Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Peridomestic Rodents and Shrews Sampling
2.3. RNA Extraction, cDNA Synthesis, and PCR Detection of Hantaviruses
2.4. Sanger Sequencing and Phylogenetic Analysis
2.5. Rodent and Shrew Identification
3. Results
3.1. Rodent Distribution
3.2. Hantavirus Detection, Characterization, and Phylogenetic Analysis
3.3. Barcoding Identification of Shrews
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, J.H.; Adkins, S.; Agwanda, B.R.; Al Kubrusli, R.; Alkhovsky, S.V.; Amarasinghe, G.K.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2021, 166, 3513–3566, Erratum in Arch. Virol. 2021, 166, 3567–3579. [Google Scholar] [CrossRef]
- Laenen, L.; Vergote, V.; Calisher, C.H.; Klempa, B.; Klingström, J.; Kuhn, J.H.; Maes, P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019, 11, 788. [Google Scholar] [CrossRef]
- Klempa, B.; Fichet-Calvet, E.; Lecompte, E.; Auste, B.; Aniskin, V.; Meisel, H.; Denys, C.; Koivogui, L.; Ter Meulen, J.; Krüger, D.H. Hantavirus in African Wood Mouse, Guinea. Emerg. Infect. Dis. 2006, 12, 838–840. [Google Scholar] [CrossRef]
- Lwande, O.W.; Mohamed, N.; Bucht, G.; Ahlm, C.; Olsson, G.; Evander, M. Seewis Hantavirus in Common Shrew (Sorex araneus) in Sweden. Virol. J. 2020, 17, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dubois, A.; Galan, M.; Cosson, J.F.; Gauffre, B.; Henttonen, H.; Niemimaa, J.; Razzauti, M.; Voutilainen, L.; Vitalis, R.; Guivier, E.; et al. Microevolution of Bank Voles (Myodes glareolus) at Neutral and Immune-Related Genes during Multiannual Dynamic Cycles: Consequences for Puumala Hantavirus Epidemiology. Infect. Genet. Evol. 2017, 49, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z. Discovery of Hantaviruses in Bats and Insectivores and the Evolution of the Genus Hantavirus. Virus Res. 2014, 187, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Yashina, L.N.; Abramov, S.A.; Gutorov, V.V.; Dupal, T.A.; Krivopalov, A.V.; Panov, V.V.; Danchinova, G.A.; Vinogradov, V.V.; Luchnikova, E.M.; Hay, J.; et al. Seewis Virus: Phylogeography of a Shrew-Borne Hantavirus in Siberia, Russia. Vector-Borne Zoonotic Dis. 2010, 10, 585–591. [Google Scholar] [CrossRef]
- Arai, S.; Yanagihara, R. Genetic Diversity and Geographic Distribution of Bat-Borne Hantaviruses. Curr. Issues Mol. Biol. 2020, 39, 1–28. [Google Scholar] [CrossRef]
- Kang, H.J.; Kadjo, B.; Dubey, S.; Jacquet, F.; Yanagihara, R. Molecular Evolution of Azagny Virus, a Newfound Hantavirus Harbored by the West African Pygmy Shrew (Crocidura obscurior) in Côte d’Ivoire. Virol. J. 2011, 8, 373. [Google Scholar] [CrossRef]
- Lee, H.W.; Vaheri, A.; Schmaljohn, C.S. Discovery of Hantaviruses and of the Hantavirus Genus: Personal and Historical Perspectives of the Presidents of the International Society of Hantaviruses. Virus Res. 2014, 187, 2–5. [Google Scholar] [CrossRef]
- Guterres, A.; de Oliveira, R.C.; Fernandes, J.; de Lemos, E.R.S.; Schrago, C.G. New Bunya-Like Viruses: Highlighting Their Relations. Infect. Genet. Evol. 2017, 49, 164–173. [Google Scholar] [CrossRef]
- D’Souza, M.H.; Patel, T.R. Biodefense Implications of New-World Hantaviruses. Front. Bioeng. Biotechnol. 2020, 8, 925. [Google Scholar] [CrossRef]
