Mycoplasmosis in Poultry: An Evaluation of Diagnostic Schemes and Molecular Analysis of Egyptian Mycoplasma gallisepticum Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Clinical and Postmortem Examination
2.3. Sampling
2.4. Microbiological Characterization of MG Isolates
2.5. Molecular Characterization of MG Isolates
2.5.1. DNA Extraction
2.5.2. PCR Screening of the mgc2 Gene
2.5.3. QRT-PCR Screening of the mgc2 Gene
2.6. Statistical Analysis
2.7. PCR Amplification of Six Housekeeping Genes
2.8. Sequencing and Phylogenetic Analysis
3. Results
3.1. Clinical Signs
3.2. Postmortem Lesions
3.3. Bacteriological Diagnostic Scheme of MG
3.4. Molecular Diagnostic Scheme of MG
3.4.1. Molecular Screening of mgc2 Gene of MG Using qRT-PCR
3.4.2. Molecular Screening of mgc2 Gene of MG Using PCR
3.5. Statistical Analysis
3.6. Molecular Screening of MG in Six Housekeeping Genes
3.7. Sequencing and Phylogenetic Analysis
- mgc2
- ugpA
- mraW
- atpG
- IgT
- DUF31196
3.8. Protein Alignment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, J.P.; Tomar, P.; Singh, Y.; Khurana, S.K. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: A systematic review. Anim. Biotechnol. 2021, 33, 1711–1720. [Google Scholar] [CrossRef]
- OIE. Avian mycoplasmosis (Mycoplasma gallisepticum, M. synoviae). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organization for Animal Health: Paris, France, 2021; Volume 2, pp. 844–859. [Google Scholar]
- Nikfarjam, L.; Farzaneh, P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 2012, 13, 203–212. [Google Scholar]
- Sawicka, A.; Durkalec, M.; Tomczyk, G.; Kursa, O. Occurrence of Mycoplasma gallisepticum in wild birds: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0231545. [Google Scholar] [CrossRef] [PubMed]
- Mugunthan, S.P.; Kannan, G.; Chandra, H.M.; Paital, B. Infection, Transmission, Pathogenesis and Vaccine Development against Mycoplasma gallisepticum. Vaccines 2023, 11, 469. [Google Scholar] [CrossRef]
- Matucci, A.; Stefani, E.; Gastaldelli, M.; Rossi, I.; De Grandi, G.; Gyuranecz, M.; Catania, S. Molecular Differentiation of Mycoplasma gallisepticum Outbreaks: A Last Decade Study on Italian Farms Using GTS and MLST. Vaccines 2020, 8, 665. [Google Scholar] [CrossRef]
- Limsatanun, A.; Pakpinyo, S.; Limpavithayakul, K.; Prasertsee, T. Targeted sequencing analysis of Mycoplasma gallisepticum isolates in chicken layer and breeder flocks in Thailand. Sci. Rep. 2022, 12, 9900. [Google Scholar] [CrossRef]
- Feberwee, A.; Wit, S.; Dijkman, R. Clinical expression, epidemiology, and monitoring of Mycoplasma gallisepticum and Mycoplasma synoviae: An update. Avian Pathol. 2022, 51, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.; Elsafty, M.M.; Eljakee, J.K.; Abdalla, H.I.; Mahmoud, H. Study the effect of mycoplasma contamination of eggs used in virus titration and efficacy of some attennuated poultry viral vaccines. Asian J. Pharm. Clin. Res. 2017, 10, 216–222. [Google Scholar] [CrossRef]
- Hennigan, S.L.; Driskell, J.D.; Ferguson-Noel, N.; Dluhy, R.A.; Zhao, Y.; Tripp, R.A.; Krause, D.C. Detection and differentiation of avian mycoplasmas by surface-enhanced Raman spectroscopy based on a silver nanorod array. Appl. Environ. Microbiol. 2012, 78, 1930–1935. [Google Scholar] [CrossRef]
