical Emergency. Clin. Pediatr. 2010, 49, 1143–1146. [Google Scholar] [CrossRef]
- Maaloul, I.; Ben Ameur, S.; Chabchoub, I.; Kolsi, R.; Bahloul, M.; Kamoun, T.; Bouaziz, M.; Hachicha, M. Fulminant mulch pneumonitis in a previously healthy child. Arch. Pediatr. 2018, 25, 495–496. [Google Scholar] [CrossRef]
- Cowan, J.; Pakhale, S.; Angel, J.B. Mulch pneumonitis in a patient with chronic granulomatous disease. Cmaj 2022, 194, E1510. [Google Scholar] [CrossRef] [PubMed]
- Marciano, B.E.; Spalding, C.; Fitzgerald, A.; Mann, D.; Brown, T.; Osgood, S.; Yockey, L.; Darnell, D.N.; Barnhart, L.; Daub, J.; et al. Common Severe Infections in Chronic Granulomatous Disease. Clin. Infect. Dis. 2015, 60, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Matzaraki, V.; Beno, A.; Jaeger, M.; Gresnigt, M.S.; Keur, N.; Boahen, C.; Cunha, C.; Gonçalves, S.M.; Leite, L.; Lacerda, J.F.; et al. Genetic determinants of fungi-induced ROS production are associated with the risk of invasive pulmonary aspergillosis. Redox Biol. 2022, 55, 102391. [Google Scholar] [CrossRef]
- Van De Geer, A.; Nieto-Patlán, A.; Kuhns, D.B.; Tool, A.T.; Arias, A.A.; Bouaziz, M.; De Boer, M.; Franco, J.L.; Gazendam, R.P.; Van Hamme, J.L.; et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J. Clin. Investig. 2018, 128, 3957–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belot, A.; Kasher, P.R.; Trotter, E.W.; Foray, A.-P.; Debaud, A.-L.; Rice, G.I.; Szynkiewicz, M.; Zabot, M.-T.; Rouvet, I.; Bhaskar, S.S.; et al. Protein Kinase Cδ Deficiency Causes Mendelian Systemic Lupus Erythematosus With B Cell-Defective Apoptosis and Hyperproliferation. Arthritis Rheum. 2013, 65, 2161–2171. [Google Scholar] [CrossRef] [Green Version]
- Neehus, A.-L.; Moriya, K.; Nieto-Patlán, A.; Le Voyer, T.; Lévy, R.; Özen, A.; Karakoc-Aydiner, E.; Baris, S.; Yildiran, A.; Altundag, E.; et al. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J. Exp. Med. 2021, 218, e20210501. [Google Scholar] [CrossRef]
- Neehus, A.-L.; Tuano, K.; Le Voyer, T.; Nandiwada, S.L.; Murthy, K.; Puel, A.; Casanova, J.-L.; Chinen, J.; Bustamante, J. Chronic Granulomatous Disease-Like Presentation of a Child with Autosomal Recessive PKCδ Deficiency. J. Clin. Immunol. 2022, 42, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Arias, A.A.; Vogt, G.; Picard, C.; Galicia, L.B.; Prando, C.; Grant, A.V.; Marchal, C.C.; Hubeau, M.; Chapgier, A.; et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat. Immunol. 2011, 12, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Lowe, J.S.; Anderson, P.G. Chapter 10-Respiratory System. In Stevens & Lowe’s Human Histology, 4th ed.; Lowe, J.S., Anderson, P.G., Eds.; Mosby: Philadelphia, PA, USA, 2015; pp. 166–185. [Google Scholar] [CrossRef]
- Takemura, Y.; Goodson, P.; Bao, H.F.; Jain, L.; Helms, M.N. Rac1-mediated NADPH oxidase release of O2− regulates epithelial sodium channel activity in the alveolar epithelium. Am. J. Physiol. Cell Mol. Physiol. 2010, 298, L509–L520. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.-K.; Lu, X.; Li, X.; Sun, Q.-Y.; Su, X.; Song, Y.; Sun, H.-M.; Shi, Y. Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2755–2764. [Google Scholar] [CrossRef] [PubMed]
- Zysman-Colman, Z.N.; Kaspy, K.R.; Alizadehfar, R.; NyKamp, K.R.; Zariwala, M.A.; Knowles, M.R.; Vinh, D.C.; Shapiro, A.J. Nasal Nitric Oxide in Primary Immunodeficiency and Primary Ciliary Dyskinesia: Helping to Distinguish Between Clinically Similar Diseases. J. Clin. Immunol. 2019, 39, 216–224. [Google Scholar] [CrossRef]
- Sehgal, I.S.; Dhooria, S.; Bal, A.; Agarwal, R. Allergic bronchopulmonary aspergillosis in an adult with Kartagener syndrome. BMJ Case Rep. 2015, 2015, bcr2015211493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allaer, L.; Lejeune, S.; Mordacq, C.; Deschildre, A.; Thumerelle, C. Primary ciliary dyskinesia and fungal infections: Two cases of allergic bronchopulmonary aspergillosis in children. Pediatr. Pulmonol. 2022, 57, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Shoemark, A.; MacNeill, S.J.; Bhaludin, B.; Rogers, A.; Bilton, D.; Hansell, D.M.; Wilson, R.; Loebinger, M.R. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 2016, 48, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.B.K.R.; McGrogan, P.; Flood, T.J.; Gennery, A.R.; Morton, L.; Thrasher, A.; Goldblatt, D.; Parker, L.; Cant, A.J. Special Article: Chronic granulomatous disease in the United Kingdom and Ireland: A comprehensive national patient-based registry. Clin. Exp. Immunol. 2008, 152, 211–218. [Google Scholar] [CrossRef]
