Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli
Abstract
1. Introduction
2. Plasmids and Integrons Are Prerequisite but Insufficient Factors to Explain the Fitness
3. The Possible Role of Virulence-Associated Colonization Factors
4. Fitness Advantage of Fluoroquinolone-Resistance-Conferring Mutations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitout, J.D.D.; Peirano, G.; Chen, L.; DeVinney, R.; Matsumura, Y. Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. Antimicrob. Agents Chemother. 2022, 66, e0051122. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.; Haverkate, M.; Veenemans, J.; Hendriks, Y.; Verhulst, C.; Mulders, A.; Couprie, W.; Bootsma, M.; Johnson, J.; Kluytmans, J. Prolonged colonisation with Escherichia coli O25:ST131 versus other extended-spectrum beta-lactamase-producing E. coli in a long-term care facility with high level of rectal colonisation, The Netherlands, 2013 to 2014. Eurosurveillance 2016, 21, 30376. [Google Scholar] [CrossRef] [PubMed]
- Ríos, E.; López, M.C.; Rodríguez-Avial, I.; Culebras, E.; Picazo, J.J. Detection of Escherichia coli ST131 clonal complex (ST705) and Klebsiella pneumoniae ST15 among faecal carriage of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae. J. Med. Microbiol. 2017, 66, 169. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.I.; López-Cerero, L.; Navarro, M.D.; Gutiérrez-Gutiérrez, B.; Pascual, A.; Rodríguez-Baño, J. Intestinal colonization due to Escherichia coli ST131: Risk factors and prevalence. J. Antimicrob. Resist. Infect. Control 2018, 7, 135. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Yang, A.W.; Tang, B.; Jian, Z.J.; Zhong, Y.M.; Li, H.L.; Li, Y.M.; Yan, Q.; Liang, X.H.; et al. Community Fecal Carriage and Molecular Epidemiology of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Escherichia coli from Healthy Children in the Central South China. Infect. Drug Resist. 2022, 15, 1601. [Google Scholar] [CrossRef]
- Tchesnokova, V.; Larson, L.; Basova, I.; Sledneva, Y.; Choudhury, D.; Heng, J.; Solyanik, T.; Bonilla, T.; Pham, S.; Schartz, E.; et al. Increase in the Community Carriage of Fluoroquinolone-Resistant Escherichia coli despite a Reduction in Antibiotic Prescriptions. Commun. Med. 2023, 3, 110. [Google Scholar] [CrossRef] [PubMed]
- Price, L.B.; Johnson, J.R.; Aziz, M.; Clabots, C.; Johnston, B.; Tchesnokova, V.; Nordstrom, L.; Billig, M.; Chattopadhyay, S.; Stegger, M.; et al. The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 2013, 4, e00377-13. [Google Scholar] [CrossRef]
- Johnson, J.R.; Tchesnokova, V.; Johnston, B.; Clabots, C.; Roberts, P.L.; Billig, M.; Riddell, K.; Rogers, P.; Qin, X.; Butler-Wu, S.; et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J. Infect. Dis. 2013, 207, 919. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.L.; Rechkina, E.; Chan, D.; Haile, H.G.; Larson, L.; Ferrier, K.; Schroeder, D.W.; Solyanik, T.; Shibuya, S.; Hansen, K.; et al. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women. Clin. Infect. Dis. 2019, 68, 334. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid Emergence, Subsidence, and Molecular Detection of Escherichia coli Sequence Type 1193-fimH64, a New Disseminated Multidrug-Resistant Commensal and Extraintestinal Pathogen. J. Clin. Microbiol. 2019, 57, e01664. [Google Scholar] [CrossRef]