- Garcia-Morante, B.; Maes, D.; Sibila, M.; Betlach, A.M.; Sponheim, A.; Canturri, A.; Pieters, M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet. J. 2022, 288, 105877. [Google Scholar] [CrossRef] [PubMed]
- Marouf, S.; Khalf, M.A.; Alorabi, M.; El-Shehawi, A.M.; El-Tahan, A.M.; El-Hack, M.E.A.; El-Saadony, M.T.; Salem, H.M. Mycoplasma gallisepticum: A devastating organism for the poultry industry in Egypt. Poult. Sci. 2022, 101, 101658. [Google Scholar] [CrossRef]
- Boonyayatra, S.; Fox, L.K.; Gay, J.M.; Sawant, A.; Besser, T.E. Discrimination between Mycoplasma and Acholeplasma species of bovine origin using digitonin disc diffusion assay, nisin disc diffusion assay, and conventional polymerase chain reaction. J. Vet. Diagn. Investig. 2012, 24, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Galluzzo, P.; Migliore, S.; Galuppo, L.; Condorelli, L.; Hussein, H.A.; Licitra, F.; Coltraro, M.; Sallemi, S.; Antoci, F.; Cascone, G.; et al. First Molecular Survey to Detect Mycoplasma gallisepticum and Mycoplasma synoviae in Poultry Farms in a Strategic Production District of Sicily (South-Italy). Animals 2022, 12, 962. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M.; Hepp, D.; Sun, S.; Ikuta, N.; Levisohn, S.; Kleven, S.H.; García, M. Use of molecular diversity of Mycoplasma gallisepticum by gene-targeted sequencing (GTS) and random amplified polymorphic DNA (RAPD) analysis for epidemiological studies. Microbiology 2005, 151, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Bekő, K.; Kreizinger, Z.; Sulyok, K.M.; Kovács, Á.B.; Grózner, D.; Catania, S.; Bradbury, J.; Lysnyansky, I.; Olaogun, O.M.; Czanik, B.; et al. Genotyping Mycoplasma gallisepticum by multilocus sequence typing. Vet. Microbiol. 2019, 231, 191–196. [Google Scholar] [CrossRef] [PubMed]
- De Been, M.; Pinholt, M.; Top, J.; Bletz, S.; Mellmann, A.; van Schaik, W.; Brouwer, E.; Rogers, M.; Kraat, Y.; Bonten, M.; et al. Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium. J. Clin. Microbiol. 2015, 53, 3788–3797. [Google Scholar] [CrossRef]
- Ricketts, C.; Pickler, L.; Maurer, J.; Ayyampalayam, S.; García, M.; Ferguson-Noel, N.M. Identification of Strain-Specific Sequences That Distinguish a Mycoplasma gallisepticum Vaccine Strain from Field Isolates. J. Clin. Microbiol. 2017, 55, 244–252. [Google Scholar] [CrossRef]
- Zhang, Q.; Zuo, Z.; Guo, Y.; Zhang, T.; Han, Z.; Huang, S.; Karama, M.; Saleemi, M.K.; Khan, A.; He, C. Contaminated feed-borne Bacillus cereus aggravates respiratory distress post avian influenza virus H9N2 infection by inducing pneumonia. Sci. Rep. 2019, 9, 7231. [Google Scholar] [CrossRef]
- OIE. Avain Mycoplasmosis. In Manual of Diagnostic Tests and Vaccines for Terrasterial Animals (Avian mycoplasmosis (Mycoplasma gallisepticum, M. Synoviae); World Organization for Animal Health: Paris, France, 2008; Chapter 2.3.5; pp. 482–496. [Google Scholar]
- Sabry, M.Z.; Ahmed, A.A. Evaluation of media and cultural procedure for the primary isolation of Mycoplasma from female genitalia of farm animals. J. Egypt. Vet. Med. Assoc. 1975, 35, 18–36. [Google Scholar]
- Edward, D.G.; Freundt, E.A. Type strains of species of the order Mycoplasmatales, including designation of neotypes for Mycoplasma mycoides subsp. mycoides, Mycoplasma agalactiae subsp. agalactiae, and Mycoplasma arthritidis. Int. J. Syst. Evol. 1973, 15, 23–55. [Google Scholar] [CrossRef]