- Silliman, C.C.; Lawellin, D.W.; Lohr, J.A.; Rodgers, B.M.; Donowitz, L.G. Paecilomyces lilacinus infection in a child with chronic granulomatous disease. J. Infect. 1992, 24, 191–195. [Google Scholar] [CrossRef]
- Wang, S.-M.; Shieh, C.-C.; Liu, C.-C. Successful treatment of Paecilomyces variotii splenic abscesses: A rare complication in a previously unrecognized chronic granulomatous disease child. Diagn. Microbiol. Infect. Dis. 2005, 53, 149–152. [Google Scholar] [CrossRef]
- Lemaigre, C.; Suarez, F.; Martellosio, J.-P.; Barbarin, C.; Brunet, K.; Chomel, J.C.; Hainaut, E.; Rammaert, B.; Roblot, F.; Torregrosa-Diaz, J.M. Late Onset of Chronic Granulomatous Disease Revealed by Paecilomyces lilacinus Cutaneous Infection. J. Clin. Immunol. 2022, 42, 60–63. [Google Scholar] [CrossRef]
- De Ravin, S.S.; Challipalli, M.; Anderson, V.; Shea, Y.R.; Marciano, B.; Hilligoss, D.; Marquesen, M.; DeCastro, R.; Liu, Y.-C.; Sutton, D.A.; et al. Geosmithia argillacea: An Emerging Cause of Invasive Mycosis in Human Chronic Granulomatous Disease. Clin. Infect. Dis. 2011, 52, e136–e143. [Google Scholar] [CrossRef]
- Rawat, A.; Vignesh, P.; Sharma, A.; Shandilya, J.K.; Sharma, M.; Suri, D.; Gupta, A.; Gautam, V.; Ray, P.; Rudramurthy, S.M.; et al. Infection Profile in Chronic Granulomatous Disease: A 23-Year Experience from a Tertiary Care Center in North India. J. Clin. Immunol. 2017, 37, 319–328. [Google Scholar] [CrossRef] [PubMed]
- De Ravin, S.S.; Parta, M.; Sutton, D.A.; Wickes, B.L.; Thompson, E.H.; Wiederhold, N.P.; Nakasone, K.K.; Alimchandani, M.; Oconnell, A.; Notarangelo, L.; et al. Paravertebral Mushroom: Identification of a Novel Species of Phellinus as a Human Pathogen in Chronic Granulomatous Disease. J. Clin. Microbiol. 2014, 52, 2726–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigemura, T.; Nakazawa, Y.; Amano, Y.; Sudo, A.; Watanabe, M.; Kobayashi, M.; Koike, K.; Agematsu, K.; Nishimura, K. Subcutaneous abscess due to the basidiomycete Phellinus mori in a patient with chronic granulomatous disease. Infection 2015, 43, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Haidar, G.; Zerbe, C.S.; Cheng, M.; Zelazny, A.M.; Holland, S.M.; Sheridan, K.R. Phellinus species: An emerging cause of refractory fungal infections in patients with X-linked chronic granulomatous disease. Mycoses 2017, 60, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hek, L.G.V.; Verweij, P.E.; Weemaes, C.M.; van Dalen, R.; Yntema, J.-B.; Meis, J.F. Successful Treatment with Voriconazole of Invasive Aspergillosis in Chronic Granulomatous Disease. Am. J. Respir. Crit. Care Med. 1998, 157, 1694–1696. [Google Scholar] [CrossRef]
- Emmendörffer, A.; Lohmann-Matthes, M.-L.; Roesler, J. Kinetics of transfused neutrophils in peripheral blood and BAL fluid of a patient with variant X-linked chronic granulomatous disease. Eur. J. Haematol. 1991, 47, 246–252. [Google Scholar] [CrossRef]
- Marciano, B.E.; Allen, E.S.; Conry-Cantilena, C.; Kristosturyan, E.; Klein, H.G.; Fleisher, T.A.; Holland, S.M.; Malech, H.; Rosenzweig, S.D. Granulocyte transfusions in patients with chronic granulomatous disease and refractory infections: The NIH experience. J. Allergy Clin. Immunol. 2017, 140, 622–625. [Google Scholar] [CrossRef] [Green Version]
- Bielorai, B.; Toren, A.; Wolach, B.; Mandel, M.; Golan, H.; Neumann, Y.; Kaplinisky, C.; Weintraub, M.; Keller, N.; Amariglio, N.; et al. Successful treatment of invasive aspergillosis in chronic granulomatous disease by granulocyte transfusions followed by peripheral blood stem cell transplantation. Bone Marrow Transplant. 2000, 26, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Borge, J.P.D.; Theobald, M.N.; DeCastro, N.R.; Malech, H.L.; Leitman, S.; Kang, E.M. Successful Control of Preexistent Active Infection by Granulocyte Transfusions During Conditioning Induced Cytopenia In Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Stem Cell Transplant. Blood 2010, 116, 1329–1339. [Google Scholar] [CrossRef]
