Key Aspects of Coronavirus Avian Infectious Bronchitis Virus
Abstract
:1. Increasing Threats of Coronaviruses
2. Worldwide Distribution of Avian Infectious Bronchitis Virus
3. Genetic Diversity of Avian Infectious Bronchitis Virus
4. Antigenic Diversity of Avian Infectious Bronchitis Virus
5. Multiple System Disease Caused by Avian Infectious Bronchitis Virus
6. Prevention and Control of Avian Infectious Bronchitis Virus
7. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miranda, C.; Silva, V.; Igrejas, G.; Poeta, P. Genomic evolution of the human and animal coronavirus diseases. Mol. Biol. Rep. 2021, 48, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Kung, Y.A.; Lee, K.M.; Chiang, H.J.; Huang, S.Y.; Wu, C.J.; Shih, S.R. Molecular virology of SARS-CoV-2 and related coronaviruses. Microbiol. Mol. Biol. Rev. 2022, 86, e0002621. [Google Scholar] [CrossRef]
- Thakor, J.C.; Dinesh, M.; Manikandan, R.; Bindu, S.; Sahoo, M.; Sahoo, D.; Dhawan, M.; Pandey, M.K.; Tiwari, R.; Emran, T.B.; et al. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet. Q. 2022, 42, 125–147. [Google Scholar] [CrossRef]
- Ruiz-Aravena, M.; McKee, C.; Gamble, A.; Lunn, T.; Morris, A.; Snedden, C.E.; Yinda, C.K.; Port, J.R.; Buchholz, D.W.; Yeo, Y.Y.; et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2022, 20, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol. 2022, 32, e2282. [Google Scholar] [CrossRef]
- Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res. 2007, 38, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Bande, F.; Arshad, S.S.; Omar, A.R.; Hair-Bejo, M.; Mahmuda, A.; Nair, V. Global distributions and strain diversity of avian infectious bronchitis virus: A review. Anim. Health Res. Rev. 2017, 18, 70–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, J.L.; Liu, X.Y.; Zhao, J.; Hu, Y.X.; Zhang, G.Z. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine. Vet. Microbiol. 2015, 180, 49–58. [Google Scholar] [CrossRef]
- Jordan, B. Vaccination against infectious bronchitis virus: A continuous challenge. Vet. Microbiol. 2017, 206, 137–143. [Google Scholar] [CrossRef]
- Li, Y.T.; Chen, T.C.; Lin, S.Y.; Mase, M.; Murakami, S.; Horimoto, T.; Chen, H.W. Emerging lethal infectious bronchitis coronavirus variants with multiorgan tropism. Transbound. Emerg. Dis. 2020, 67, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Schalk, A.F.; Hawin, M.C. An apparently new respiratory disease in baby chicks. J. Am. Vet. Med. Assoc. 1931, 78, 413–422. [Google Scholar]
- Cavanagh, D.; Mawditt, K.; Welchman, D.D.B.; Britton, P.; Gough, R.E. Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol. 2002, 31, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Zhuang, Q.Y.; Wang, K.C.; Liu, S.; Shao, J.Z.; Jiang, W.M.; Hou, G.Y.; Li, J.P.; Yu, J.M.; Li, Y.P.; et al. Identification and survey of a novel avian coronavirus in ducks. PLoS ONE 2013, 8, e72918. [Google Scholar] [CrossRef] [PubMed]
- Miłek, J.; Blicharz-Domańska, K. Coronaviruses in avian species-review with focus on epidemiology and diagnosis in wild birds. J. Vet. Res. 2018, 62, 249–255. [Google Scholar] [CrossRef]
- Ali, A.; Ojkic, D.; Elshafiee, E.A.; Shany, S.; El-Safty, M.M.; Shalaby, A.A.; Abdul-Careem, M.F. Genotyping and in silico analysis of Delmarva (DMV/1639) infectious bronchitis virus (IBV) spike 1 (S1) glycoprotein. Genes 2022, 13, 1617. [Google Scholar] [CrossRef]
- Jackwood, M.W.; Jordan, B.J. Molecular evolution of infectious bronchitis virus and the emergence of variant viruses circulating in the United States. Avian Dis. 2021, 65, 631–636. [Google Scholar] [CrossRef]
- Mueller Slay, A.; Franca, M.; Jackwood, M.; Jordan, B. Infection with IBV DMV/1639 at a young age leads to increased incidence of cystic oviduct formation associated with false layer syndrome. Viruses 2022, 14, 852. [Google Scholar] [CrossRef]
- Ahmed, H.N. Incidence and Treatment of Some Infectious Viral Respiratory Diseases of Poultry in Egypt. Ph.D. Thesis, Cairo University, Cairo, Egypt, 1954. [Google Scholar]