- Ghanem, M.; El-Gazzar, M. Development of a Multilocus Sequence Typing Assay for Mycoplasma gallisepticum. Avian Dis. 2019, 63, 693–702. [Google Scholar] [CrossRef]
- Fraga, A.P.; de Vargas, T.; Ikuta, N.; Fonseca, A.S.; Celmer, Á.J.; Marques, E.K.; Lunge, V.R. A Multiplex real-time PCR for detection of Mycoplasma gallisepticum and Mycoplasma synoviae in clinical samples from Brazilian commercial poultry flocks. Braz. J. Microbiol. 2013, 44, 505–510. [Google Scholar] [CrossRef]
- Josefsen, M.H.; Löfström, C.; Hansen, T.B.; Christensen, L.S.; Olsen, J.E.; Hoorfar, J. Rapid quantification of viable Campylobacter bacteria on chicken carcasses, using real-time PCR and propidium monoazide treatment, as a tool for quantitative risk assessment. Appl. Environ. Microbiol. 2010, 76, 5097–5104. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Prabhu, M.S.; Malmarugan, N.; Sweetline Anne, S.; Parthiban, G.; Balakrishnan; Rajeswar, J. Detection of Mycoplasma gallisepticum infection in Turkey and chicken farms of Tamilnadu, India. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 3151–3158. [Google Scholar] [CrossRef]
- Parker, T.A.; Branton, S.L.; Jones, M.S.; Peebles, E.D.; Gerard, P.D.; Willeford, K.O.; Pharr, G.T.; Maslin, W.R. Effects of an S6 strain of Mycoplasma gallisepticum challenge at onset of lay on digestive and reproductive tract characteristics in commercial layers. Avian Dis. 2003, 47, 96–100. [Google Scholar] [CrossRef]
- Megahed, M.M.; Ghanem, I.A.; Hussein, A.H.; Abdelaziz, W.S. Molecular Identification of Some Respiratory Pathogens from Broiler Chickens in Sharkia Governorate, Egypt. Zag. Vet. J. 2020, 48, 174–188. [Google Scholar] [CrossRef]
- Bharathi, R.; Karthik, K.; Mahaprabhu, R.; Manimaran, K.; Geetha, T.S.; Tensingh Gnanaraj, P.; Roy, P. Outbreak and management of Mycoplasma gallisepticum infection in desi chicken and turkey flocks in an organized mixed farm. Comp. Clin. Pathol. 2018, 27, 621–625. [Google Scholar] [CrossRef]
- Emam, M.; Hashem, Y.M.; El-Hariri, M.; El-Jakee, J. Detection and antibiotic resistance of Mycoplasma gallisepticum and Mycoplasma synoviae among chicken flocks in Egypt. Vet. World 2020, 13, 1410–1416. [Google Scholar] [CrossRef]
- Roussan, D.A.; Haddad, R.; Khawaldeh, G. Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan. Poult. Sci. 2008, 87, 444–448. [Google Scholar] [CrossRef]
- Hassan, K.E.; Shany, S.A.; Ali, A.; Dahshan, A.H.; El-Sawah, A.A.; El-Kady, M.F. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult. Sci. 2016, 95, 1271–1280. [Google Scholar] [CrossRef]
- Murakami, S.; Miyama, M.; Ogawa, A.; Shimada, J.; Nakane, T. Occurrence of conjunctivitis, sinusitis and upper region tracheitis in Japanese quail (Coturnix coturnix japonica), possibly caused by Mycoplasma gallisepticum accompanied by Cryptosporidium sp. infection. Avian Pathol. 2002, 31, 363–370. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. A Comprehensive Review on the Common Emerging Diseases in Quails. J. World Poult. Res. 2019, 9, 160–174. [Google Scholar] [CrossRef]
- Heleili, N.; Ayachi, A.; Mamache, B.; Chelihi, A.J. Seroprevalenceof Mycoplasma synoviae and Mycoplasma gallisepticum at Batna commercial poultry farms in Algeria. Vet. World 2012, 5, 709–712. [Google Scholar] [CrossRef]