- Tian, H.; Tie, W.-F.; Li, H.; Hu, X.; Xie, G.-C.; Du, L.-Y.; Guo, W.-P. Orthohantaviruses Infections in Humans and Rodents in Baoji, China. PLoS Negl. Trop. Dis. 2020, 14, e0008778. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Cho, S.; Lee, S.H.; No, J.S.; Lee, G.Y.; Park, K.; Lee, D.; Jeong, S.T.; Song, J.W. Genomic Epidemiology and Active Surveillance to Investigate Outbreaks of Hantaviruses. Front. Cell. Infect. Microbiol. 2021, 10, 532388. [Google Scholar] [CrossRef] [PubMed]
- Manigold, T.; Vial, P. Human Hantavirus Infections: Epidemiology, Clinical Features, Pathogenesis and Immunology. Swiss Med. Wkly. 2014, 144, w13937. [Google Scholar] [CrossRef] [PubMed]
- de Lemos, E.R.S.; Fernandes, J.; Coelho, T.A.; Lumi, L.O.; Rosa, J.A.R.; Biasus, L.; Nunes, Z.M.A.; Brack, D.B.; de Oliveira, R.C. Case Report: Hantavirus Cardiopulmonary Syndrome Diagnostic in the Face of the COVID-19 Pandemic. Am. J. Trop. Med. Hyg. 2022, 106, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, C.B.; Figueiredo, L.T.M.; Vapalahti, O. A Global Perspective on Hantavirus Ecology, Epidemiology, and Disease. Clin. Microbiol. Rev. 2010, 23, 412–441. [Google Scholar] [CrossRef]
- Peters, C.J.; Simpson, G.L.; Levy, H. Spectrum of Hantavirus Infection: Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome. Annu. Rev. Med. 1999, 50, 531–545. [Google Scholar] [CrossRef] [PubMed]
- CDC. Hemorrhagic Fever with Renal Syndrome (HFRS)—Hantavirus. Available online: https://www.cdc.gov/hantavirus/hfrs/index.html#print (accessed on 16 April 2023).
- Khan, A.S.; Khabbaz, R.F.; Armstrong, L.R.; Holman, R.C.; Bauer, S.P.; Graber, J.; Strine, T.; Miller, G.; Reef, S.; Tappero, J.; et al. Hantavirus Pulmonary Syndrome: The First 100 US Cases. J. Infect. Dis. 1996, 173, 1297–1303. [Google Scholar] [CrossRef]
- CDC. Hantavirus Pulmonary Syndrome (HPS)—Hantavirus. Available online: https://www.cdc.gov/hantavirus/hps/index.html (accessed on 16 April 2023).
- Fulhorst, C.F.; Milazzo, M.L.; Armstrong, L.R.; Childs, J.E.; Rollin, P.E.; Khabbaz, R.; Peters, C.J.; Ksiazek, T.G. Hantavirus and Arenavirus Antibodies in Persons with Occupational Rodent Exposure, North America. Emerg. Infect. Dis. 2007, 13, 532–538. [Google Scholar] [CrossRef]
- Sudi, L.E. Molecular Epidemiology of Rodent-, Shrew-and Bat-Borne Hantaviruses in Mbeya Region, Tanzania. Master’s Thesis, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, March 2019. [Google Scholar]
- Martinez, V.P.; Bellomo, C.; San Juan, J.; Pinna, D.; Forlenza, R.; Elder, M.; Padula, P.J. Person-to-Person Transmission of Andes Virus. Emerg. Infect. Dis. 2005, 11, 1848. [Google Scholar] [CrossRef]
- Padula, P.J.; Edelstein, A.; Miguel, S.D.L.; López, N.M.; Rossi, C.M.; Rabinovich, R.D. Hantavirus Pulmonary Syndrome Outbreak in Argentina: Molecular Evidence for Person-to-Person Transmission of Andes Virus. Virology 1998, 241, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Valdebenito, C.; Calvo, M.; Vial, C.; Mansilla, R.; Marco, C.; Palma, R.E.; Vial, P.A.; Valdivieso, F.; Mertz, G.; Ferrés, M. Person-to-Person Household and Nosocomial Transmission of Andes Hantavirus, Southern Chile, 2011. Emerg. Infect. Dis. 2014, 20, 1629–1636. [Google Scholar] [CrossRef]
- Toledo, J.; Haby, M.M.; Reveiz, L.; Sosa Leon, L.; Angerami, R.; Aldighieri, S. Evidence for Human-to-Human Transmission of Hantavirus: A Systematic Review. J. Infect. Dis. 2021, 1–10. [Google Scholar] [CrossRef]
- Pini, N.; Levis, S.; Calderón, G.; Ramirez, J.; Bravo, D.; Lozano, E.; Ripoll, C.; Jeor, S.S.; Ksiazek, T.G.; Barquez, R.M.; et al. Hantavirus Infection in Humans and Rodents, Northwestern Argentina. Emerg. Infect. Dis. 2003, 9, 1070–1076. [Google Scholar] [CrossRef]