- Moharam, I.; Sultan, H.; Hassan, K.; Ibrahim, M.; Shany, S.; Shehata, A.A.; Abo-ElKhair, M.; Pfaff, F.; Höper, D.; El Kady, M.; et al. Emerging infectious bronchitis virus (IBV) in Egypt: Evidence for an evolutionary advantage of a new S1 variant with a unique gene 3ab constellation. Infect. Genet. Evol. 2020, 85, 104433. [Google Scholar] [CrossRef]
- Nakamura, J.; Kuba, N.; Kawakubo, A. A virus isolated from infectious bronchitis-like diseases of chickens. Jpn. J. Vet. Sci. 1954, 15, 80–81. [Google Scholar]
- Mase, M.; Hiramatsu, K.; Watanabe, S.; Iseki, H. Genetic analysis of the complete S1 gene in Japanese infectious bronchitis virus strains. Viruses 2022, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Soma, J.; Takahashi, S.; Matsune, K.; Ono, M.; Oosumi, T. Detection and isolation of QX-like infectious bronchitis virus in Japan. J. Vet. Med. Sci. 2022, 84, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Nakagawa, K.; Kitamura, Y.; Kuwata, K.; Tanaka, E. Molecular survey of infectious bronchitis virus on poultry farms in Gifu Prefecture, Japan from 2021 to 2022 by RT-PCR with an enhanced level of detection sensitivity for the S1 gene. J. Vet. Med. Sci. 2022, 84, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Kusters, J.G.; Niesters, H.G.; Bleumink-Pluym, N.M.; Davelaar, F.G.; Horzinek, M.C.; Van der Zeijst, B.A. Molecular epidemiology of infectious bronchitis virus in The Netherlands. J. Gen. Virol. 1987, 68, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Sjaak de Wit, J.J.; Ter Veen, C.; Koopman, H.C.R. Effect of IBV D1466 on egg production and egg quality and the effect of heterologous priming to increase the efficacy of an inactivated IBV vaccine. Avian Pathol. 2020, 49, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Dijkman, R.; de Wit, J.J. Characterization of infectious bronchitis virus D181, a new serotype (GII-2). Avian Pathol. 2020, 49, 243–250. [Google Scholar] [CrossRef]
- Fraga, A.P.; Gräf, T.; Pereira, C.S.; Ikuta, N.; Fonseca, A.S.K.; Lunge, V.R. Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil. Infect. Genet. Evol. 2018, 61, 77–83. [Google Scholar] [CrossRef]
- Ikuta, N.; Fonseca, A.S.K.; Fernando, F.S.; Filho, T.F.; Martins, N.R.D.S.; Lunge, V.R. Emergence and molecular characterization of the avian infectious bronchitis virus GI-23 in commercial broiler farms from South America. Transbound. Emerg. Dis. 2022, 69, 3167–3172. [Google Scholar] [CrossRef]
- Cavanagh, D.; Davis, P.J. Sequence analysis of strains of avian infectious bronchitis coronavirus isolated during the 1960s in the U.K. Arch. Virol. 1992, 130, 471–476. [Google Scholar] [CrossRef]
- Cumming, R.B. The aetiology of “uraemia” of chickens. Aust. Vet. J. 1962, 38, 554. [Google Scholar] [CrossRef]
- Quinteros, J.A.; Ignjatovic, J.; Chousalkar, K.K.; Noormohammadi, A.H.; Browning, G.F. Infectious bronchitis virus in Australia: A model of coronavirus evolution—A review. Avian Pathol. 2021, 50, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Chindavanig, P. Studies on the attenuation of infectious bronchitis virus. J. Thai. Vet. Med. Assoc. 1962, 12, 3–6. [Google Scholar]
- Munyahongse, S.; Pohuang, T.; Nonthabenjawan, N.; Sasipreeyajan, J.; Thontiravong, A. Genetic characterization of infectious bronchitis viruses in Thailand, 2014–2016: Identification of a novel recombinant variant. Poult. Sci. 2020, 99, 1888–1895. [Google Scholar] [CrossRef] [PubMed]
- Pohl, R.M. Infectious bronchitis in chickens. New Zeal. Vet. J. 1967, 15, 151. [Google Scholar] [CrossRef]
- Cubillos, A.; Ulloa, J.; Cubillos, V.; Cook, J.K. Characterisation of strains of infectious bronchitis virus isolated in Chile. Avian Pathol. 1991, 20, 85–99. [Google Scholar] [CrossRef]