- García, M.; Ikuta, N.; Levisohn, S.; Kleven, S.H. Evaluation and comparison of various PCR methods for detection of Mycoplasma gallisepticum infection in chickens. Avian Dis. 2005, 49, 125–132. [Google Scholar] [CrossRef]
- Kempf, I.; Blanchard, A.; Gesbert, F.; Guittet, M.; Bennejean, G. The polymerase chain reaction for Mycoplasma gallisepticum detection. Avian Pathol. 1993, 22, 739–750. [Google Scholar] [CrossRef]
- Hossam, M.; Wagih, A.; Mona, E.; Mahmoud, E.; Rehab, E.; Salah, E.T. The Recovery and Molecular Diagnosis of Mycoplasma gallisepticum Infection in Commercial Poultry Flocks in Egypt. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- MÜŞTak, İ.B.; Kolukirik, M. Development of real-time PCR method for the diagnosis of Mycoplasma gallisepticum and Mycoplasma synoviae. Etlik Vet. Mikrobiyoloji Derg. 2021, 32, 40–44. [Google Scholar] [CrossRef]
- Raviv, Z.; Kleven, S.H. The development of diagnostic real-time TaqMan PCRs for the four pathogenic avian mycoplasmas. Avian Dis. 2009, 53, 103–107. [Google Scholar] [CrossRef]
- Kamble, S.Y.; Gandge, R.S.; Majee, S.B. Diagnosis of poultry mycoplasmosis by cultural isolation and PCR. Indian J. Anim. Sci. 2015, 85, 1073–1076. [Google Scholar]
- Kempf, I. DNA amplification methods for diagnosis and epidemiological investigations of avian mycoplasmosis. Avian Pathol. 1998, 27, 7–14. [Google Scholar] [CrossRef]
- Sulyok, K.M.; Kreizinger, Z.; Bekő, K.; Forró, B.; Marton, S.; Bányai, K.; Catania, S.; Ellis, C.; Bradbury, J.; Olaogun, O.M.; et al. Development of Molecular Methods for Rapid Differentiation of Mycoplasma gallisepticum Vaccine Strains from Field Isolates. J. Clin. Microbiol. 2019, 57, e01084-18. [Google Scholar] [CrossRef]
- Gharaibeh, S.; Laibinis, V.; Wooten, R.; Stabler, L.; Ferguson-Noel, N. Molecular Characterization of Mycoplasma gallisepticum Isolates from Jordan. Avian Dis. 2011, 55, 212–216. [Google Scholar] [CrossRef]
- Khalifa, R.; Eissa, S.; El-Hariri, M.; Refai, M. Sequencing analysis of Mycoplasma gallisepticum wild strains in vaccinated chicken breeder flocks. J. Mol. Microbiol. Biotechnol. 2014, 24, 98–104. [Google Scholar] [CrossRef]
- Tomar, P.; Singh, Y.; Mahajan, N.; Jindal, N. Isolation and phylogenetic analysis of avian mycoplasmas from poultry affected with respiratory infections in India. Indian J. Anim. Res. 2021, 55, 199–204. [Google Scholar]
- De la Cruz, L.; Barrera, M.; Rios, L.; Corona-González, B.; Bulnes, C.A.; Díaz-Sánchez, A.A.; Agüero, J.A.; Lobo-Rivero, E.; Pérez, L.J. Unraveling the Global Phylodynamic and Phylogeographic Expansion of Mycoplasma gallisepticum: Understanding the Origin and Expansion of This Pathogen in Ecuador. Pathogens 2020, 9, 674. [Google Scholar] [CrossRef]
- Levisohn, S.; Dykstra, M.J.; Lin, M.Y.; Kleven, S.H. Comparison of in vivo and in vitro methods for pathogenicity evaluation for Mycoplasma gallisepticum in respiratory infection. Avian Pathol. 1986, 15, 233–246. [Google Scholar] [CrossRef]
- Peebles, E.D.; Parker, T.A.; Branton, S.L.; Willeford, K.O.; Jones, M.S.; Gerard, P.D.; Pharr, G.T.; Maslin, W.R. Effects of an S6 strain of Mycoplasma gallisepticum inoculation before beginning of lay on the leukocytic characteristics of commercial layers. Avian Dis. 2004, 48, 196–201. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Fonseca, M.M.; Batistuzzo De Medeiros, S.; Scortecci, K.C.; Blaha, C.A.G.; Agnez-Lima, L.F. DNA repair in reduced genome: The Mycoplasma model. Gene 2005, 360, 111–119. [Google Scholar] [CrossRef]
