Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Selection and Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Phenotypic and Genotypic Carbapenemase Detection
2.4. DNA Extraction, Whole Genome Sequencing, and Assembly
2.5. Annotation, Resistome and Virulome Detection, Serotype Prediction, and MLST
2.6. Phylogenetic Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical Relevance of the ESKAPE Pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2013; pp. 1–113. [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. 2022 Special Report: COVID-19 U.S. Impact on Antimicrobial Resistance. Available online: https://stacks.cdc.gov/view/cdc/117915 (accessed on 8 March 2023).
- Rossi, F. The Challenges of Antimicrobial Resistance in Brazil. Clin. Infect. Dis. 2011, 52, 1138–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortaleza, C.M.C.B.; Padoveze, M.C.; Kiffer, C.R.V.; Barth, A.L.; Carneiro, I.C.D.R.S.; Giamberardino, H.I.G.; Rodrigues, J.L.N.; Santos Filho, L.; de Mello, M.J.G.; Pereira, M.S.; et al. Multi-State Survey of Healthcare-Associated Infections in Acute Care Hospitals in Brazil. J. Hosp. Infect. 2017, 96, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Carmo, M.S.; Silbert, S.; Gales, A.C. SPM-1-Producing Pseudomonas aeruginosa: Analysis of the Ancestor Relationship Using Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis, and Automated Ribotyping. Microb. Drug Resist. 2011, 17, 215–220. [Google Scholar] [CrossRef]
- Shortridge, D.; Gales, A.C.; Streit, J.M.; Huband, M.D.; Tsakris, A.; Jones, R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa over 20 Years from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S63–S68. [Google Scholar] [CrossRef] [Green Version]
- Campana, E.H.; Xavier, D.E.; Petrolini, F.V.-B.B.; Cordeiro-Moura, J.R.; de Araujo, M.R.E.; Gales, A.C. Carbapenem-Resistant and Cephalosporin-Susceptible: A Worrisome Phenotype among Pseudomonas aeruginosa Clinical Isolates in Brazil. Braz. J. Infect. Dis. 2017, 21, 57–62. [Google Scholar] [CrossRef]
- Cacci, L.C.; Chuster, S.G.; Martins, N.; do Carmo, P.R.; Girão, V.B.d.C.; Nouér, S.A.; de Freitas, W.V.; de Matos, J.A.; Magalhães, A.C.d.G.; Ferreira, A.L.P.; et al. Mechanisms of Carbapenem Resistance in Endemic Pseudomonas aeruginosa Isolates after an SPM-1 Metallo-β-Lactamase Producing Strain Subsided in an Intensive Care Unit of a Teaching Hospital in Brazil. Mem. Inst. Oswaldo Cruz 2016, 111, 551–558. [Google Scholar] [CrossRef] [Green Version]
- de Sá Cavalcanti, F.L.; Almeida, A.C.S.; Vilela, M.A.; de Morais, M.M.C.; de Morais, M.A. Changing the Epidemiology of Carbapenem-Resistant Pseudomonas aeruginosa in a Brazilian Teaching Hospital: The Replacement of São Paulo Metallo-β-Lactamase-Producing Isolates. Mem. Inst. Oswaldo Cruz 2012, 107, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Mills, J.C.; Farrell, D.J.; Jones, R.N. Mutation-Driven β-Lactam Resistance Mechanisms among Contemporary Ceftazidime-Nonsusceptible Pseudomonas aeruginosa Isolates from U.S. Hospitals. Antimicrob. Agents Chemother. 2014, 58, 6844–6850. [Google Scholar] [CrossRef] [Green Version]