- Guzmán, M.; Sáenz, L.; Hidalgo, H. Molecular and antigenic characterization of GI-13 and GI-16 avian infectious bronchitis virus isolated in Chile from 2009 to 2017 regarding 4/91 vaccine introduction. Animals 2019, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Dolz, R.; Pujols, J.; Ordóñez, G.; Porta, R.; Majó, N. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 2008, 274, 50–59. [Google Scholar] [CrossRef]
- Cortés, V.; Sevilla-Navarro, S.; García, C.; Marín, C.; Catalá-Gregori, P. Seroprevalence and prevalence of infectious bronchitis virus in broilers, laying hens and broiler breeders in Spain. Poult. Sci. 2022, 101, 101760. [Google Scholar] [CrossRef]
- Setiawaty, R.; Soejoedono, R.D.; Poetri, O.N. Genetic characterization of S1 gene of infectious bronchitis virus isolated from commercial poultry flocks in West Java, Indonesia. Vet. World 2019, 12, 231–235. [Google Scholar] [CrossRef]
- Wibowo, M.H.; Ginting, T.E.; Asmara, W. Molecular characterization of pathogenic 4/91-like and QX-like infectious bronchitis virus infecting commercial poultry farms in Indonesia. Vet. World 2019, 12, 277–287. [Google Scholar] [CrossRef]
- Feng, J.; Hu, Y.; Ma, Z.; Yu, Q.; Zhao, J.; Liu, X.; Zhang, G. Virulent avian infectious bronchitis virus, People’s Republic of China. Emerg. Infect. Dis. 2012, 8, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Chen, J.; Zhang, Y.; Deng, Q.; Wei, L.; Zhao, C.; Lv, D.; Lin, L.; Zhang, B.; Wei, T.; et al. Phylogenetic and spatiotemporal analyses of the complete genome sequences of avian coronavirus infectious bronchitis virus in China during 1985–2020: Revealing coexistence of multiple transmission chains and the origin of LX4-type virus. Front. Microbiol. 2022, 13, 693196. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Luo, Z.B.; Shao, G.Q.; Hou, B. Genetic and pathogenic characteristics of a novel infectious bronchitis virus strain in genogroup VI (CK/CH/FJ/202005). Vet. Microbiol. 2022, 266, 109352. [Google Scholar] [CrossRef]
- Bayry, J.; Goudar, M.S.; Nighot, P.K.; Kshirsagar, S.G.; Ladman, B.S.; Gelb, J., Jr.; Ghalsasi, G.R.; Kolte, G.N. Emergence of a nephropathogenic avian infectious bronchitis virus with a novel genotype in India. J. Clin. Microbiol. 2005, 43, 916–918. [Google Scholar] [CrossRef]
- Raja, A.; Dhinakar Raj, G.; Kumanan, K. Emergence of variant avian infectious bronchitis virus in India. Iran. J. Vet. Res. 2020, 21, 33–39. [Google Scholar] [PubMed]
- Rhee, Y.O.; Kim, J.H.; Mo, I.P.; Choi, S.H.; Namgoong, S. Outbreaks of infectious bronchitis in Korea. Korean J. Vet. Res. 1986, 26, 277–282. [Google Scholar]
- Jung, J.S.; Lee, R.; Yoon, S.I.; Lee, G.S.; Sung, H.W.; Kwon, H.M.; Park, J. Genetic and immunological characterization of commercial infectious bronchitis virus vaccines used in Korea. Arch. Virol. 2022, 167, 2123–2132. [Google Scholar] [CrossRef]
- El-Houadfi, M.; Jones, R.C.; Cook, J.K.; Ambali, A.G. The isolation and characterisation of six avian infectious bronchitis viruses isolated in Morocco. Avian Pathol. 1986, 15, 93–105. [Google Scholar] [CrossRef]
- Fellahi, S.; El Harrak, M.; Khayi, S.; Guerin, J.L.; Kuhn, J.H.; El Houadfi, M.; Ennaji, M.M.; Ducatez, M. Phylogenetic analysis of avian infectious bronchitis virus isolates from Morocco: A retrospective study (1983 to 2014). Virol. Sin. 2017, 32, 155–158. [Google Scholar] [CrossRef]
- Shittu, I.; Gado, D.A.; Meseko, C.A.; Nyam, D.C.; Olawuyi, K.A.; Moses, G.D.; Chinyere, C.N.; Joannis, T.M. Occurrence of infectious bronchitis in layer birds in Plateau state, north central Nigeria. Open Vet. J. 2019, 9, 74–80. [Google Scholar] [CrossRef]
- Ekiri, A.B.; Armson, B.; Adebowale, K.; Endacott, I.; Galipo, E.; Alafiatayo, R.; Horton, D.L.; Ogwuche, A.; Bankole, O.N.; Galal, H.M.; et al. Evaluating disease threats to sustainable poultry production in Africa: Newcastle disease, infectious bursal disease, and avian infectious bronchitis in commercial poultry flocks in Kano and Oyo States, Nigeria. Front. Vet. Sci. 2021, 8, 730159. [Google Scholar] [CrossRef] [PubMed]