- Arnold, D.E.; Chellapandian, D.; Parikh, S.; Mallhi, K.; Marsh, R.A.; Heimall, J.R.; Grossman, D.; Chitty-Lopez, M.; Murguia-Favela, L.; Gennery, A.R.; et al. Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy. J. Clin. Immunol. 2022, 42, 1026–1035. [Google Scholar] [CrossRef]
- Ozsahin, H.; von Planta, M.; Müller, I.; Steinert, H.C.; Nadal, D.; Lauener, R.; Tuchschmid, P.; Willi, U.V.; Ozsahin, M.; Crompton, N.E.; et al. Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B. Blood 1998, 92, 2719–2724. [Google Scholar] [CrossRef] [PubMed]
- Dedieu, C.; Landwehr-Kenzel, S.; Thee, S.; Oevermann, L.; Voigt, S.; Marggraf, K.; Schulte, J.; Lau, S.; Roesler, J.; Kuehl, J.-S.; et al. Hematopoietic Stem Cell Transplantation Cures Therapy-refractory Aspergillosis in Chronic Granulomatous Disease. Pediatr. Infect. Dis. J. 2021, 40, 649–654. [Google Scholar] [CrossRef]
- Shamberger, R.C.; Wohl, M.E.; Perez-Atayde, A.; Hendren, W.H. Pneumatocele complicating hyperimmunoglobulin E syndrome (Job’s syndrome). Ann. Thorac. Surg. 1992, 54, 1206–1208. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.A.; Salhany, K.E.; Lebel, E.; Bavaria, J.E.; Kaiser, L.R. Fungal pulmonary abscess in an adult secondary to hyperimmunoglobulin E (Job’s) syndrome. Ann. Thorac. Surg. 1995, 59, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Santambrogio, L.; Nosotti, M.; Pavoni, G.; Harte, M.; Pietogrande, M.C. Pneumatocele Complicated by Fungal Lung Abscess in Job’s Syndrome: Successful Lobectomy with the Aid of Videothoracoscopy. Scand. Cardiovasc. J. 1997, 31, 177–179. [Google Scholar] [CrossRef]
- Van Der Meer, J.W.M.; Bont, L.; Verhage, J. Aspergillus Infection in Patients with Hyperimmunoglobulin E Syndrome. Clin. Infect. Dis. 1998, 27, 1337. [Google Scholar] [CrossRef]
- Chandesris, M.-O.; Melki, I.; Natividad, A.; Puel, A.; Fieschi, C.; Yun, L.; Thumerelle, C.; Oksenhendler, E.; Boutboul, D.; Thomas, C.; et al. Autosomal Dominant STAT3 Deficiency and Hyper-IgE Syndrome. Medicine 2012, 91, e1–e19. [Google Scholar] [CrossRef] [Green Version]
- Duréault, A.; Tcherakian, C.; Poiree, S.; Catherinot, E.; Danion, F.; Jouvion, G.; Bougnoux, M.E.; Mahlaoui, N.; Givel, C.; Castelle, M.; et al. Spectrum of Pulmonary Aspergillosis in Hyper-IgE Syndrome with Autosomal-Dominant STAT3 Deficiency. J. Allergy Clin. Immunol. Pract. 2019, 7, 1986–1995.e3. [Google Scholar] [CrossRef]
- Kasuga, K.; Nakamoto, K.; Doi, K.; Kurokawa, N.; Saraya, T.; Ishii, H. Chronic pulmonary aspergillosis in a patient with hyper- IgE syndrome. Respirol. Case Rep. 2022, 10, e0887. [Google Scholar] [CrossRef]
- Paris, A.J.; Hayer, K.E.; Oved, J.H.; Avgousti, D.C.; Toulmin, S.A.; Zepp, J.A.; Zacharias, W.J.; Katzen, J.B.; Basil, M.C.; Kremp, M.M.; et al. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nature 2020, 22, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Béziat, V.; Tavernier, S.J.; Chen, Y.-H.; Ma, C.S.; Materna, M.; Laurence, A.; Staal, J.; Aschenbrenner, D.; Roels, L.; Worley, L.; et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J. Exp. Med. 2020, 217, e20191804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwerd, T.; Twigg, S.R.; Aschenbrenner, D.; Manrique, S.; Miller, K.A.; Taylor, I.B.; Capitani, M.; McGowan, S.J.; Sweeney, E.; Weber, A.; et al. A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J. Exp. Med. 2017, 214, 2547–2562. [Google Scholar] [CrossRef] [PubMed]
- Shahin, T.; Aschenbrenner, D.; Cagdas, D.; Bal, S.K.; Conde, C.D.; Garncarz, W.; Medgyesi, D.; Schwerd, T.; Karaatmaca, B.; Cetinkaya, P.G.; et al. Selective loss of function variants in IL6ST cause Hyper-IgE syndrome with distinct impairments of T-cell phenotype and function. Haematologica 2019, 104, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Zastrow, D.B.; Metcalfe, R.D.; Gartner, L.; Krause, F.; Morton, C.J.; Marwaha, S.; Fresard, L.; Huang, Y.; Zhao, C.; et al. Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. J. Allergy Clin. Immunol. 2021, 148, 585–598. [Google Scholar] [CrossRef]