- Fournier, D.; Garnier, P.; Jeannot, K.; Mille, A.; Gomez, A.-S.; Plésiat, P. A Convenient Method To Screen for Carbapenemase-Producing Pseudomonas aeruginosa. J. Clin. Microbiol. 2013, 51, 3846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for Detection of Acquired Carbapenemase Genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; Syme, A.; et al. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A Novel Web Tool for WGS-Based Detection of Antimicrobial Resistance Associated with Chromosomal Point Mutations in Bacterial Pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [Green Version]
- Thrane, S.W.; Taylor, V.L.; Lund, O.; Lam, J.S.; Jelsbak, L. Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2016, 54, 1782–1788. [Google Scholar] [CrossRef] [Green Version]
- Curran, B.; Jonas, D.; Grundmann, H.; Pitt, T.; Dowson, C.G. Development of a Multilocus Sequence Typing Scheme for the Opportunistic Pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 2004, 42, 5644–5649. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications [Version 1; Referees: 2 Approved]. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Argimón, S.; Abudahab, K.; Goater, R.J.E.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.J.; Holden, M.T.G.; Yeats, C.A.; Grundmann, H.; et al. Microreact: Visualizing and Sharing Data for Genomic Epidemiology and Phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shropshire, W.C.; Dinh, A.Q.; Earley, M.; Komarow, L.; Panesso, D.; Rydell, K.; Gómez-Villegas, S.I.; Miao, H.; Hill, C.; Chen, L.; et al. Accessory Genomes Drive Independent Spread of Carbapenem- Resistant Klebsiella pneumoniae Clonal Groups 258 and 307 in Houston, TX. MBio 2022, 13, e00497-22. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.R. The Type III Secretion System of Pseudomonas aeruginosa: Infection by Injection. Nat. Rev. Microbiol. 2009, 7, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas Genomes: Diverse and Adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [Green Version]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Fonseca, E.L.; Freitas, F.D.; Vicente, A.C. The Colistin-Only-Sensitive (COS) Brazilian Pseudomonas aeruginosa Clone SP (ST 277) Is Spread Worldwide. Antimicrob. Agents Chemother. 2010, 54, 2743. [Google Scholar] [CrossRef] [Green Version]
- El-Basst, R.; Saliba, S.; Saleh, L.; Saoud, N.; Azar, E.; Zalloua, P.; Chamieh, A. The Effect of Decreased Antipseudomonal Drug Consumption on Pseudomonas aeruginosa Incidence and Antimicrobial Susceptibility Profiles over 9 Years in a Lebanese Tertiary Care Center. Antibiotics 2023, 12, 192. [Google Scholar] [CrossRef]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The Increasing Threat of Pseudomonas aeruginosa High-Risk Clones. Drug Resist. Updat. 2015, 21–22, 41–59. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Rybak, J.M.; Rybak, M.J. The β-Lactams Strike Back:Ceftazidime-Avibactam. Pharmacotherapy 2015, 35, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.L.d.C.; Ximenes, R.M.; Maciel, M.A.V. Occurrence of BlaKPC Gene in Clinical Isolates of Pseudomonas aeruginosa from Brazil. ABCS Health Sci. 2022, 47, e022306. [Google Scholar] [CrossRef]