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.A.; Larbi, A.A.; Damptey, L.A.O.; Nkansa-Gyamfi, N.A.; Stålsby Lundborg, C.; Lien, T.Q. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Ortiz, D.A.; Legenza, L.; Olson, B.J.; Knapp, C.C.; Killian, S.B.; Meece, J.K.; Hall, M.C.; Fritsche, T.R. Surveillance for multidrug resistant Escherichia coli carriage in cattle, dogs and humans reveals predominance of CMY-2, CTX-M-15 and CTX-M-9 groups of beta-lactamases. Comp. Immunol. Microbiol. Infect. Dis. 2022, 89, 101880. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.; Billig, M.; Chattopadhyay, S.; Linardopoulou, E.; Aprikian, P.; Roberts, P.L.; Skrivankova, V.; Johnston, B.; Gileva, A.; Igusheva, I.; et al. Predictive diagnostics for Escherichia coli infections based on the clonal association of antimicrobial resistance and clinical outcome. J. Clin. Microbiol. 2013, 51, 2991. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.; Avagyan, H.; Rechkina, E.; Chan, D.; Muradova, M.; Haile, H.G.; Radey, M.; Weissman, S.; Riddell, K.; Scholes, D.; et al. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection. PLoS ONE 2017, 12, e0174132. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.M.; Liu, W.E.; Liang, X.H.; Li, Y.M.; Jian, Z.J.; Hawkey, P.M. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J. Antimicrob. Chemother. 2015, 70, 2223. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, Y.; Chen, G.; Luo, Y.; Cui, S.; Tian, Y. Prevalence and Molecular Characterization of Fluoroquinolone-Resistant Escherichia coli in Healthy Children. Front. Cell. Infect. Microbiol. 2021, 11, 743390. [Google Scholar] [CrossRef]
- Cherubini, S.; Perilli, M.; Azzini, A.M.; Tacconelli, E.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; Ltcf-Veneto Working Group; Lo Cascio, G.; et al. Resistome and Virulome of Multi-Drug Resistant E. coli ST131 Isolated from Residents of Long-Term Care Facilities in the Northern Italian Region. Diagnostics 2022, 12, 213. [Google Scholar] [CrossRef]
- Kibwana, U.O.; Manyahi, J.; Sandnes, H.H.; Blomberg, B.; Mshana, S.E.; Langeland, N.; Roberts, A.P.; Moyo, S.J. Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BMC Infect. Dis. 2023, 23, 135. [Google Scholar] [CrossRef]
- Shin, J.; Ko, S.K. Effect of plasmids harbouring blaCTX-M on the virulence and fitness of Escherichia coli ST131 isolates. Int. J. Antimicrob. Agents 2015, 46, 214. [Google Scholar] [CrossRef]
- Bryce, A.; Costelloe, C.; Hawcroft, C.; Wootton, M.; Hay, A.D. Faecal carriage of antibiotic resistant Escherichia coli in asymptomatic children and associations with primary care antibiotic prescribing: A systematic review and meta-analysis. BMC Infect. Dis. 2016, 16, 359. [Google Scholar] [CrossRef]
- Bartke, K.; Garoff, L.; Huseby, D.L.; Brandis, G.; Hughes, D. Genetic Architecture and Fitness of Bacterial Interspecies Hybrids. Mol. Biol. Evol. 2020, 38, 1472. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.L.F.; Lanza, V.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 2021, 34, e00050-19. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.; Carrilero, L.; Brockhurst, M.; McNally, A. Limited and Strain-Specific Transcriptional and Growth Responses to Acquisition of a Multidrug Resistance Plasmid in Genetically Diverse Escherichia coli Lineages. mSystems 2021, 6, e00083-21. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.S.M.; Brouwer, J.; Fischer, J.A.; Wagenaar, B.; Gonzalez-Zorn, B.; Guerra, D.J.; Mevius, J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Danzeisen, J.L.; Youmans, B.; Case, K.; Llop, K.; Munoz-Aguayo, J.; Flores-Figueroa, C.; Aziz, M.; Stoesser, N.; Sokurenko, E.; et al. Separate F-Type Plasmids Have Shaped the Evolution of the H30 Subclone of Escherichia coli Sequence Type 131. mSphere 2016, 1, e00121-16. [Google Scholar] [CrossRef]
- Kondratyeva, K.; Salmon-Divon, M.; Navon-Venezia, S. Meta-analysis of Pandemic Escherichia coli ST131 Plasmidome Proves Restricted Plasmid-clade Associations. Sci. Rep. 2020, 10, 36. [Google Scholar] [CrossRef]
- Johnson, T.J. Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Escherichia coli Clones. EcoSal Plus 2021, 9. [Google Scholar] [CrossRef]
- Wyrsch, E.R.; Bushell, R.N.; Marenda, M.S.; Browning, G.F.; Djordjevic, S.P. Global Phylogeny and F Virulence Plasmid Carriage in Pandemic Escherichia coli ST1193. Microbiol. Spectr. 2022, 10, e0255422. [Google Scholar] [CrossRef] [PubMed]