- Spencer, S.; Bal, S.K.; Egner, W.; Allen, H.L.; Raza, S.I.; Ma, C.A.; Gürel, M.; Zhang, Y.; Sun, G.; Sabroe, R.A.; et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J. Exp. Med. 2019, 216, 1986–1998. [Google Scholar] [CrossRef]
- Perez, L.; Messina, F.; Negroni, R.; Arechavala, A.; Bustamante, J.; Oleastro, M.; Migaud, M.; Casanova, J.-L.; Puel, A.; Santiso, G. Inherited CARD9 Deficiency in a Patient with Both Exophiala spinifera and Aspergillus nomius Severe Infections. J. Clin. Immunol. 2020, 40, 359–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Song, Y.; Ma, Y.; Wan, Z.; Zhu, X.; Wang, X.; Li, R. Primary Cutaneous Aspergillosis in a Patient with CARD9 Deficiency and Aspergillus Susceptibility of Card9 Knockout Mice. J. Clin. Immunol. 2021, 41, 427–440. [Google Scholar] [CrossRef]
- Bortnick, R.; Wlodarski, M.; de Haas, V.; De Moerloose, B.; Dworzak, M.; Hasle, H.; Masetti, R.; Starý, J.; Turkiewicz, D.; Ussowicz, M.; et al. Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transplant. 2021, 56, 2732–2741. [Google Scholar] [CrossRef]
- Vila, A.; Dapás, J.I.; Rivero, C.V.; Bocanegra, F.; Furnari, R.F.; Hsu, A.P.; Holland, S.M. Multiple Opportunistic Infections in a Woman with GATA2 Mutation. Int. J. Infect. Dis. 2016, 54, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Vedula, R.S.; Cheng, M.P.; Ronayne, C.E.; Farmakiotis, D.; Ho, V.T.; Koo, S.; Marty, F.M.; Lindsley, R.C.; Bold, T.D. Somatic GATA2 mutations define a subgroup of myeloid malignancy patients at high risk for invasive fungal disease. Blood Adv. 2021, 5, 54–60. [Google Scholar] [CrossRef]
- Marciano, B.E.; Olivier, K.N.; Folio, L.R.; Zerbe, C.S.; Hsu, A.P.; Freeman, A.F.; Filie, A.C.; Spinner, M.A.; Sanchez, L.A.; Lovell, J.P.; et al. Pulmonary Manifestations of GATA2 Deficiency. Chest 2021, 160, 1350–1359. [Google Scholar] [CrossRef]
- Fischer, A.; Descamps-Latscha, B.; Gerota, I.; Scheinmetzler, C.; Virelizier, J.; Trung, P.; Lisowska-Grospierre, B.; Perez, N.; Durandy, A.; Griscelli, C. Bone-marrow transplantation for inborn error of phagocytic cells associated with defective adherence, chemotaxis, and oxidative response during opsonised particle phagocytosis. Lancet 1983, 322, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Mates, M.; Kirkpatrick, C.H. A man with multiple infections with unusual organisms. Ann. Allergy Asthma Immunol. 1999, 82, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, T.W.; Van Bruggen, R.; Kamerbeek, N.; Tool, A.T.J.; Hicsonmez, G.; Gurgey, A.; Karow, A.; Verhoeven, A.J.; Seeger, K.; Sanal, O.; et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 2007, 109, 3529–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellanné-Chantelot, C.; Clauin, S.; Leblanc, T.; Cassinat, B.; Rodrigues-Lima, F.; Beaufils, S.; Vaury, C.; Barkaoui, M.; Fenneteau, O.; Maier-Redelsperger, M.; et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: A study of 81 patients from the French Neutropenia Register. Blood 2004, 103, 4119–4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, P.; Dukik, K.; Li, D.; Sun, J.; Stielow, J.; Ende, B.G.V.D.; Brankovics, B.; Menken, S.; Mei, H.; Bao, W.; et al. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum. Stud. Mycol. 2018, 89, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Das, S.; Gaurav, V.; Singh, P.K.; Rai, G.; Datt, S.; Tigga, R.A.; Pandhi, D.; Bhattacharya, S.N.; Ansari, M.A.; et al. Review on host-pathogen interaction in dermatophyte infections. J. Med. Mycol. 2022, 33, 101331. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.M. Genetic Predictors of Susceptibility to Dermatophytoses. Mycopathologia 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Hay, R. Chronic dermatophyte infections. I. Clinical and mycological features. Br. J. Dermatol. 1982, 106, 1–7. [Google Scholar] [CrossRef]