- Valastro, V.; Holmes, E.C.; Britton, P.; Fusaro, A.; Jackwood, M.W.; Cattoli, G.; Monne, I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infect. Genet. Evol. 2016, 39, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, M.; Zhao, J.; Wu, Y. Avian infectious bronchitis in China: Epidemiology, vaccination, and control. Avian Dis. 2021, 65, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Grellet, E.; L’Hôte, I.; Goulet, A.; Imbert, I. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. J. Biol. Chem. 2022, 298, 101923. [Google Scholar] [CrossRef]
- Echeverría, N.; Moratorio, G.; Cristina, J.; Moreno, P. Hepatitis C virus genetic variability and evolution. World J. Hepatol. 2015, 7, 831–845. [Google Scholar] [CrossRef]
- Thébaud, G.; Chadoeuf, J.; Morelli, M.J.; McCauley, J.W.; Haydon, D.T. The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proc. Biol. Sci. 2010, 277, 809–817. [Google Scholar] [CrossRef]
- Webb, I.; Keep, S.; Littolff, K.; Stuart, J.; Freimanis, G.; Britton, P.; Davidson, A.D.; Maier, H.J.; Bickerton, E. The genetic stability, replication kinetics and cytopathogenicity of recombinant avian coronaviruses with a T16A or an A26F mutation within the E protein is cell-type dependent. Viruses 2022, 14, 1784. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef]
- Abozeid, H.H.; Naguib, M.M. Infectious bronchitis virus in Egypt: Genetic diversity and vaccination strategies. Vet. Sci. 2020, 7, 204. [Google Scholar] [CrossRef]
- Hassan, M.S.H.; Buharideen, S.M.; Ali, A.; Najimudeen, S.M.; Goldsmith, D.; Coffin, C.S.; Cork, S.C.; van der Meer, F.; Abdul-Careem, M.F. Efficacy of commercial infectious bronchitis vaccines against Canadian Delmarva (DMV/1639) infectious bronchitis virus infection in layers. Vaccines 2022, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Teng, Q.; Feng, D.; Pei, Y.; Zhao, Y.; Zhang, G. Development of a nanoparticle multiepitope DNA vaccine against virulent infectious bronchitis virus challenge. J. Immunol. 2022, 208, 1396–1405. [Google Scholar] [CrossRef]
- Xin, C.A.; Chen, T.J. The research of chicken infectious bronchitis-I. Isolation and identification of chicken infectious bronchitis virus in Guangzhou. J. S. China Agric. Coll. 1982, 3, 90–98. [Google Scholar]
- Liu, S.; Wang, Y.; Ma, Y.; Han, Z.; Zhang, Q.; Shao, Y.; Chen, J.; Kong, X. Identification of a newly isolated avian infectious bronchitis coronavirus variant in China exhibiting affinity for the respiratory tract. Avian Dis. 2008, 52, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, X.Y.; Zhao, Y.; Chen, Y.; Zhao, J.; Zhang, G.Z. Characterization and analysis of an infectious bronchitis virus strain isolated from southern China in 2013. Virol. J. 2016, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Wang, Y.L.; Zhang, Z.C. Isolation and identification of glandular stomach type IBV (QX IBV) in chickens. Chin. J. Anim. Quar. 1998, 15, 1–3. [Google Scholar]
- Bo, Z.; Chen, S.; Zhang, C.; Guo, M.; Cao, Y.; Zhang, X.; Wu, Y. Pathogenicity evaluation of GVI-1 lineage infectious bronchitis virus and its long-term effects on reproductive system development in SPF hens. Front. Microbiol. 2022, 13, 1049287. [Google Scholar] [CrossRef]
- Luo, H.; Qin, J.; Chen, F.; Xie, Q.; Bi, Y.; Cao, Y.; Xue, C. Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009–2010. Virus Genes 2012, 44, 19–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Zhao, J.; Zhong, Q.; Jin, J.H.; Zhang, G.Z. Evolution of infectious bronchitis virus in China over the past two decades. J. Gen. Virol. 2016, 97, 1566–1574. [Google Scholar] [CrossRef]
- Cheng, J.; Huo, C.; Zhao, J.; Liu, T.; Li, X.; Yan, S.; Wang, Z.; Hu, Y.; Zhang, G. Pathogenicity differences between QX-like and Mass-type infectious bronchitis viruses. Vet. Microbiol. 2018, 213, 129–135. [Google Scholar] [CrossRef]