- Castillo, C.; Villagra, E.; Sanhueza, L.; Ferres, M.; Mardones, J.; Mertz, G.J. Prevalence of Antibodies to Hantavirus among Family and Health Care Worker Contacts of Persons with Hantavirus Cardiopulmonary Syndrome: Lack of Evidence for Nosocomial Transmission of Andes Virus to Health Care Workers in Chile. Am. J. Trop. Med. Hyg. 2004, 70, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, J.; Vega, J.; Terry, W.; Vera, J.L.; Barra, B.; Meyer, R.; Peters, C.J.; Khan, A.S.; Ksiazek, T.G. Assessment of person-to-person transmission of hantavirus pulmonary syndrome in a Chilean hospital setting. J. Hosp. Infect. 1998, 40, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Schountz, T.; Prescott, J. Hantavirus Immunology of Rodent Reservoirs: Current Status and Future Directions. Viruses 2014, 6, 1317–1335. [Google Scholar] [CrossRef] [PubMed]
- Wesley, C.L.; Allen, L.J.S.; Langlais, M. Models for the Spread and Persistence of Hantavirus Infection in Rodents with Direct and Indirect Transmission. Math. Biosci. Eng. 2010, 7, 195–211. [Google Scholar] [CrossRef]
- Guterres, A.; de Lemos, E.R.S. Hantaviruses and a Neglected Environmental Determinant. One Health 2018, 5, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Gu, S.H.; Bennett, S.N.; Arai, S.; Puorger, M.; Hilbe, M.; Yanagihara, R. Seewis Virus, a Genetically Distinct Hantavirus in the Eurasian Common Shrew (Sorex araneus). Virol. J. 2007, 4, 1–5. [Google Scholar] [CrossRef]
- Gu, S.H.; Markowski, J.; Kang, H.J.; Hejduk, J.; Sikorska, B.; Liberski, P.P.; Yanagihara, R. Boginia Virus, a Newfound Hantavirus Harbored by the Eurasian Water Shrew (Neomys fodiens) in Poland. Virol. J. 2013, 10, 160. [Google Scholar] [CrossRef]
- Klempa, B.; Fichet-Calvet, E.; Lecompte, E.; Auste, B.; Aniskin, V.; Meisel, H.; Barrière, P.; Koivogui, L.; Ter Meulen, J.; Krüger, D.H. Novel Hantavirus Sequences in Shrew, Guinea. Emerg. Infect. Dis. 2007, 13, 520. [Google Scholar] [CrossRef]
- Kang, H.J.; Stanley, W.T.; Esselstyn, J.A.; Gu, S.H.; Yanagihara, R. Expanded Host Diversity and Geographic Distribution of Hantaviruses in Sub-Saharan Africa. J. Virol. 2014, 88, 7663–7667. [Google Scholar] [CrossRef] [PubMed]
- Klempa, B.; Koivogui, L.; Sylla, O.; Koulemou, K.; Auste, B.; Krüger, D.H.; Meulen, J. Ter Serological Evidence of Human Hantavirus Infections in Guinea, West Africa. J. Infect. Dis. 2010, 201, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Těšíková, J.; Bryjová, A.; Bryja, J.; Lavrenchenko, L.A.; Goüy De Bellocq, J. Hantavirus Strains in East Africa Related to Western African Hantaviruses. Vector-Borne Zoonotic Dis. 2017, 17, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Ogola, J.G.; Alburkat, H.; Masika, M.; Korhonen, E.; Uusitalo, R.; Nyaga, P.; Anzala, O.; Vapalahti, O.; Sironen, T.; Forbes, K.M. Seroevidence of Zoonotic Viruses in Rodents and Humans in Kibera Informal Settlement, Nairobi, Kenya. Vector-Borne Zoonotic Dis. 2021, 21, 973–978. [Google Scholar] [CrossRef]
- Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Eibner, G.J.; Kopp, A.; Slothouwer, I.; Torto, B.; Junglen, S.; Sang, R. Circulation of Ngari Virus in Livestock, Kenya. mSphere 2022, 7, e0041622. [Google Scholar] [CrossRef]
- Welcome to the QGIS Project! Available online: https://www.qgis.org/en/site/ (accessed on 7 May 2022).