- Delaney, N.F.; Balenger, S.; Bonneaud, C.; Marx, C.J.; Hill, G.E.; Ferguson-Noel, N.; Tsai, P.; Rodrigo, A.; Edwards, S.V. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet. 2012, 8, e1002511. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5 to 3) | Product Size (bp) | Reference | |
---|---|---|---|---|
Forward | Reverse | |||
ugpA | CGTAAGAATAAGCCGTATAAAGTTCC | GGTTAAGATTTGGGTGCCATTAG | 843 | [23] |
atpG | CACACTTTGGATTCAATTAAACAACC | GCAATGAAKATGCTTTCAACCG | 668 | |
DUF31196 | GGRTAAGAAGGATAATAATCTTGCAT | TTGTGGTTAGTGGGGATAATGAA | 740 | |
mraW | GGTTTGGCGGTCATAGTTAC | CAAGGACGAATAGTTTGGCTG | 822 | |
lgT | CAGGCAATCATACAATAAACGATAG | CATCAGCATAAAARAACATTTCAGAG | 1071 | |
Mgc2* | TAA ACC CAC CTC CAG CTT TAT TTC C | CGC AAT TTG GTC CTA ATC CCCAAC A | 824 | [15] |
Mgc2** | GCT GCA CTA AAT GAT ACG TCA AA | CTA GAG GGT TGG ACA GTT ATG | [24] |
Species | Number of Flocks | Conventional Culturing | Digitonin Bio Typing | ||||
---|---|---|---|---|---|---|---|
48 h Incubated PPLO Broth | PPLO Agar | ||||||
positive | % | positive | % | positive | % | ||
Broiler chickens | 20 | 13 | 65 | 7 | 35 | 3 | 42.8 |
Turkey Poults | 10 | 5 | 50 | 4 | 40 | 3 | 75 |
Quail broilers | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Chicken layers | 20 | 8 | 40 | 6 | 30 | 6 | 100 |
Quail breeders | 3 | 2 | 66.6 | 2 | 66.6 | 2 | 100 |
total | 55 | 28 | 50.9 | 19 | 34.5 | 14 | 73.6 |
Items | Conventional | PCR from Broth | PCR from Swabs | qRT PCR from Swabs |
---|---|---|---|---|
True positive | 19 (34.54) | 38 (69.09) | 27 (49.09) | 38 (69.09) |
False positive | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
True negative | 6 (10.91) | 6 (10.91) | 6 (10.91) | 6 (10.91) |
False negative | 30 (54.55) | 11 (20.00) | 22 (40.00) | 11 (20.00) |
Sensitivity | 38.78 (25.2–53.8) | 77.55 (63.4–88.2) | 55.10 (40.2–69.3) | 77.55 (63.4–88.2) |
Specificity | 100.00 (54.1–100.0) | 100.00 (54.1–100.0) | 100.00 (54.1–100.0) | 100.00 (54.1–100.0) |
AC | 45.45 | 80 | 60 | 80 |
PPV | 100.0 (54.1–100) | 100.0 (54.1–100) | 100.00 (54.1–100.0) | 100.0 (54.1–100) |
NPV | 16.7 (13.8–20.0) | 35.3 (24.5–47.9) | 21.4 (16.7–27.1) | 35.3 (24.5–47.9) |
Kappa value | 12.14 | 42.98 | 21.12 | 42.98 |
AUC | 0.694 (0.555–0.811) | 0.888 (0.774–0.957) | 0.776 (0.643–0.877) | 0.888 (0.774–0.957) |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Strain Name | Flock Code | Host Origin | Locality | Accession Number | |||||
---|---|---|---|---|---|---|---|---|---|
mgc2 | ugpA | mraW | lgT | DUF311-96 | atpG | ||||
Egypt/Mycoplasma gallisepticum/CH/3/22 | 3-B | Chicken broiler | Sharkia | OP660877 | OP660865 | OP660888 | NS | NS | NS |
Egypt/Mycoplasma gallisepticum/CH/8/22 | 8-B | Chicken broiler | Sharkia | OP660878 | OP660866 | OP660889 | OP660873 | NS | OP660861 |
Egypt/Mycoplasma gallisepticum/CH/15/22 | 15-B | Chicken broiler | South Sinai | OP660879 | OP660867 | NS | NS | NS | OP660862 |
Egypt/Mycoplasma gallisepticum/CH/22/22 | 2-L | Chicken layer | Sharkia | OP660880 | OR125944 | OP660890 | NS | NS | OP660863 |