- Shelley, E.D.; Shelley, W.B.; Schafer, R.L. Generalized Trichophyton rubrum infection in congenital ichthyosiform erythroderma. J. Am. Acad. Dermatol. 1989, 20, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, K.; Lynch, P.J. Ichthyosis and dermatophyte fungal infection. J. Am. Acad. Dermatol. 1991, 24, 321. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Giménez, J. Infections by Trichophyton rubrum. J. Am. Acad. Dermatol. 1991, 24, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Agostini, G.; Geti, V.; Difonzo, E.M.; Giannotti, B. Dermatophyte infection in ichthyosis vulgaris. Mycoses 1992, 35, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Sentamilselvi, G.; Kamalam, A.; Ajithadas, K.; Janaki, C.; Thambiah, A. Scenario of chronic dermatophytosis: An Indian study. Mycopathologia 1997, 140, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Hoetzenecker, W.; Schanz, S.; Schaller, M.; Fierlbeck, G. Generalized tinea corporis due to Trichophyton rubrum in ichthyosis vulgaris. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 1129–1131. [Google Scholar] [CrossRef]
- Grahovac, M.; Budimcić, D. Unrecognized dermatophyte infection in ichthyosis vulgaris. Acta Derm. Croat 2009, 17, 127–130. [Google Scholar]
- De Freitas, C.F.N.P.; Mulinari-Brenner, F.; Fontana, H.R.; Gentili, A.C.; Hammerschmidt, M. Ichthyosis associated with widespread tinea corporis: Report of three cases. An. Bras. Dermatol. 2013, 88, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Schøsler, L.; Andersen, L.K.; Arendrup, M.C.; Sommerlund, M. Recurrent terbinafine resistant Trichophyton rubrum infection in a child with congenital ichthyosis. Pediatr. Dermatol. 2018, 35, 259–260. [Google Scholar] [CrossRef]
- Szlávicz, E.; Németh, C.; Szepes, É.; Gyömörei, C.; Gyulai, R.; Lengyel, Z. Congenital ichthyosis associated with Trichophyton rubrum tinea, imitating drug hypersensitivity reaction. Med. Mycol. Case Rep. 2020, 29, 15–17. [Google Scholar] [CrossRef]
- Steele, L.; Hong, A.; Balogh, P.; O’Toole, E.A.; Harwood, C.A.; Maruthappu, T. Disseminated tinea incognita in a patient with ichthyosis vulgaris and eczema. Clin. Exp. Dermatol. 2021, 46, 210–212. [Google Scholar] [CrossRef]
- Agrawal, M.; Yadav, P.; Yadav, J.; Chander, R. Clear zone phenomenon: A rare phenomenon in ichthyosis with co-existing superficial fungal infection. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 103–105. [Google Scholar] [CrossRef]
- Ibsen, H.H.W.; Brandrup, F. Tinea corporis due to Trichophyton verrucosum in recessive, X-linked ichthyosis. Mycoses 2009, 36, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Kamalam, A.; Thambiah, A.S. Genetic Ichthyosis and Trichophyton rubrum Infection in Infants: Genetische Ichthyosen und Trichophyton-rubrum-Infektionen bei kleinen Kindern. Mycoses 1982, 25, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Scheers, C.; Andre, J.; Thompson, C.; Rebuffat, E.; Harag, S.; Kolivras, A. Refractory Trichophyton rubrum Infection in Lamellar Ichthyosis. Pediatr. Dermatol. 2013, 30, e200–e203. [Google Scholar] [CrossRef]
- Machan, M.; Kestenbaum, T.; Fraga, G.R. Diffuse Hyperkeratosis in a Deaf and Blind 48-Year-Old Woman—Quiz Case. Arch. Dermatol. 2012, 148, 1199. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, G.R.; Babel, D. Trichophyton rubrum infection and keratoderma palmaris et plantaris. Arch. Dermatol. 1981, 117, 753–754. [Google Scholar] [CrossRef]
- Reis, A.; Hennies, H.-C.; Langbein, L.; Digweed, M.; Mischke, D.; Drechsler, M.; Schröck, E.; Royer-Pokora, B.; Franke, W.W.; Sperling, K.; et al. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat. Genet. 1994, 6, 174–179. [Google Scholar] [CrossRef]
- Kimonis, V.; Yang, J.-M.; Doyle, S.Z.; Bale, S.J.; Compton, J.G.; DiGiovanna, J.J. A Mutation in the V1 End Domain of Keratin 1 in Non-Epidermolytic Palmar-Plantar Keratoderma. J. Investig. Dermatol. 1994, 103, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Blaydon, D.C.; Lind, L.K.; Plagnol, V.; Linton, K.J.; Smith, F.J.; Wilson, N.J.; McLean, W.I.; Munro, C.S.; South, A.P.; Leigh, I.M.; et al. Mutations in AQP5, Encoding a Water-Channel Protein, Cause Autosomal-Dominant Diffuse Nonepidermolytic Palmoplantar Keratoderma. Am. J. Hum. Genet. 2013, 93, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.G. Dermatophyte Infections in Hereditary Palmo-Plantar Keratoderma. Dermatology 1984, 168, 238–241. [Google Scholar] [CrossRef]