- Yan, S.; Liu, X.; Zhao, J.; Xu, G.; Zhao, Y.; Zhang, G. Analysis of antigenicity and pathogenicity reveals major differences among QX-like infectious bronchitis viruses and other serotypes. Vet. Microbiol. 2017, 203, 167–173. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, J.; Ma, S.; Jia, W.; Yan, S.; Zhang, G. Pathogenicity differences between a newly emerged TW-like strain and a prevalent QX-like strain of infectious bronchitis virus. Vet. Microbiol. 2018, 227, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kariithi, H.M.; Volkening, J.D.; Leyson, C.M.; Afonso, C.L.; Christy, N.; Decanini, E.L.; Lemiere, S.; Suarez, D.L. Genome sequence variations of infectious bronchitis virus serotypes from commercial chickens in Mexico. Front. Vet. Sci. 2022, 9, 931272. [Google Scholar] [CrossRef] [PubMed]
- Ghetas, A.M. Infectious bronchitis virus genotypes in the Middle East. Avian Dis. 2021, 65, 647–651. [Google Scholar] [CrossRef] [PubMed]
- De Wit, J.J.; de Wit, M.K.; Cook, J.K.A. Infectious bronchitis virus types affecting european countries—A review. Avian Dis. 2021, 65, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Raj, G.D.; Jones, R.C. Infectious bronchitis virus: Immunopathogenesis of infection in the chicken. Avian Pathol. 1997, 26, 677–706. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhao, Y.; Hu, Y.; Zhao, J.; Xue, J.; Zhang, G. The furin-S2’ site in avian coronavirus plays a key role in central nervous system damage progression. J. Virol. 2021, 95, e02447-20. [Google Scholar] [CrossRef]
- Reddy, V.R.; Trus, I.; Desmarets, L.M.; Li, Y.; Theuns, S.; Nauwynck, H.J. Productive replication of nephropathogenic infectious bronchitis virus in peripheral blood monocytic cells, a strategy for viral dissemination and kidney infection in chickens. Vet. Res. 2016, 47, 70. [Google Scholar] [CrossRef]
- Amarasinghe, A.; Abdul-Cader, M.S.; Nazir, S.; De Silva Senapathi, U.; van der Meer, F.; Cork, S.C.; Gomis, S.; Abdul-Careem, M.F. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions. PLoS ONE 2017, 12, e0181801. [Google Scholar] [CrossRef]
- Barrow, A.D.; Burgess, S.C.; Baigent, S.J.; Howes, K.; Nair, V.K. Infection of macrophages by a lymphotropic herpesvirus: A new tropism for Marek’s disease virus. J. Gen. Virol. 2003, 84, 2635–2645. [Google Scholar] [CrossRef]
- Chong, K.T.; Apostolov, K. The pathogenesis of nephritis in chickens induced by infectious bronchitis virus. J. Comp. Pathol. 1982, 92, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Qi, J.; Sun, L.; Zhao, J.; Zhang, G.; Zhao, Y. Pathological effect of different avian infectious bronchitis virus strains on the bursa of Fabricius of chickens. Avian Pathol. 2022, 51, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Broadfoot, D.I.; Pomeroy, B.S.; Smith, W.M., Jr. Effects of infectious bronchitis in baby chicks. Poult. Sci. 1956, 35, 757–762. [Google Scholar] [CrossRef]
- Crinion, R.A.P.; Hofstad, M.S. Pathogenicity of four serotypes of avian infectious bronchitis virus for the oviduct of young chickens of various ages. Avian Dis. 1972, 16, 351–363. [Google Scholar] [CrossRef]
- Zhong, Q.; Hu, Y.X.; Jin, J.H.; Zhao, Y.; Zhao, J.; Zhang, G.Z. Pathogenicity of virulent infectious bronchitis virus isolate YN on hen ovary and oviduct. Vet. Microbiol. 2016, 193, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhao, J.; Li, L.; Huang, X.; Yang, H.; Cheng, J.; Liu, C.; Zhang, G. Pathogenic characteristics of a QX-like infectious bronchitis virus strain SD in chickens exposed at different ages and protective efficacy of combining live homologous and heterologous vaccination. Vet. Res. 2020, 51, 86. [Google Scholar] [CrossRef]
- Cook, J.K.; Jackwood, M.; Jones, R.C. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012, 41, 239–250. [Google Scholar] [CrossRef]
- Jones, R.C.; Jordan, F.T. Persistence of virus in the tissues and development of the oviduct in the fowl following infection at day old with infectious bronchitis virus. Res. Vet. Sci. 1972, 13, 52–60. [Google Scholar] [CrossRef]