- Carrilero, L.; Dunn, S.J.; Moran, R.A.; McNally, A.; Brockhurst, M.A. Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages. mSystems 2023, 8, e0071322. [Google Scholar] [CrossRef]
- Palkovicova, J.; Sukkar, I.; Delafuente, J.; Valcek, A.; Medvecky, M.; Jamborova, I.; Bitar, I.; Phan, M.D.; San Millan, A.; Dolejska, M. Fitness effects of blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. J. Antimicrob. Chemother. 2022, 77, 2960–2963. [Google Scholar] [CrossRef]
- Johnson, T.J.; Nolan, L.K. Pathogenomics of the Virulence Plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009, 73, 750. [Google Scholar] [CrossRef] [PubMed]
- Gillings, M.R. Integrons: Past, Present, and Future. Microbiol. Mol. Biol. Rev. 2014, 78, 257. [Google Scholar] [CrossRef] [PubMed]
- Lacotte, Y.; Ploy, M.C.; Raherison, S. Class 1 integrons are low-cost structures in Escherichia coli. ISME J. 2017, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.L.; Vicente, A.C. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, X.; Kong, N.; Cao, M.; Zhang, L.; Wei, Q.; Liu, W. Polymorphisms of gene cassette promoters of the class 1 integron in clinical Proteus isolates. Front. Microbiol. 2019, 10, 790. [Google Scholar] [CrossRef]
- Li, D.; Reid, C.J.; Kudinha, T.; Jarocki, V.M.; Djordjevic, S.P. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb. Genom. 2020, 6, mgen000475. [Google Scholar] [CrossRef]
- Li, D.; Wyrsch, E.R.; Elankumaran, P.; Dolejska, M.; Marenda, M.S.; Browning, G.F.; Bushell, R.N.; McKinnon, J.; Chowdhury, P.R.; Hitchick, N.; et al. Genomic comparisons of Escherichia coli ST131 from Australia. Microb. Genom. 2021, 7, 000721. [Google Scholar] [CrossRef]
- Fuzi, M.; Rodriguez Baño, J.; Toth, A. Global Evolution of Pathogenic Bacteria with Extensive Use of Fluoroquinolone Agents. Front. Microbiol. 2020, 11, 271. [Google Scholar] [CrossRef]
- Kim, B.; Kim, J.H.; Lee, Y. Virulence Factors Associated with Escherichia coli Bacteremia and Urinary Tract Infection. Ann. Lab. Med. 2022, 42, 203. [Google Scholar] [CrossRef]
- Nowrouzian, F.; Adlerberth, I.; Wold, A.E. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol. Infect. 2001, 126, 11. [Google Scholar] [CrossRef]
- Colpan, A.; Johnston, B.; Porter, S.; Clabots, C.; Anway, R.; Thao, L.; Kuskowski, M.A.; Tchesnokova, V.; Sokurenko, E.V.; Johnson, J.R. VICTORY (Veterans Influence of Clonal Types on Resistance: Year 2011). Investigators. Escherichia coli Sequence Type 131 (ST131) Subclone H30 as an Emergent MultidrugResistant Pathogen Among US Veterans. Clin. Infect. Dis. 2013, 57, 1256. [Google Scholar] [CrossRef]
- Merino, I.; Porter, S.B.; Johnston, B.D.; Clabots, C.; Shaw, E.; Horcajada, J.P.; Cantón, R.; Ruiz-Garbajosa, P.; Johnson, J.R. ITUBRAS-GEIH group: Virulence genes and subclone status as markers of experimental virulence in a murine sepsis model among Escherichia coli sequence type 131 clinical isolates from Spain. PLoS ONE 2017, 12, e0188838. [Google Scholar] [CrossRef]
- Johnson, T.J.; Elnekave, E.; Miller, E.A.; Munoz-Aguayo, J.; Flores Figueroa, C.; Johnston, B.; Nielson, D.W.; Logue, C.M.; Johnson, J.R. Phylogenomic analysis of extraintestinal pathogenic Escherichia coli ST1193, an emerging multidrug-resistant clonal group. Antimicrob. Agents Chemother. 2018, 63, 1. [Google Scholar] [CrossRef]
- Fox, T.C.; Clabots, C.; Porter, S.B.; Bender, T.; Thuras, P.; Colpan, A.; Boettcher, J.; Johnson, J.R. Bacterial “Virulence” Traits and Host Demographics Predict Escherichia coli Colonization Behaviors within Households. Open Forum Infect. Dis. 2020, 7, ofaa495. [Google Scholar] [CrossRef] [PubMed]