- Xiao, H.; Guo, Y.; Yi, J.; Xia, H.; Xu, H.; Yuan, L.; Hu, P.; Yang, Z.; He, Z.; Lu, H.; et al. Identification of a Novel Keratin 9 Missense Mutation in a Chinese Family with Epidermolytic Palmoplantar Keratoderma. Cell Physiol. Biochem. 2018, 46, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Krøigård, A.B.; Hetland, L.E.; Clemmensen, O.; Blaydon, D.; Hertz, J.M.; Bygum, A. The first Danish family reported with an AQP5 mutation presenting diffuse non-epidermolytic palmoplantar keratoderma of Bothnian type, hyperhidrosis and frequent Corynebacterium infections: A case report. BMC Dermatol. 2016, 16, 7. [Google Scholar] [CrossRef] [Green Version]
- Majocchi, D. A new trichophytic granuloma: Clinical and mycological studies. Bull. R. Acad. Med. Roma 1883, 9, 220–223. [Google Scholar]
- Marill, F.G.; Liautaud, B.; Hamra-Krouha, M.S. Fatal evolution of a dermatophytic disease due to Trichophyton schönleini. Bull. Soc. Pathol. Exot. Fil. 1975, 68, 450–456. [Google Scholar]
- Brahmni, Z.; Liautaud, B.; Marill, F. Depressed cell-mediated immunity in chronic dermatophytic infections. Ann. d’immunol. 1980, 131, 143–153. [Google Scholar]
- Liautaud, B.; Marill, F.G. Dermatophytic disease. Recent Algerian observations. Bull. Soc. Pathol. Exot. Fil. 1984, 77, 637–648. [Google Scholar]
- Lanternier, F.; Pathan, S.; Vincent, Q.B.; Liu, L.; Cypowyj, S.; Prando, C.; Migaud, M.; Taibi, L.; Ammar-Khodja, A.; Stambouli, O.B.; et al. Deep Dermatophytosis and Inherited CARD9 Deficiency. N. Engl. J. Med. 2013, 369, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mijiti, J.; Huang, C.; Song, Y.; Wan, Z.; Li, R.; Kang, X.; Wang, X. Deep dermatophytosis caused by Microsporum ferrugineum in a patient with CARD 9 mutations. Br. J. Dermatol. 2019, 181, 1093–1095. [Google Scholar] [CrossRef]
- Simpson, J.; Fröbel, P.; Seneviratne, S.; Brown, M.; Lowe, D.; Grimbacher, B.; Fliegauf, M.; Fearfield, L. Invasive dermatophyte infection with Trichophyton interdigitale is associated with prurigo-induced pseudoperforation and a signal transducer and activator of transcription 3 mutation. Br. J. Dermatol. 2018, 179, 750–754. [Google Scholar] [CrossRef]
- Vinh, D.C. The molecular immunology of human susceptibility to fungal diseases: Lessons from single gene defects of immunity. Expert Rev. Clin. Immunol. 2019, 15, 461–486. [Google Scholar] [CrossRef]
- McElroy, J.A.; Prestes, C.D.A.; Su, W.P. Mycetoma: Infection with tumefaction, draining sinuses, and “grains”. Cutis 1992, 49, 107–110. [Google Scholar]
- Huang, C.; Deng, W.; Zhang, Y.; Zhang, K.; Ma, Y.; Song, Y.; Wan, Z.; Wang, X.; Li, R. CARD9 deficiency predisposing chromoblastomycosis: A case report and comparative transcriptome study. Front. Immunol. 2022, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Mariat, F.; Liautaud, B.; Liautaud, M.; Marill, F.G. Hendersonula toruloidea, causative agent of a fungal verrucous dermatitis observed in Algeria. Sabouraudia 1978, 16, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Lin, Z.; Wang, X.; Li, T.; Yu, J.; Liu, W.; Tong, Z.; Xu, Y.; Zhang, J.; et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J. Allergy Clin. Immunol. 2014, 133, 905–908.e3. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Barbati, E.; Meinzer, U.; Liu, L.; Pedergnana, V.; Migaud, M.; Héritier, S.; Chomton, M.; Frémond, M.-L.; Gonzales, E.; et al. Inherited CARD9 Deficiency in 2 Unrelated Patients With Invasive Exophiala Infection. J. Infect. Dis. 2015, 211, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, R.; Wu, W.; Song, Y.; Wan, Z.; Han, W.; Li, R. Impaired Specific Antifungal Immunity in CARD9-Deficient Patients with Phaeohyphomycosis. J. Investig. Dermatol. 2018, 138, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xing, H.; Jiang, X.; Zeng, J.; Liu, Z.; Chen, J.; Wu, Y. Cerebral Phaeohyphomycosis Caused by Exophiala dermatitidis in a Chinese CARD9-Deficient Patient: A Case Report and Literature Review. Front. Neurol. 2019, 10, 938. [Google Scholar] [CrossRef] [Green Version]