- Musila, S.; Monadjem, A.; Webala, P.W.; Patterson, B.D.; Hutterer, R.; De Jong, Y.A.; Butynski, T.M.; Mwangi, G.; Chen, Z.-Z.; Jiang, X.-L. An Annotated Checklist of Mammals of Kenya. Zool. Res. 2019, 40, 3–52. [Google Scholar] [CrossRef]
- Kingdon, J. Field Guide to African Mammals; Bloomsbury Publishing: London, UK, 2015; pp. 212–302 314–319. [Google Scholar]
- Langat, S.K.; Eyase, F.; Bulimo, W.; Lutomiah, J.; Oyola, S.O.; Imbuga, M.; Sang, R. Profiling of RNA Viruses in Biting Midges (Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021, 6, e00551-21. [Google Scholar] [CrossRef]
- Marklewitz, M.; Tchouassi, D.P.; Hieke, C.; Heyde, V.; Torto, B.; Sang, R.; Junglen, S. Insights into the Evolutionary Origin of Mediterranean Sandfly Fever Viruses. mSphere 2020, 5, e00598-20. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Phuentshok, Y.; Dorji, K.; Zangpo, T.; Davidson, S.A.; Takhampunya, R.; Tenzinla, T.; Dorjee, C.; Morris, R.S.; Jolly, P.D.; Dorjee, S.; et al. Survey and Phylogenetic Analysis of Rodents and Important Rodent-Borne Zoonotic Pathogens in Gedu, Bhutan. Korean J. Parasitol. 2018, 56, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Herbreteau, V.; Jittapalapong, S.; Rerkamnuaychoke, W.; Chaval, Y.; Cosson, J.F.; Morand, S. Protocols for Field and Laboratory Rodent Studies. 2011. Available online: http://www.ceropath.org/FichiersComplementaires/Herbreteau_Rodents_protocols_2011.pdf (accessed on 12 December 2022).
- Robins, J.H.; McLenachan, P.A.; Phillips, M.J.; McComish, B.J.; Matisoo-Smith, E.; Ross, H.A. Evolutionary Relationships and Divergence Times among the Native Rats of Australia. BMC Evol. Biol. 2010, 10, 1–16. [Google Scholar] [CrossRef]
- Liyai, R.; Kimita, G.; Masakhwe, C.; Abuom, D.; Mutai, B.; Onyango, D.M.; Waitumbi, J. The Spleen Bacteriome of Wild Rodents and Shrews from Marigat, Baringo County, Kenya. PeerJ 2021, 9, 1–17. [Google Scholar] [CrossRef]
- Heinemann, P.; Tia, M.; Alabi, A.; Anon, J.C.; Auste, B.; Essbauer, S.; Gnionsahe, A.; Kigninlman, H.; Klempa, B.; Kraef, C.; et al. Human Infections by Non-Rodent-Associated Hantaviruses in Africa. J. Infect. Dis. 2016, 214, 1507–1511. [Google Scholar] [CrossRef]
- Rodier, G.; Soliman, A.; Bouloumie, J.; Kremer, D. Presence of Antibodies to Hantavirus in Rat and Human Populations of Djibouti; Short Report; Naval Medical Research Unit No. 3: New York, NY, USA, 1993. [Google Scholar]