- García-Meniño, I.; Lumbreras, P.; Lestón, L.; Álvarez-Álvarez, M.; García, V.; Hammerl, J.A.; Fernández, J.; Mora, A. Occurrence and Genomic Characterization of Clone ST1193 Clonotype 14–64 in Uncomplicated Urinary Tract Infections Caused by Escherichia coli in Spain. Microbiol. Spectrum 2022, 10, e0004122. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.W.; Fleming, B.A.; Jost, C.; Tran, A.; Stenquist, A.T.; Wambaugh, M.A.; Bronner, M.P.; Mulvey, M.A. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect. Immun. 2018, 86, e00746. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.; Kuskowski, M.A.; Sokurenko, E.V.; Tchesnokova, V. Intensity and mechanisms of fluoroquinolone resistance within the H30 and H30Rx subclones of Escherichia coli sequence type 131 compared with other fluoroquinolone-resistant E. coli. Antimicrob. Agents Chemother. 2015, 59, 4471. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chattopadhyay, S.; Weissman, S.J.; Minin, V.N.; Russo, T.A.; Dykhuizen, D.E.; Sokurenko, E.V. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc. Natl. Acad. Sci. USA 2009, 106, 12412. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Duy, P.T.; Nga, T.V.; Dung, T.T.; Phat, V.V.; Chau, T.T.; Turner, A.K.; Farrar, J.; Boni, M.F. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. Elife 2013, 2, e01229. [Google Scholar] [CrossRef]
- Luo, N.; Pereira, S.; Sahin, O.; Lin, J.; Huang, S.; Michel, L.; Zhang, Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 2005, 102, 541. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.N.; Begum, A.A.; Wu, H.; D’Ambrozio, J.A.; Robinson, J.M.; Shafer, W.M.; Bash, M.C.; Jerse, A.E. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis. 2012, 205, 1821. [Google Scholar] [CrossRef]
- Komp Lindgren, P.; Marcusson, L.L.; Sandvang, D.; Frimodt-Møller, N.; Hughes, D. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob. Agents Chemother. 2005, 49, 2343. [Google Scholar] [CrossRef] [PubMed]
- Marcusson, L.L.; Frimodt-Møller, N.; Hughes, D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 2009, 5, e1000541. [Google Scholar] [CrossRef] [PubMed]
- Machuca, J.; Briales, A.; Díaz-de-Alba, P.; Martínez-Martínez, L.; Pascual, Á.; Rodríguez-Martínez, J.M. Effect of the efflux pump QepA2 combined with chromosomally mediated mechanisms on quinolone resistance and bacterial fitness in Escherichia coli. J. Antimicrob. Chemother. 2015, 70, 2524–2527. [Google Scholar] [CrossRef] [PubMed]
- Huseby, D.L.; Pietsch, F.; Brandis, G.; Garoff, L.; Tegehall, A.; Hughes, D. Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli. Mol. Biol. Evol. 2017, 34, 1029. [Google Scholar] [CrossRef]
- Agnello, M.; Finkel, S.E.; Wong-Beringer, A. Fitness Cost of Fluoroquinolone Resistance in Clinical Isolates of Pseudomonas aeruginosa Differs by Type III Secretion Genotype. Front. Microbiol. 2016, 7, 1591. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Igarashi, M.; Morimoto, Y.; Baba, T.; Umekita, M.; Akamatsu, Y. Curing bacteria of antibiotic resistance: Reverse antibiotics, a novel class of antibiotics in nature. Int. J. Antimicrob. Agents 2012, 39, 478. [Google Scholar] [CrossRef]
- Morimoto, Y.; Baba, T.; Sasaki, T.; Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents 2015, 4, 666–673. [Google Scholar] [CrossRef]
- Monte, D.F.; Sellera, F.P.; Fernandes, M.R.; Moura, Q.; Landgraf, M.; Lincopan, N. Genome Sequencing of an Escherichia coli Sequence Type 617 Strain Isolated from Beach Ghost Shrimp (Callichirus major) from a Heavily Polluted Ecosystem Reveals a Wider Resistome against Heavy Metals and Antibiotics. Microbiol. Resour. Announc. 2019, 8, e01471-18. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Cameron, A.; Taffner, S.M.; Wang, J.; Malek, A.; Dumyati, G.; Hardy, D.J.; Pecora, N.D. Genomic Surveillance of Ceftriaxone-Resistant Escherichia coli in Western New York Suggests the Extended-Spectrum β-Lactamase bla CTX-M-27 Is Emerging on Distinct Plasmids in ST38. Front. Microbiol. 2020, 11, 1747. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.B.; De Belder, D.; de Mendieta, J.M.; Faccone, D.; Poklepovich, T.; Lucero, C.; Rapoport, M.; Campos, J.; Tuduri, E.; Saavedra, M.O.; et al. Carbapenemase-Producing Extraintestinal Pathogenic Escherichia coli from Argentina: Clonal Diversity and Predominance of Hyperepidemic Clones CC10 and CC131. Front. Microbiol. 2022, 13, 830209. [Google Scholar] [CrossRef] [PubMed]