- Imanaka, Y.; Taniguchi, M.; Doi, T.; Tsumura, M.; Nagaoka, R.; Shimomura, M.; Asano, T.; Kagawa, R.; Mizoguchi, Y.; Karakawa, S.; et al. Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings. J. Clin. Immunol. 2021, 41, 975–986. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Song, Y.; Wan, Z.; Wang, X.; Li, R. Phaeohyphomycosis caused by Phialophora americana with CARD9 mutation and 20-year literature review in China. Mycoses 2019, 62, 908–919. [Google Scholar] [CrossRef]
- Gavino, C.; Mellinghoff, S.; Cornely, O.A.; Landekic, M.; Le, C.; Langelier, M.; Golizeh, M.; Proske, S.; Vinh, D.C. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses 2018, 61, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.H.; Duque, J.S.R.; Chung, B.H.-Y.; Chung, T.W.-H.; Leung, D.; Ho, R.S.-L.; Lee, R.; Poon, R.W.; Chua, G.T.; Cheong, K.-N.; et al. Invasive cerebral phaeohyphomycosis in a Chinese boy with CARD9 deficiency and showing unique radiological features, managed with surgical excision and antifungal treatment. Int. J. Infect. Dis. 2021, 107, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Paccoud, O.; Vignier, N.; Boui, M.; Migaud, M.; Vironneau, P.; Kania, R.; Méchaï, F.; Brun, S.; Alanio, A.; Tauziède-Espariat, A.; et al. Invasive Rhinosinusitis Caused by Alternaria infectoria in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. J. Fungi 2022, 8, 446. [Google Scholar] [CrossRef]
- Kalantri, M.; Khopkar, U.; Shah, A.; Bargir, U.A.; Hule, G.; Madkaikar, M. A case of disseminated subcutaneous phaeohyphomycosis caused by Exserohilum rostratum with CARD9 mutation. Indian J. Dermatol. Venereol. Leprol. 2021, 88, 59–61. [Google Scholar] [CrossRef]
- Yan, X.; Yu, C.; Fu, X.; Bao, F.; Du, D.; Wang, C.; Wang, N.; Wang, S.; Shi, Z.; Zhou, G.; et al. CARD 9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br. J. Dermatol. 2016, 174, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Arango-Franco, C.A.; Moncada-Vélez, M.; Beltrán, C.P.; Berrío, I.; Mogollón, C.; Restrepo, A.; Trujillo, M.; Osorio, S.D.; Castro, L.; Gómez, L.V.; et al. Early-Onset Invasive Infection Due to Corynespora cassiicola Associated with Compound Heterozygous CARD9 Mutations in a Colombian Patient. J. Clin. Immunol. 2018, 38, 794–803. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, Z.; Gao, J.; Zhang, C.; Zhang, X.; Dang, E.; Li, W.; Qiao, H.; Liao, W.; Wang, G.; et al. The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation. J. Clin. Immunol. 2019, 39, 713–725. [Google Scholar] [CrossRef]
- Drummond, R.A.; Desai, J.V.; Hsu, A.P.; Oikonomou, V.; Vinh, D.C.; Acklin, J.A.; Abers, M.S.; Walkiewicz, M.A.; Anzick, S.L.; Swamydas, M.; et al. Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis. J. Clin. Investig. 2022, 132, 1–14. [Google Scholar] [CrossRef]
- Liese, J.; Kloos, S.; Jendrossek, V.; Petropoulou, T.; Wintergerst, U.; Notheis, G.; Gahr, M.; Belohradsky, B.H. Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. J. Pediatr. 2000, 137, 687–693. [Google Scholar] [CrossRef]
- Vinh, D.C.; Freeman, A.F.; Shea, Y.R.; Malech, H.L.; Abinun, M.; Weinberg, G.A.; Holland, S.M. Mucormycosis in chronic granulomatous disease: Association with iatrogenic immunosuppression. J. Allergy Clin. Immunol. 2009, 123, 1411–1413. [Google Scholar] [CrossRef] [Green Version]
- Layios, N.; Canivet, J.-L.; Baron, F.; Moutschen, M.; Hayette, M.-P. Mortierella wolfii–Associated Invasive Disease. Emerg. Infect. Dis. 2014, 20, 1591–1592. [Google Scholar] [CrossRef]
- Winstead, M.; Ozolek, J.; Nowalk, A.; Williams, J.; Lugt, M.V.; Lin, P. Disseminated Lichtheimia ramosa Infection After Hematopoietic Stem Cell Transplantation in a Child With Chronic Granulomatous Disease. Pediatr. Infect. Dis. J. 2017, 36, 1222–1224. [Google Scholar] [CrossRef]
- Conrad, A.; Neven, B.; Mahlaoui, N.; Suarez, F.; Sokol, H.; Ruemmele, F.M.; Rouzaud, C.; Moshous, D.; Lortholary, O.; Blanche, S.; et al. Infections in Patients with Chronic Granulomatous Disease Treated with Tumor Necrosis Factor Alpha Blockers for Inflammatory Complications. J. Clin. Immunol. 2020, 41, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, A.M.; Al-Shahrani, D.A.; Al-Idrissi, E.M.; Al-Abdely, H.M. Invasive mucormycosis in chronic granulomatous disease. Saudi Med. J. 2016, 37, 567–569. [Google Scholar] [CrossRef]
