Characterization of Indoor Molds after Ajka Red Mud Spill, Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Sampling and Identification
2.2. Colony Growth Tests
2.2.1. Red Mud Tests
2.2.2. pH Tests
2.2.3. Water Activity Tests
2.2.4. Measurements and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hind, A.R.; Bhargava, S.K.; Grocott, S.C. The Surface Chemistry of Bayer Process Solids: A Review. Colloids Surf. A Physicochem. Eng. Asp. 1999, 146, 359–374. [Google Scholar] [CrossRef]
- Announcement of MAL Hungarian Aluminium. Available online: http://english.mal.hu/engine.aspx?page=showcontent&content=Vorosiszap_HIR_EN (accessed on 3 November 2023).
- Burke, I.T.; Mayes, W.M.; Peacock, C.L.; Brown, A.P.; Jarvis, A.P.; Gruiz, K. Speciation of Arsenic, Chromium, and Vanadium in Red Mud Samples from the Ajka Spill Site, Hungary. Environ. Sci. Technol. 2012, 46, 3085–3092. [Google Scholar] [CrossRef] [PubMed]
- Rubinos, D.; Barral, M.T. Use of Red Mud (Bauxite Residue) for the Retention of Aqueous Inorganic Mercury(II). Environ. Sci. Pollut. R. 2015, 22, 17550–17568. [Google Scholar] [CrossRef] [PubMed]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil. Environ. Sci. Technol. 2011, 45, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Klebercz, O.; Mayes, W.M.; Anton, Á.D.; Feigl, V.; Jarvis, A.P.; Gruiz, K. Ecotoxicity of Fluvial Sediments Downstream of the Ajka Red Mud Spill, Hungary. J. Environ. Monit. 2012, 14, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Kovács, T.; Sas, Z.; Jobbágy, V.; Csordás, A.; Szeiler, G.; Somlai, J. Radiological Aspects of Red Mud Disaster in Hungary. Acta Geophys. 2013, 61, 1026–1037. [Google Scholar] [CrossRef]
- Mayes, W.M.; Burke, I.T.; Gomes, H.I.; Anton, Á.D.; Molnár, M.; Feigl, V.; Ujaczki, É. Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary. J. Sustain. Metall. 2016, 2, 332–343. [Google Scholar] [CrossRef]
- Fabian, P.; Miller, S.; Reponen, T.; Hernandez, M. Ambient Bioaerosol Indices for Air Quality Assessments of Flood Reclamation. J. Aerosol Sci. 2005, 36, 763–783. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. Review of mould prediction models and their influence on mould risk evaluation. Build. Environ. 2012, 51, 296–310. [Google Scholar] [CrossRef]
- Samson, R.; Hoekstra, E.; Lund, F.; Filtenborg, O.; Frisvad, J. Methods for the Detection, Isolation and Characterization of Food-Borne Fungi. In Introduction to Food- and Airborne Fungi; Samson, R., Hoekstra, E., Frisvad, J., Filtenborg, O., Eds.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2000; pp. 283–297. [Google Scholar]
- Andersen, B.; Nissen, A.T. Evaluation of media for detection of Stachybotrys and Chaetomium species associated with water-damaged buildings. Int. Biodeterior. Biodegrad. 2000, 46, 111–116. [Google Scholar] [CrossRef]
- Stock, A.; Davis, K.; Brown, C. An Investigation of Home Dampness and Adverse Health Effects on a Native American Reservation. J. Soc. Toxicol. 2005, 84, 1–5. [Google Scholar]
- Pearce, M.; Huelman, P.H.; Janni, K.A.; Olsen, W.; Seavey, R.T.; Velsey, D. Long-Term Monitoring of Mold Contamination in Flooded Homes. J. Environ. Health 1995, 58, 6–12. [Google Scholar]
- Precha, N.; Kliengchuay, W.; Woo, C.; Yamamoto, N.; Tantrakarnapa, K. Fungal Assemblages on In-Door Surfaces with Visible Mold Growth in Homes after the 2016 Flood Disaster in Thailand. Appl. Sci. 2020, 10, 5322. [Google Scholar] [CrossRef]
- Omebeyinje, M.H.; Adeluyi, A.; Mitra, C.; Chakraborty, P.; Gandee, G.M.; Patel, N.; Verghese, B.; Farrance, C.E.; Hull, M.; Basu, P.; et al. Increased Prevalence of Indoor Aspergillus and Penicillium Species Is Associated with Indoor Flooding and Coastal Proximity: A Case Study of 28 Moldy Buildings. Environ. Sci. Process. Impacts 2021, 23, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Torres, L.N.; Bolaños-Rosero, B.; Godoy-Vitorino, F.; Rivera-Mariani, F.E.; Maestre, J.P.; Kinney, K.; Cavallin, H. Hurricane María Drives Increased Indoor Proliferation of Filamentous Fungi in San Juan, Puerto Rico: A Two-Year Culture-Based Approach. PeerJ 2022, 10, e12730. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Casadevall, A. Disaster Mycology. Biomédica 2023, 43, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.Y.; Riggs, M.A.; Chew, G.L.; Muilenberg, M.L.; Thorne, P.S.; Van Sickle, D.; Dunn, K.H.; Brown, C. Characterization of Airborne Molds, Endotoxins, and Glucans in Homes in New Orleans after Hurricanes Katrina and Rita. Appl. Environ. Microbiol. 2007, 73, 1630–1634. [Google Scholar] [CrossRef]