- Santella, G.; Cittadini, R.; Papalia, M.; Vera Ocampo, C.; Del Castillo, M.; Vay, C.; Gutkind, G.; Radice, M. First Clonal Spread of KPC-Producing Pseudomonas aeruginosa in Buenos Aires, Argentina. Infect. Genet. Evol. 2012, 12, 2003–2005. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, C.; Wang, Q.; Zeng, Y.; Sun, Q.; Shu, L.; Lu, J.; Cai, J.; Wang, S.; Zhang, R.; et al. Emergence and Expansion of a Carbapenem-Resistant Pseudomonas aeruginosa Clone Are Associated with Plasmid-Borne Bla KPC-2 and Virulence-Related Genes. mSystems 2021, 6, e00154-21. [Google Scholar] [CrossRef]
- Carrara-Marroni, F.E.; Cayô, R.; Streling, A.P.; Da Silva, A.C.R.; Palermo, R.L.; Romanin, P.; Venâncio, E.; Perugini, M.R.E.; Pelisson, M.; Gales, A.C. Emergence and Spread of KPC-2-Producing Pseudomonas aeruginosa Isolates in a Brazilian Teaching Hospital. J. Glob. Antimicrob. Resist. 2015, 3, 304–306. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P.; Lagrutta, E.; Cleary, T.; Munoz-Price, L.S. Emergence of KPC-Producing Pseudomonas aeruginosa in the United States. Antimicrob. Agents Chemother. 2010, 54, 3072. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
Antimicrobial Category | Antimicrobial Agent | Susceptible | Intermediate | Resistant | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Aminoglycosides | Amikacin | 93 | 78.2 | 7 | 5.9 | 19 | 16.0 |
Gentamicin | 78 | 65.5 | 17 | 14.3 | 24 | 20.2 | |
Tobramycin | 99 | 83.2 | 2 | 1.7 | 18 | 15.1 | |
Netilmicin | 83 | 69.7 | 10 | 8.4 | 26 | 21.8 | |
Antipseudomonal carbapenems | Imipenem | 59 | 49.6 | 3 | 2.5 | 57 | 47.9 |
Meropenem | 67 | 56.3 | 9 | 7.6 | 43 | 36.1 | |
Doripenem | 79 | 66.4 | 10 | 8.4 | 30 | 25.2 | |
Antipseudomonal cephalosporins | Cefepime | 86 | 72.3 | 14 | 11.8 | 19 | 16 |
Ceftazidime | 75 | 63.0 | 12 | 10.1 | 32 | 26.9 | |
Antipseudomonal fluoroquinolones | Ciprofloxacin | 84 | 70.6 | 9 | 7.6 | 26 | 21.8 |
Levofloxacin | 63 | 52.9 | 26 | 21.8 | 30 | 25.2 | |
Antipseudomonal penicillins + β-lactamase inhibitors | Ticarcillin–clavulanic acid | 0 | 0 | 20 | 54.1 | 17 | 45.9 |
Piperacillin–tazobactam | 65 | 54.6 | 24 | 20.2 | 30 | 25.2 | |
Monobactam | Aztreonam | 54 | 45.4 | 28 | 23.5 | 37 | 31.1 |
Phosphonic acids | Fosfomycin | 77 | 64.7 | 28 | 23.5 | 14 | 11.8 |
Polymyxins | Polymyxin B 1 | 0 | 0 | 116 | 97.5 | 3 | 2.5 |
Colistin 1 | 0 | 0 | 115 | 96.6 | 4 | 3.4 |
Drug Method | Breakpoint (S | R) | Reference | % of | Number of Isolates Inhibited at Minimal Inhibitory Concentration (MIC, in μg/mL) Indicated Below | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | R | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | >64 | |||
Amikacin 1 | ≤16 | ≥64 | CLSI 2022 | 75.6 | 9.2 | 15.1 | 1 | 3 | 4 | 33 | 69 | 90 | 101 | 105 | 119 | |||
Gentamicin 1 | ≤4 | ≥16 | CLSI 2022 | 59.7 | 16.0 | 24.4 | 1 | 3 | 6 | 29 | 71 | 90 | 100 | 107 | 119 | |||
Imipenem 1 | ≤2 | ≥8 | CLSI 2022 | 47.9 | 7.6 | 44.5 | 3 | 20 | 48 | 57 | 66 | 84 | 104 | 111 | 117 | 119 | ||
Meropenem 1 | ≤2 | ≥8 | CLSI 2022 | 50.4 | 10.1 | 39.5 | 1 | 11 | 31 | 42 | 49 | 60 | 72 | 85 | 108 | 116 | 118 | 119 |
Colistin 1 | ≤2 = I | ≥4 | CLSI 2022 | NA | 96.6 | 3.4 | 3 | 5 | 12 | 57 | 106 | 115 | 119 | |||||