- Bisgaard, M. The influence of infectious bronchitis virus on egg production, fertility, hatchability and mortality rate in chickens. Nord. Vet. Med. 1976, 28, 368–376. [Google Scholar]
- Sevoian, M.; Levine, P.P. Effects of infectious bronchitis on the reproductive tracts, egg production, and egg quality of laying chickens. Avian Dis. 1957, 1, 136–164. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, D.; Zhang, K.; Cheng, J.; Xu, G.; Zhang, G. Pathogenicity of a GI-22 genotype infectious bronchitis virus isolated in China and protection against it afforded by GI-19 vaccine. Virus Res. 2019, 267, 59–66. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, Y.; Xu, G.; Zhang, K.; Jia, W.; Sun, Y.; Zhao, J.; Xue, J.; Hu, Y.; Zhang, G. The S2 subunit of QX-type infectious bronchitis coronavirus spike protein is an essential determinant of neurotropism. Viruses 2019, 11, 972. [Google Scholar] [CrossRef] [PubMed]
- Hoerr, F.J. The pathology of infectious bronchitis. Avian Dis. 2021, 65, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, K.; Zhang, C.; Guo, M.; Chen, S.; Liao, K.; Bo, Z.; Cao, Y.; Wu, Y. Pathogenicity comparison between QX-type and Mass-type infectious bronchitis virus to different segments of the oviducts in laying phase. Virol. J. 2022, 9, 62. [Google Scholar] [CrossRef]
- Amarasinghe, A.; De Silva Senapathi, U.; Abdul-Cader, M.S.; Popowich, S.; Marshall, F.; Cork, S.C.; van der Meer, F.; Gomis, S.; Abdul-Careem, M.F. Comparative features of infections of two Massachusetts (Mass) infectious bronchitis virus (IBV) variants isolated from Western Canadian layer flocks. BMC Vet. Res. 2018, 14, 391. [Google Scholar] [CrossRef]
- Li, N.; Huang, C.; Chen, W.; Li, Z.; Hu, G.; Li, G.; Liu, P.; Hu, R.; Zhuang, Y.; Luo, J.; et al. Nephropathogenic infectious bronchitis virus mediates kidney injury in chickens via the TLR7/NF-κB signaling Axis. Front. Cell Infect. Microbiol. 2022, 12, 865283. [Google Scholar] [CrossRef] [PubMed]
- Khanh, N.P.; Tan, S.W.; Yeap, S.K.; Lee, H.J.; Choi, K.S.; Hair-Bejo, M.; Bich, T.N.; Omar, A.R. Comparative pathogenicity of Malaysian QX-like and variant infectious bronchitis virus strains in chickens at different age of exposure to the viruses. J. Comp. Pathol. 2018, 161, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.S.H.; Ali, A.; Buharideen, S.M.; Goldsmith, D.; Coffin, C.S.; Cork, S.C.; van der Meer, F.; Boulianne, M.; Abdul-Careem, M.F. Pathogenicity of the Canadian Delmarva (DMV/1639) infectious bronchitis virus (IBV) on female reproductive tract of chickens. Viruses 2021, 13, 2488. [Google Scholar] [CrossRef]
- Boender, G.J.; Hagenaars, T.J.; Bouma, A.; Nodelijk, G.; Elbers, A.R.; de Jong, M.C.; van Boven, M. Risk maps for the spread of highly pathogenic avian influenza in poultry. PLoS Comput. Biol. 2007, 3, e71. [Google Scholar] [CrossRef]
- Mannelli, A.; Busani, L.; Toson, M.; Bertolini, S.; Marangon, S. Transmission parameters of highly pathogenic avian influenza (H7N1) among industrial poultry farms in northern Italy in 1999–2000. Prev. Vet. Med. 2007, 81, 318–322. [Google Scholar] [CrossRef]
- Singh, M.; Toribio, J.A.; Scott, A.B.; Groves, P.; Barnes, B.; Glass, K.; Moloney, B.; Black, A.; Hernandez-Jover, M. Assessing the probability of introduction and spread of avian influenza (AI) virus in commercial Australian poultry operations using an expert opinion elicitation. PLoS ONE 2018, 13, e0193730. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Tucciarone, C.M.; Moreno, A.; Legnardi, M.; Massi, P.; Tosi, G.; Trogu, T.; Ceruti, R.; Pesente, P.; Ortali, G.; et al. Phylodynamic analysis and evaluation of the balance between anthropic and environmental factors affecting IBV spreading among Italian poultry farms. Sci. Rep. 2020, 10, 7289. [Google Scholar] [CrossRef] [PubMed]
- Najimudeen, S.M.; Hassan, M.S.H.; Cork, S.C.; Abdul-Careem, M.F. Infectious bronchitis coronavirus infection in chickens: Multiple system disease with immune suppression. Pathogens 2020, 9, 779. [Google Scholar] [CrossRef]