- Reponen, T.; Seo, S.-C.; Grimsley, F.; Lee, T.; Crawford, C.; Grinshpun, S.A. Fungal Fragments in Moldy Houses: A Field Study in Homes in New Orleans and Southern Ohio. Atmos. Environ. 2007, 41, 8140–8149. [Google Scholar] [CrossRef]
- Cummings, K.J.; Cox-Ganser, J.; Riggs, M.A.; Edwards, N.; Hobbs, G.R.; Kreiss, K. Health Effects of Exposure to Water-Damaged New Orleans Homes Six Months After Hurricanes Katrina and Rita. Am. J. Public Health 2008, 98, 869–875. [Google Scholar] [CrossRef]
- Barbeau, D.N.; Grimsley, L.F.; White, L.E.; El-Dahr, J.M.; Lichtveld, M. Mold Exposure and Health Effects Following Hurricanes Katrina and Rita. Annu. Rev. Public Health 2010, 31, 165–178. [Google Scholar] [CrossRef]
- Bolaños-Rosero, B.; Hernández-González, X.; Cavallín-Calanche, H.E.; Godoy-Vitorino, F.; Vesper, S. Impact of Hurricane Maria on Mold Levels in the Homes of Piñones, Puerto Rico. Air Qual. Atmos. Health 2023, 16, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and Human Health: A Systematic Review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Erős, T.; Takács, P.; Czeglédi, I.; Sály, P.; Specziár, A. Taxonomic- and Trait-Based Recolonization Dynamics of a Riverine Fish Assemblage Following a Large-Scale Human-Mediated Disturbance: The Red Mud Disaster in Hungary. Hydrobiologia 2015, 758, 31–45. [Google Scholar] [CrossRef]
- Luidold, S.; Antrekowitsch, H. Red Mud—Hazardous Waste or Valuable Raw Material? In Proceedings of the EMC 2011, York, UK, 26–30 September 2011; pp. 853–864. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1957. [Google Scholar]
- Macher, J. Positive-Hole Correction of Multiple-Jet Impactors for Collecting Viable Microorganisms. Am. Ind. Hyg. Assoc. J. 1989, 50, 561–568. [Google Scholar] [CrossRef] [PubMed]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Bartha, A.; Jordan, G.; Gaburi, I.; Ballok, M. Investigation of Toxic and Heavy Metal Content and Mobility of the Red Mud in Ajka (Hungary). In Presentation at the Colloquium Spectroscopicum Internationale XXXVII; CSI: Buzios, Brazil, 2011. [Google Scholar]
- Chirife, J.; Resnik, S. Unsaturated Solutions of Sodium Chloride as Reference Sources of Water Activity at Various Temperatures. J. Food Sci. 2006, 49, 1486–1488. [Google Scholar] [CrossRef]
- Kredics, L.; Antal, Z.; Manczinger, L. Influence of Water Potential on Growth, Enzyme Secretion and in Vitro Enzyme Activities of Trichoderma harzianum at Different Temperatures. Curr. Microbiol. 2000, 40, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Park, D. The Ecology of Terrestrial Fungi; Academic Press: New York, NY, USA, 1968; Volume 3. [Google Scholar]
- Vass, M.; Révay, Á.; Kucserka, T.; Hubai, K.; Üveges, V.; Kovács, K.; Padisák, J. Aquatic Hyphomycetes as Survivors and/or First Colonizers after a Red Sludge Disaster in the Torna Stream, Hungary. Int. Rev. Hydrobiol. 2013, 98, 217–224. [Google Scholar] [CrossRef]
- Qu, Y.; Lian, B.; Mo, B.; Liu, C. Bioleaching of Heavy Metals from Red Mud Using Aspergillus niger. Hydrometallurgy 2013, 136, 71–77. [Google Scholar] [CrossRef]
- Qu, Y.; Lian, B. Bioleaching of Rare Earth and Radioactive Elements from Red Mud Using Penicillium tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. [Google Scholar] [CrossRef]
- Gräfe, A.M.; Landers, A.M.; Tappero, B.R.; Klauber, A.C.; Hutomo, A.G.; Gan, A.B.; Grabsch, A.; Austin, P.; Davies, A.I. Chemistry of Trace and Heavy Metals in Bauxite Residues (Red Mud) from Western Australia. In Proceedings of the 119th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Published on DVD. Available online: https://Iuss.Org/19th%20WCSS/Symposium/Pdf/0338.Pdf (accessed on 10 November 2023).