- Witkowski, P.T.; Leendertz, S.A.J.; Auste, B.; Akoua-Koffi, C.; Schubert, G.; Klempa, B.; Muyembe-Tamfum, J.J.; Karhemere, S.; Leendertz, F.H.; Krüger, D.H. Human Seroprevalence Indicating Hantavirus Infections in Tropical Rainforests of Côte d’Ivoire and Democratic Republic of Congo. Front. Microbiol. 2015, 6, 518. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Bennett, S.N.; Sumibcay, L.; Cook, J.A.; Song, J.W.; Hope, A.; Parmenter, C.; Nerurkar, V.R.; Yates, T.L.; Yanagihara, R. Short Report: Phylogenetically Distinct Hantaviruses in the Masked Shrew (Sorex cinereus) and Dusky Shrew (Sorex monticolus) in the United States. Am. J. Trop. Med. Hyg. 2008, 78, 348. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Ohdachi, S.D.; Asakawa, M.; Hae, J.K.; Mocz, G.; Arikawa, J.; Okabe, N.; Yanagihara, R. Molecular Phylogeny of a Newfound Hantavirus in the Japanese Shrew Mole (Urotrichus talpoides). Proc. Natl. Acad. Sci. USA 2008, 105, 16296. [Google Scholar] [CrossRef] [PubMed]
- Animalia.bio. Somali Shrew—Facts, Diet, Habitat & Pictures. Available online: https://animalia.bio/somali-shrew (accessed on 13 December 2022).
- Crocidura somalica (Somali Shrew). Available online: https://www.iucnredlist.org/species/41359/115181668#habitat-ecology (accessed on 30 November 2022).
Parameter | Level | Site | ||
---|---|---|---|---|
Marigat | Nguruman | Total | ||
Sex | Female | 102 | 140 | 242 |
Male | 75 | 172 | 247 | |
Age | Sub-Adult | 36 | 118 | 154 |
Adult | 141 | 194 | 335 | |
Place of Capture | Indoor | 137 | 150 | 287 |
Outdoor | 40 | 162 | 202 | |
Species | Acomys spp. | 1 | 48 | 49 |
Aethomys spp. | 1 | 6 | 7 | |
Arvicanthis spp. | 0 | 15 | 15 | |
Oenomys spp. | 1 | 0 | 1 | |
Lemniscomys spp. | 0 | 2 | 2 | |
Gerbilliscus spp. | 3 | 2 | 5 | |
Grammomys spp. | 2 | 0 | 2 | |
Graphiurus spp. | 0 | 1 | 1 | |
Mastomys spp. | 47 | 217 | 264 | |
Mus spp. | 73 | 0 | 73 | |
Paraxerus spp. | 0 | 1 | 1 | |
Gerbillus spp. | 0 | 1 | 1 | |
Crocidura spp. | 11 | 0 | 11 | |
Rattus spp. | 38 | 19 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Rotich, G.; Muthoni, J.N.; Ondifu, D.O.; Torto, B.; Junglen, S.; Sang, R. Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya. Pathogens 2023, 12, 685. https://doi.org/10.3390/pathogens12050685
Omoga DCA, Tchouassi DP, Venter M, Ogola EO, Rotich G, Muthoni JN, Ondifu DO, Torto B, Junglen S, Sang R. Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya. Pathogens. 2023; 12(5):685. https://doi.org/10.3390/pathogens12050685
Chicago/Turabian StyleOmoga, Dorcus C. A., David P. Tchouassi, Marietjie Venter, Edwin O. Ogola, Gilbert Rotich, Joseph N. Muthoni, Dickens O. Ondifu, Baldwyn Torto, Sandra Junglen, and Rosemary Sang. 2023. "Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya" Pathogens 12, no. 5: 685. https://doi.org/10.3390/pathogens12050685
APA StyleOmoga, D. C. A., Tchouassi, D. P., Venter, M., Ogola, E. O., Rotich, G., Muthoni, J. N., Ondifu, D. O., Torto, B., Junglen, S., & Sang, R. (2023). Divergent Hantavirus in Somali Shrews (Crocidura somalica) in the Semi-Arid North Rift, Kenya. Pathogens, 12(5), 685. https://doi.org/10.3390/pathogens12050685