- Franzo, G.; Tucciarone, C.M.; Blanco, A.; Nofrarías, M.; Biarnés, M.; Cortey, M.; Majó, N.; Catelli, E.; Cecchinato, M. Effect of different vaccination strategies on IBV QX population dynamics and clinical outbreaks. Vaccine 2016, 34, 5670–5676. [Google Scholar] [CrossRef]
- Moreno, A.; Franzo, G.; Massi, P.; Tosi, G.; Blanco, A.; Antilles, N.; Biarnes, M.; Majó, N.; Nofrarías, M.; Dolz, R.; et al. A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain. Avian Pathol. 2017, 46, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Sjaak de Wit, J.J.; Cook, J.K.A. Factors influencing the outcome of infectious bronchitis vaccination and challenge experiments. Avian Pathol. 2014, 43, 485–497. [Google Scholar] [CrossRef]
- Alluwaimi, A.M.; Alshubaith, I.H.; Al-Ali, A.M.; Abohelaika, S. The coronaviruses of animals and birds: Their zoonosis, vaccines, and models for SARS-CoV and SARS-CoV2. Front. Vet. Sci. 2020, 7, 582287. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol. 2020, 92, 433–440. [Google Scholar] [CrossRef]
- Smialek, M.; Tykalowski, B.; Dziewulska, D.; Stenzel, T.; Koncicki, A. Immunological aspects of the efficiency of protectotype vaccination strategy against chicken infectious bronchitis. BMC Vet Res. 2017, 13, 44. [Google Scholar] [CrossRef]
- Bande, F.; Arshad, S.S.; Bejo, M.H.; Moeini, H.; Omar, A.R. Progress and challenges towards the development of vaccines against avian infectious bronchitis. J. Immunol. Res. 2015, 2015, 424860. [Google Scholar] [CrossRef]
- Johnson, M.A.; Pooley, C.; Ignjatovic, J.; Tyack, S.G. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 2003, 21, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Kapczynski, D.R.; Hilt, D.A.; Shapiro, D.; Sellers, H.S.; Jackwood, M.W. Protection of chickens from infectious bronchitis by in ovo and intramuscular vaccination with a DNA vaccine expressing the S1 glycoprotein. Avian Dis. 2003, 47, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Han, Z.; Wang, Y.; Liang, S.; Jiang, L.; Hu, Y.; Kong, X.; Liu, S. Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens. Antivir. Res. 2016, 130, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Li, X.; Liu, G.; Li, R.; Liu, Q.; Shen, H.; Wang, W.; Xue, C.; Cao, Y. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus. J. Vet. Sci. 2014, 15, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.M.; Zhao, Y.; Gao, H.B.; Jing, Z.; Wang, M.; Cui, H.Y.; Tong, G.Z.; Wang, Y.F. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-g gene for immune protection against heterologous strains. Vaccine 2011, 29, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, H.N.; Wang, X.; Tang, J.N.; Lu, D.; Zhang, Y.F.; Guo, Z.C.; Li, Y.L.; Gao, R.; Kang, R.M. The protective immune response against infectious bronchitis virus induced by multi-epitope based peptide vaccines. Biosci. Biotech. Biochem. 2009, 73, 1500–1504. [Google Scholar] [CrossRef]
- Bijlenga, G.; Cook, J.K.; Gelb, J., Jr.; de Wit, J.J. Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: A review. Avian Pathol. 2004, 33, 550–557. [Google Scholar] [CrossRef]
- Chhabra, R.; Forrester, A.; Lemiere, S.; Awad, F.; Chantrey, J.; Ganapathy, K. Mucosal, cellular, and humoral immune responses induced by different live infectious bronchitis virus vaccination regimes and protection conferred against infectious bronchitis virus Q1 strain. Clin. Vaccine Immunol. 2015, 22, 1050–1059. [Google Scholar] [CrossRef]
- Finney, P.M.; Box, P.G.; Holmes, H.C. Studies with a bivalent infectious bronchitis killed virus vaccine. Avian Pathol. 1990, 19, 435–450. [Google Scholar] [CrossRef]
- Lee, H.J.; Youn, H.N.; Kwon, J.S.; Lee, Y.J.; Kim, J.H.; Lee, J.B.; Park, S.Y.; Choi, I.S.; Song, C.S. Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain. Vaccine 2010, 28, 2887–2894. [Google Scholar] [CrossRef]