- Enserink, M. After Red Mud Flood, Scientists Try to Halt Wave of Fear and Rumors. Science 2010, 22, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Anam, G.B.; Reddy, M.S.; Ahn, Y.-H. Characterization of Trichoderma asperellum RM-28 for Its Sodic/Saline-Alkali Tolerance and Plant Growth Promoting Activities to Alleviate Toxicity of Red Mud. Sci. Total Environ. 2019, 662, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. Effect of Heavy Metals on Saprotrophic Soil Fungi. In Soil Heavy Metals; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 263–279. ISBN 978-3-642-02436-8. [Google Scholar]
- Sautour, M.; Rouget, A.; Dantigny, P.; Divies, C.; Bensoussan, M. Prediction of Conidial Germination of Penicillium chrysogenum as Influenced by Temperature, Water Activity and pH. Lett. Appl. Microbiol. 2001, 32, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Urík, M.; Bujdoš, M.; Milová-Žiaková, B.; Mikušová, P.; Slovák, M.; Matúš, P. Aluminium Leaching from Red Mud by Filamentous Fungi. J. Inorg. Biochem. 2015, 152, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Dugal, S.; Gangawane, M. Metal Tolerance and Potential of Penicillium Species for Use in Mycoremediation. J. Chem. Pharm. Res. 2012, 4, 2362–2366. [Google Scholar]
- Dumon, H.; Palot, A.; Charpin-Kadouch, C.; Quéralt, J.; Lehtihet, K.; Garans, M.; Charpin, D. Mold Species Identified in Flooded Dwellings. Aerobiologia 2009, 25, 341–344. [Google Scholar] [CrossRef]
- Solomon, G.M.; Hjelmroos-Koski, M.; Rotkin-Ellman, M.; Hammond, S.K. Airborne Mold and Endotoxin Concentrations in New Orleans, Louisiana, after Flooding, October through November 2005. Environ. Health Perspect. 2006, 114, 1381–1386. [Google Scholar] [CrossRef]
- Magyar, D. Recent Advances in the Detection of Indoor Fungi. Pathogens 2023, 12, 1136. [Google Scholar] [CrossRef]
- Magyar, D.; Stefán, G.; Körmöczi, P.; Kredics, L.; Varró, M.J.; Balogh, K.; Nékám, K. Species Composition of Indoor Fungi in Hungary. Egészségtudomány 2016, 61, 13–37. (In Hungarian) [Google Scholar]
- Jakšić, D.; Sertić, M.; Kifer, D.; Kocsubè, S.; Mornar Turk, A.; Nigović, B.; Šarkanj, B.; Krska, R.; Sulyok, M.; Šegvić Klarić, M. Fungi and Their Secondary Metabolites in Water-Damaged Indoors after a Major Flood Event in Eastern Croatia. Indoor Air 2021, 31, 730–744. [Google Scholar] [CrossRef]
- Metts, T.A. Addressing Environmental Health Implications of Mold Exposure after Major Flooding. AAOHN J. 2008, 56, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Cummings, K.J.; Van Sickle, D.; Rao, C.Y.; Riggs, M.A.; Brown, C.M.; Moolenaar, R.L. Knowledge, Attitudes, and Practices Related to Mold Exposure among Residents and Remediation Workers in Posthurricane New Orleans. Arch. Environ. Occup. Health 2006, 61, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.W.; Iqbal, S.; Sanchez, C.A.; Quinlisk, M.P. Postdisaster Health Communication and Information Sources: The Iowa Flood Scenario. Disaster Med. Public Health Prep. 2010, 4, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, K.A.; Metwali, N.; Perry, S.S.; Hart, T.; Kostle, P.A.; Thorne, P.S. Assessment of Airborne Exposures and Health in Flooded Homes Undergoing Renovation. Indoor Air 2012, 22, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Erickson, T.B.; Brooks, J.; Nilles, E.J.; Pham, P.N.; Vinck, P. Environmental Health Effects Attributed to Toxic and Infectious Agents Following Hurricanes, Cyclones, Flash Floods and Major Hydrometeorological Events. J. Tox. Environ. Health Part B Crit. Rev. 2019, 22, 157–171. [Google Scholar] [CrossRef]