- Fuga, B.; Sellera, F.P.; Cerdeira, L.; Esposito, F.; Cardoso, B.; Fontana, H.; Moura, Q.; Cardenas-Arias, A.; Sano, E.; Ribas, R.M.; et al. WHO Critical Priority Escherichia coli as One Health Challenge for a Post-Pandemic Scenario: Genomic Surveillance and Analysis of Current Trends in Brazil. Microbiol. Spectr. 2022, 10, e0125621. [Google Scholar] [CrossRef]
- Cummins, E.A.; Snaith, A.E.; McNally, A.; Hall, R.J. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur. J. Clin. Microbiol. Infect Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014, 22, 438. [Google Scholar] [CrossRef]
- Fuzi, M.; Szabo, D.; Csercsik, R. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Front. Microbiol. 2017, 8, 2261. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.; Dobay, O.; Kardos, S.; Ghidán, Á.; Tóth, Á.; Pászti, J.; Ungvári, E.; Horváth, P.; Nagy, K.; Zissman, S.; et al. Varying fitness cost associated with resistance to fluoroquinolones governs clonal dynamic of methicillin- resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2029–2036. [Google Scholar] [CrossRef]
- Knight, G.M.; Budd, E.L.; Whitney, L.; Thornley, A.; Al-Ghusein, H.; Planche, T.; Lindsay, J.A. Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. J. Antimicrob. Chemother. 2012, 67, 2514. [Google Scholar] [CrossRef]
- Toth, A.; Kocsis, B.; Damjanova, I.; Kristóf, K.; Jánvári, L.; Pászti, J.; Csercsik, R.; Topf, J.; Szabó, D.; Hamar, P.; et al. Fitness cost associated with resistance to fluoroquinolones is diverse across clones of Klebsiella pneumoniae and may select for CTX-M-15 type extended-spectrum β-lactamase. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 837. [Google Scholar] [CrossRef] [PubMed]
- Vernon, J.J.; Wilcox, M.H.; Freeman, J. Effect of fluoroquinolone resistance mutation Thr-82→Ile on Clostridioides difficile fitness. J. Antimicrob. Chemother. 2019, 74, 877. [Google Scholar] [CrossRef]
- Bernasconi, O.J.; Campos-Madueno, E.I.; Donà, V.; Perreten, V.; Carattoli, A.; Endimiani, A. Investigating the use of bacteriophages as a new decolonization strategy for intestinal carriage of CTX-M-15-producing ST131 Escherichia coli: An in vitro continuous culture system model. J. Glob. Antimicrob. Resist. 2020, 22, 664. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.B.; Johnston, B.D.; Kisiela, D.; Clabots, C.; Sokurenko, E.V.; Johnson, J.R. Bacteriophage Cocktail and Microcin-Producing Probiotic Escherichia coli Protect Mice Against Gut Colonization with Multidrug-Resistant Escherichia coli Sequence Type 131. Front. Microbiol. 2022, 13, 887799. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuzi, M.; Sokurenko, E. Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli. Pathogens 2023, 12, 1150. https://doi.org/10.3390/pathogens12091150
Fuzi M, Sokurenko E. Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli. Pathogens. 2023; 12(9):1150. https://doi.org/10.3390/pathogens12091150
Chicago/Turabian StyleFuzi, Miklos, and Evgeni Sokurenko. 2023. "Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli" Pathogens 12, no. 9: 1150. https://doi.org/10.3390/pathogens12091150
APA StyleFuzi, M., & Sokurenko, E. (2023). Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria—The Case of Uropathogenic E. coli. Pathogens, 12(9), 1150. https://doi.org/10.3390/pathogens12091150