Polymyxin B 1 | ≤2 = I | ≥4 | CLSI 2022 | NA | 97.5 | 2.5 | 3 | 16 | 73 | 116 | 118 | 119 | ||||||
Tigecycline 1 | NA | NA | NA | NA | NA | 1 | 2 | 3 | 29 | 86 | 113 | 118 | 119 | ||||
Ceftazidime-avibactam 1 | ≤8/4 | ≥16/4 | CLSI 2022 | 94.1 | 0 | 5.9 | 2 | 30 | 73 | 100 | 112 | 116 | 118 | 119 | ||||
Plazomicin 2 | S ≤ 2 | U.S. FDA for Enterobacterales | 11.8 | 0 | 88.2 | 1 | 2 | 3 | 14 | 55 | 83 | 108 | 112 | 114 | 119 | ||
Meropenem-vaborbactam 2 | ≤4/8 | ≥16/8 | CLSI 2022 for Enterobacterales | 66.4 | 20.2 | 13.4 | 7 | 19 | 36 | 44 | 51 | 61 | 79 | 95 | 114 | 116 | 117 | 119 |
Imipenem–relebactam 2 | ≤2/4 | ≥8/4 | CLSI 2022 | 81.5 | 17.6 | 0.8 | 1 | 27 | 63 | 97 | 117 | 119 | ||||||
Ceftazidime–avibactam 2 | ≤8/4 | ≥16/4 | CLSI 2022 | 89.9 | 4.2 | 5.9 | 1 | 3 | 25 | 61 | 94 | 107 | 113 | 116 | 119 | |||
Cefoperazone–sulbactam 2 | ≤16 | ≥64 | Sulperazone® package insert | 64.7 | 19.3 | 16.0 | 19 | 47 | 66 | 77 | 90 | 104 | 119 | |||||
Ceftolozane–tazobactam 2 | ≤4/4 | ≥16/4 | CLSI 2022 | 92.4 | 2.5 | 5.0 | 1 | 22 | 73 | 96 | 110 | 112 | 113 | 114 | 119 | |||
Cefiderocol 2 | ≤4 | ≥16 | CLSI 2022 | 100.0 | 0 | 0 | 66 | 92 | 105 | 115 | 117 | 118 | 119 | |||||
Fosfomycin 2 | NA | NA | NA | NA | NA | 2 | 6 | 7 | 10 | 15 | 29 | 119 | |||||
Eravacycline 2 | NA | NA | NA | NA | NA | 1 | 2 | 14 | 23 | 34 | 46 | 119 |
ST | Number of Isolates | Number of Cities | Number of Hospitals | Source * |
---|---|---|---|---|
235 | 16 | 7 | 8 | B I O R S |
274 | 7 | 3 | 4 | C R U |
446 | 5 | 2 | 2 | B I O R |
277 | 4 | 2 | 4 | O R U |
381 | 4 | 2 | 2 | B R |
179 | 3 | 2 | 2 | R |
252 | 3 | 1 | 1 | B R |
309 | 3 | 2 | 2 | B R U |
313 | 3 | 3 | 3 | R U |
557 | 3 | 1 | 1 | B R U |
389 | 2 | 1 | 1 | B |
598 | 2 | 1 | 1 | B U |
875 | 2 | 1 | 1 | I R |
2317 | 2 | 1 | 1 | B R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, C.H.; Yamada, A.Y.; Souza, A.R.d.; Lima, M.d.J.d.C.; Cunha, M.P.V.; Ferraro, P.S.P.; Sacchi, C.T.; Santos, M.B.N.d.; Campos, K.R.; Tiba-Casas, M.R.; et al. Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil. Pathogens 2023, 12, 918. https://doi.org/10.3390/pathogens12070918
Camargo CH, Yamada AY, Souza ARd, Lima MdJdC, Cunha MPV, Ferraro PSP, Sacchi CT, Santos MBNd, Campos KR, Tiba-Casas MR, et al. Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil. Pathogens. 2023; 12(7):918. https://doi.org/10.3390/pathogens12070918
Chicago/Turabian StyleCamargo, Carlos Henrique, Amanda Yaeko Yamada, Andreia Rodrigues de Souza, Marisa de Jesus de Castro Lima, Marcos Paulo Vieira Cunha, Pedro Smith Pereira Ferraro, Claudio Tavares Sacchi, Marlon Benedito Nascimento dos Santos, Karoline Rodrigues Campos, Monique Ribeiro Tiba-Casas, and et al. 2023. "Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil" Pathogens 12, no. 7: 918. https://doi.org/10.3390/pathogens12070918
APA StyleCamargo, C. H., Yamada, A. Y., Souza, A. R. d., Lima, M. d. J. d. C., Cunha, M. P. V., Ferraro, P. S. P., Sacchi, C. T., Santos, M. B. N. d., Campos, K. R., Tiba-Casas, M. R., Freire, M. P., & Barretti, P. (2023). Genomics and Antimicrobial Susceptibility of Clinical Pseudomonas aeruginosa Isolates from Hospitals in Brazil. Pathogens, 12(7), 918. https://doi.org/10.3390/pathogens12070918