- Vágföldi, Z. The Environmental Impact of the Red Sludge Disaster, the Damage Management Process and the Methods Used. Mil. Eng. Hadmérnök 2011, 261, 261–275. (In Hungarian) [Google Scholar]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef]
- Haslam, J.C. Deadly Décor: A Short History of Arsenic Poisoning in the Nineteenth Century. Res. Medica 2013, 21, 76–81. [Google Scholar] [CrossRef]
Taxa | Location | Building Type | Room | Sample | Code | SZMC Number |
---|---|---|---|---|---|---|
Penicillium sp. | Budapest | family house | bathroom | mold on wall (swab) | T398A | SZMC 22652 |
Aspergillus series Versicolores | Budapest | family house | childrens’ room | air | T398B | SZMC 22653 |
Penicillium sp. | Budapest | family house | bedroom | saltpeter under wallpaper (swab) | T399 | SZMC 22654 |
Penicillium chrysogenum | Szentendre | family house | cellar | air | T401A | SZMC 22656 |
Penicillium sp. | Szentendre | family house | cellar | air | T401B | SZMC 22657 |
Penicillium expansum | Szeged | college | bedroom | curtain | - | SZMC 2725 |
Fungal Taxon | Sample Type | Sampling Point | Strain Number | SZMC Number | GenBank Accession Number (ITS) |
---|---|---|---|---|---|
T = tapelift S = swab A = air | b = brick building w = wooden shed c = cellar o = outdoor | ||||
Ascomycota | |||||
Acremonium sp. 1–2 | TA | wo | |||
Alternaria sp. | T | w | |||
Apiospora arundinis | S | b | TD19 | SZMC 12680 | OR676943 |
Aspergillus sp., section Nidulantes | A | c | TD4 | SZMC 12665 | OR676944 |
Aspergillus sp., series Versicolores | A | c | TD2b | SZMC 12663 | OR676945 |
Aspergillus sp., series Versicolores | A | c | TD12 | SZMC 12673 | OR676947 |
Aspergillus sp., series Versicolores | A | w | |||
Aspergillus sp., series Versicolores | A | o | TD9 | SZMC 12670 | OR676946 |
Beauveria sp. | A | c | TD5 | SZMC 12666 | OR676948 |
Beauveria sp. | A | o | |||
Botrytis sp. | A | w | |||
Cephalotrichum sp. | AT | cw | TD6, - | SZMC 12667 | |
Chaetomium sp. | T | w | |||
Cladosporium cladosporioides-type | AAA | cwo | |||
Cladosporium herbarum-type | AA | co | |||
Cladosporium spp. | TA | bw | |||
Geomyces sp. | T | w | |||
Parengyodontium album | A | c | TD2a | SZMC 12662 | OR676953 |
Penicillium brevicompactum | S | b | TD14 | SZMC 12675 | OR676954 |
Penicillium buchwaldii | S | w | TD21 | SZMC 12682 | OR676955 |
Penicillium buchwaldii | S | w | TD22 | SZMC 12683 | OR676956 |
Penicillium sp., section Chrysogena | A | b | TD8 | SZMC 12669 | OR676958 |
Penicillium sp., section Chrysogena | S | b | TD13 | SZMC 12674 | OR676959 |
Penicillium sp., section Chrysogena | S | w | TD15 | SZMC 12676 | OR676960 |
Penicillium sp., section Chrysogena | A | o | |||