Egypt/Mycoplasma gallisepticum/CH/26/22 | 6-L | Chicken layer | Sharkia | OP660881 | OP660868 | OP660891 | NS | NS | NS |
Egypt/Mycoplasma gallisepticum/CH/32/22 | 12-L | Chicken breeder | Port Said | OP660882 | OP660869 | OP660892 | NS | NS | NS |
Egypt/Mycoplasma gallisepticum/TR/41/22 | 1-TR | Turkey Poults | Sharkia | OP660883 | NS | OP660893 | OP660874 | NS | OP660864 |
Egypt/Mycoplasma gallisepticum/TR/47/22 | 7-TR | Turkey Poults | Ismailia | OP660884 | OP660870 | OP660894 | NS | NS | NS |
Egypt/Mycoplasma gallisepticum/TR/44/22 | 4-TR | Turkey Poults | Sharkia | OP660885 | OP660871 | NS | NS | OP660875 | NS |
Egypt/Mycoplasma gallisepticum/QA/53/22 | 3-Q-BR | Quail breeder | Dakahlia | OP660886 | OP660872 | OP660895 | NS | OP660876 | NS |
Egypt/Mycoplasma gallisepticum/QA/55/22 | 5-Q-BR | Quail breeder | Sharkia | OP660887 | NS | NS | NS | NS | NS |
Position | 99 | 108 | 110 | 119 | 127 | 131 | 154 | 173 | 185 | 190 | 194 | 202 | 205 | 212 | 215 | 217 | 219 | 221 | 224 | 229 | 231 | 232 | 233 | 235 | 236 | 239 | 240 | 241 | 243 | 245 | 246 | 251 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
* Consensus | Q | S | T | V | D | V | L | H | P | M | H | N | P | M | R | N | P | Q | N | R | G | F | R | Q | P | G | V | S | G | K | A | N |
CH/15/22 | E | P | A | T | G | A | P | Q | - | I | Q | . | . | I | - | - | L | - | - | - | - | - | - | - | - | - | A | P | - | - | T | - |
QA/53/22 | E | P | A | T | G | A | P | Q | S | - | Q | K | S | I | - | - | L. | - | - | - | - | - | - | - | - | - | A | P | - | - | - | - |
TR/41/22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | K | C | - | - | - | - | - | - | - | - | - | - | - |
TR/44/22 | H | - | A | A | - | - | - | - | - | - | - | - | - | - | T | F | - | L | I | - | - | L | T | P | A | A | . | T | E | N | - | H |
CH/32/22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | A | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-baqir, A.; Hassanin, O.; Al-Rasheed, M.; Ahmed, M.S.; Mohamed, M.H.A.; El Sayed, M.S.; Megahed, M.; El-Demerdash, A.; Hashem, Y.; Eid, A. Mycoplasmosis in Poultry: An Evaluation of Diagnostic Schemes and Molecular Analysis of Egyptian Mycoplasma gallisepticum Strains. Pathogens 2023, 12, 1131. https://doi.org/10.3390/pathogens12091131
Al-baqir A, Hassanin O, Al-Rasheed M, Ahmed MS, Mohamed MHA, El Sayed MS, Megahed M, El-Demerdash A, Hashem Y, Eid A. Mycoplasmosis in Poultry: An Evaluation of Diagnostic Schemes and Molecular Analysis of Egyptian Mycoplasma gallisepticum Strains. Pathogens. 2023; 12(9):1131. https://doi.org/10.3390/pathogens12091131
Chicago/Turabian StyleAl-baqir, Ahmed, Ola Hassanin, Mohammed Al-Rasheed, Mohamed S. Ahmed, Mahmoud H. A. Mohamed, Mohamed Shawky El Sayed, Mohamed Megahed, Azza El-Demerdash, Youserya Hashem, and Amal Eid. 2023. "Mycoplasmosis in Poultry: An Evaluation of Diagnostic Schemes and Molecular Analysis of Egyptian Mycoplasma gallisepticum Strains" Pathogens 12, no. 9: 1131. https://doi.org/10.3390/pathogens12091131
APA StyleAl-baqir, A., Hassanin, O., Al-Rasheed, M., Ahmed, M. S., Mohamed, M. H. A., El Sayed, M. S., Megahed, M., El-Demerdash, A., Hashem, Y., & Eid, A. (2023). Mycoplasmosis in Poultry: An Evaluation of Diagnostic Schemes and Molecular Analysis of Egyptian Mycoplasma gallisepticum Strains. Pathogens, 12(9), 1131. https://doi.org/10.3390/pathogens12091131