Order/Suborder | Family/Subfamily | Genus/Subgenus | Notable Virus Species | Main Host |
---|---|---|---|---|
Nidovirales Cornidovirineae | Coronaviridae Orthocoronavirinae | Alphacoronavirus | ||
Duvinacovirus | Human coronavirus 229E (HCoV-229E) | Human | ||
Pedacovirus | Porcine epidemic diarrhea virus (PEDV) | Pig | ||
Rhinacovirus | Swine acute diarrhea syndrome coronavirus (SADS-CoV) | Pig | ||
Setracovirus | Human coronavirus NL63 (HCoV-NL63) | Human | ||
Alphacoronavirus 1 | ||||
Transmissible gastroenteritis virus (TGEV) | Pig | |||
Feline infectious peritonitis virus (FIPV) | Cat | |||
Canine coronavirus (CCoV) | Dog | |||
Betacoronavirus | ||||
Embecovirus | Betacoronavirus 1 | |||
Human coronavirus OC43 (HCoV-OC43) | Human | |||
Bovine coronavirus (BCoV) | Cow | |||
Equine coronavirus (ECoV) | Horse | |||
Human coronavirus HKU1 (HCoV-HKU1) | Human | |||
Merbecovirus | Middle East respiratory syndrome-related coronavirus (MERS-CoV) | Human | ||
Sarbecovirus | Severe acute respiratory syndrome-related coronavirus | |||
Severe acute respiratory syndrome-related coronavirus (SARS-CoV) | Human | |||
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) | Human | |||
Deltacoronavirus | ||||
Buldecovirus | Porcine deltacoronavirus (PDCoV) | Pig | ||
Gammacoronavirus | ||||
Brangacovirus | Goose coronavirus CB17 (GCoV-CB17) | Goose | ||
Igacovirus | Avian coronavirus | |||
Infectious bronchitis virus (IBV) | Chicken | |||
Turkey coronavirus (TCoV) | Turkey | |||
Duck coronavirus 2714 (DCoV-2714) | Duck |
Year a | Country | Host | Coexisting Strains/Genotype b | Refs |
---|---|---|---|---|
1931 | USA | Chicken | DMV/1639 (GI-17) CA1737 (GI-25) Mass-type (GI-1) | [12,16,17,18] |
1954 | Egypt | Chicken | EGY-var 1, 2 (GI-23) 793B-type (GI-13) | [19,20] |
1954 | Japan | Chicken | JP- I (GI-18) JP-Ⅱ (GI-7) JP-Ⅲ (GI-19, QX-type) JP-Ⅳ (GVI-1) 793B-type (GI-13) Mass-type (GI-1) | [21,22,23,24] |
1956 | Netherlands | Chicken | D1466 (GⅡ-1) D181 (GⅡ-2) QX-type (GI-19) 793B-type (GI-13) | [25,26,27] |
1957 | Brazil | Chicken | Mass-type (GI-1) SB2805 (GI-23) GI-11 GI-16 | [28,29] |
1960s | UK | Chicken | 793B-type (GI-13) QX-type (GI-19) Mass-type (GI-1) | [8,30] |
1962 | Australia | Chicken | N1/62 (GI-5) Vic S (GI-6) N18/91 (GⅢ-3) N1/03 (GⅤ) | [31,32] |
1962 | Thailand | Chicken | QX-type (GI-19) Mass-type (GI-1) 793B-type (GI-13) CU-92 (Novel variant) | [33,34] |
1967 | New Zealand | Chicken | N1/62 (GI-5) Vic S (GI-6) | [8,35] |
1969 | Chile | Chicken | 793B-type (GI-13) Q1 (GI-16) | [36,37] |
Early 1970s | Spain | Chicken | QX-type (GI-19) 793B-type (GI-13) Mass-type (GI-1) Italy 02 (GI-21) D274 (GI-12) | [38,39] |
1977 | Indonesia | Chicken | QX-type (GI-19) 793B-type (GI-13) Mass-type (GI-1) | [40,41] |
Early 1980s | China | Chicken | QX-type (GI-19) Taiwan-I (GI-7) TC07-2 (GⅥ-1) 793B-type (GI-13) Mass-type (GI-1) | [42,43,44] |
1984 | India | Chicken | Mass-type (GI-1) 793B-type (GI-13) Variant IBV(GI-24) | [45,46] |
1986 | Korea | Chicken | QX-type (GI-19) TC07-2 (GⅥ-1) D85/06 (GI-15) | [47,48] |
1986 | Morocco | Chicken | Moroccan isolates (GI-21) 793B-type (GI-13) Mass-type (GI-1) | [49,50] |
1990 | Nigeria | Chicken | Mass-type (GI-1) 793B-type (GI-13) Q1 (GI-16) QX-type (GI-19) | [51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhao, Y.; Zhang, G. Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens 2023, 12, 698. https://doi.org/10.3390/pathogens12050698
Zhao J, Zhao Y, Zhang G. Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens. 2023; 12(5):698. https://doi.org/10.3390/pathogens12050698
Chicago/Turabian StyleZhao, Jing, Ye Zhao, and Guozhong Zhang. 2023. "Key Aspects of Coronavirus Avian Infectious Bronchitis Virus" Pathogens 12, no. 5: 698. https://doi.org/10.3390/pathogens12050698
APA StyleZhao, J., Zhao, Y., & Zhang, G. (2023). Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens, 12(5), 698. https://doi.org/10.3390/pathogens12050698