- Nadeem, A.; Wahla, A.; Altarifi, A. Invasive Mediastinal Mucormycosis with Pulmonary and Cardiac Involvement in an Adult with Chronic Granulomatous Disease: Case Report and Review of the Literature. Eur. J. Case Rep. Intern. Med. 2021, 8, 002435. [Google Scholar] [CrossRef]
- Wildenbeest, J.G.; Oomen, M.W.; Brüggemann, R.J.; de Boer, M.; Bijleveld, Y.; Berg, J.M.V.D.; Kuijpers, T.W.; Pajkrt, D. Rhizopus Oryzae Skin Infection Treated With Posaconazole in a Boy With Chronic Granulomatous Disease. Pediatr. Infect. Dis. J. 2010, 29, 578. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, A.; Wang, X.; Li, R.; Yu, J. Cutaneous mucormycosis caused by Mucor irregularis in a patient with CARD 9 deficiency. Br. J. Dermatol. 2019, 180, 213–214. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, H.; Chen, Z.; Zeng, X.; Sun, J.; Chen, H.; Fu, M. CARD9 Deficiency in a Chinese Man with Cutaneous Mucormycosis, Recurrent Deep Dermatophytosis and a Review of the Literature. Mycopathologia 2020, 185, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, J.; Ma, Y.; Wan, Z.; Dai, H.; Li, R.; Gu, H.; Wang, X. Primary Cutaneous Mucormycosis, Candida Onychomycosis and Endophthalmitis in a Patient with CARD9 Mutation. Mycopathologia 2022, 187, 305–308. [Google Scholar] [CrossRef]
- Lu, X.-L.; Najafzadeh, M.; Dolatabadi, S.; Ran, Y.-P.; Ende, A.G.V.D.; Shen, Y.-N.; Li, C.-Y.; Xi, L.-Y.; Hao, F.; Zhang, Q.-Q.; et al. Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis. Persoonia-Mol. Phylogeny Evol. Fungi 2013, 30, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Donadieu, J.; Lamant, M.; Fieschi, C.; De Fontbrune, F.S.; Caye, A.; Ouachee, M.; Beaupain, B.; Bustamante, J.; Poirel, H.A.; Isidor, B.; et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 2018, 103, 1278–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Hanks, M.E.; Chandrasekaran, P.; Davis, B.C.; Hsu, A.P.; Van Wagoner, N.J.; Merlin, J.S.; Spalding, C.; La Hoz, R.M.; Holland, S.M.; et al. Gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation–related primary immunodeficiency is associated with disseminated mucormycosis. J. Allergy Clin. Immunol. 2014, 134, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inborn Error of Immunity | Gene | Mode of Inheritance | Comment |
---|---|---|---|
Decreased IL-17 production | |||
DN-STAT3 (Job’s syndrome) | STAT3 | AD | Decreased Th17 responses |
IL12p40 deficiency | IL12B | AR | MSMD |
IL12Rβ1 deficiency | IL12RB1 | AR | MSMD |
ZNF341 deficiency | ZNFR341 | AR | Phenocopy of DN-STAT3 (Job’s syndrome) |
PGM3 deficiency | PGM3 | AR | Congenital disorder of glycosylation |
STAT1 GOF | STAT1 | AD | Associated with various infections and aneurysms, autoimmune disease, and/or tumours |
CARD9 deficiency | CARD9 | AR | Variably decreased Th17 responses |
Decreased IL-17 response | |||
IL-17F deficiency | IL17F | AD | Afflicted patients may also be at risk for S. aureus skin and soft tissue infections |
IL-17RA deficiency | IL17RA | AR | Afflicted patients may also be at risk for S. aureus skin and soft tissue infections |
IL-17RC deficiency | IL17RC | AR | |
ACT1 deficiency | ACT1 | AR | Afflicted patients may also be at risk for S. aureus skin and soft tissue infections |
JNK1 deficiency | JNK1 | AD | Syndrome with features of Ehler–Danlos-like connective tissue disorder |
APECED | AIRE | Typically AR | Endocrinopathies. Neutralizing auto-antibodies to IL-17 and IL-22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinh, D.C. Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023, 12, 456. https://doi.org/10.3390/pathogens12030456
Vinh DC. Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens. 2023; 12(3):456. https://doi.org/10.3390/pathogens12030456
Chicago/Turabian StyleVinh, Donald C. 2023. "Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases" Pathogens 12, no. 3: 456. https://doi.org/10.3390/pathogens12030456
APA StyleVinh, D. C. (2023). Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens, 12(3), 456. https://doi.org/10.3390/pathogens12030456