Penicillium sp., section Fasciculata, series Camemberti | A | c | TD1 | SZMC 12661 | OR676957 |
Penicillium sp., section Penicillium | A | w | TD16 | SZMC 12677 | OR676961 |
Penicillium sp. 1 | A | o | |||
Scopulariopsis sp. | AT | c | TD7 | ||
Sepedonium sp. | T | w | |||
Ulocladium sp. | T | w | |||
Wardomyces inflatus | T | w | |||
yeast sp. 1 | A | c | |||
yeast sp. 2 | A | o | |||
unknown sp. 1 | T | w | |||
unknown sp. 2 | A | c | TD3a | SZMC 12664 | |
unknown sp. 3/Penicillium freii? | A | o | TD11 | SZMC 12672 | |
unknown sp. 4 | T | w | |||
Alternaria sp./unknown sp. 5 | S | w | TD17 | ||
unknown sp. 6 | S | b | TD20 | SZMC 12681 | |
Basidiomycota | |||||
Bjerkandera adusta | A | o | TD10 | SZMC 12671 | OR676949 |
Mucoromycota | |||||
Mucor circinelloides | S | w | TD23 | SZMC 12684 | OR676950 |
Mucor circinelloides | S | w | TD25 | SZMC 12686 | OR676951 |
Mucor hiemalis | S | w | TD18 | SZMC 12679 | OR676952 |
Mucor plumbeus | A | c | |||
Mucor sp. | S | c | TD24 | SZMC 12685 | |
Rhizopus stolonifer | A | w |
Airborne Fungal Taxa | Outdoor | Brick Building | Cellar | Wooden Shed |
---|---|---|---|---|
Acremonium spp. | 5 | 0 | 0 | 0 |
Alternaria sp./unknown sp. 5 | 15 | 0 | 0 | 0 |
Aspergillus sp. section Nidulantes | 0 | 0 | 5 | 0 |
Aspergillus sp., series Versicolores | 5 | 0 | 10 | 20 |
Beauveria sp. | 5 | 0 | 5 | 0 |
Bjerkandera adusta | 5 | 0 | 0 | 0 |
Botrytis spp. | 0 | 0 | 5 | 5 |
Cephalotrichum sp. | 0 | 0 | 10 | 0 |
Cladosporium spp. | 135 | 45 | 155 | 55 |
Parengyodontium album | 0 | 0 | 55 | 0 |
Mucor plumbeus | 0 | 0 | 5 | 0 |
Penicillium sp., section Chrysogena | 15 | >26,280 | 0 | 40 |
Penicillium sp., section Fasciculata, series Camemberti | 0 | 0 | 375 | 0 |
Penicillium sp., section Penicillium | 0 | 0 | 0 | 395 |
Penicillium sp. 1 | 5 | 0 | 0 | 0 |
Penicillium spp. | 40 | 0 | 20 | 0 |
Rhizopus stolonifer | 0 | 0 | 0 | 5 |
Scopulariopsis sp. | 0 | 0 | 5 | 0 |
yeast sp. 1 | 0 | 0 | 5 | 0 |
yeast sp. 2 | 5 | 0 | 0 | 0 |
yeast spp. | 25 | 0 | 0 | 0 |
unknown sp. 2 | 0 | 0 | 100 | 0 |
unknown sp. 3/Penicillium freii? | 5 | 0 | 0 | 0 |
non sporulating spp. | 10 | 0 | 35 | 15 |
sum | 275 | >26,280 | 790 | 535 |
Fungal Taxon | Fungal Strain | Water Activity | pH | Red Mud | |||
---|---|---|---|---|---|---|---|
Penicillium sp. | T398A | 6.91 × 10−19 | *** | 1.74 × 10−12 | *** | 1.02 × 10−2 | * |
Aspergillus sp., series Versicolores | T398B | 1.55 × 10−14 | *** | 1.47 × 10−13 | *** | 1.32 × 10−3 | ** |
Penicillium sp. | T399 | 5.06 × 10−18 | *** | 5.49 × 10−14 | *** | 3.88 × 10−4 | *** |
Penicillium chrysogenum | T401A | 2.00 × 10−15 | *** | 4.74 × 10−9 | *** | 3.74 × 10−1 | |
Penicillium sp. | T401B | 1.70 × 10−15 | *** | 3.13 × 10−13 | *** | 1.35 × 10−1 | |
Aspergillus sp., series Versicolores | TD12 | 3.73 × 10−26 | *** | 1.58 × 10−14 | *** | 1.16 × 10−1 | |
Penicillium sp., section Penicillium | TD16 | 4.85 × 10−18 | *** | 2.68 × 10−13 | *** | 2.97 × 10−57 | *** |
Penicillium buchwaldii | TD22 | 6.15 × 10−15 | *** | 1.27 × 10−11 | *** | 3.74 × 10−1 | |
Mucor circinelloides | TD25 | 2.00 × 10−24 | *** | 1.18 × 10−13 | *** | 1.69 × 10−2 | * |
Aspergillus sp. section Nidulantes | TD4 | 2.69 × 10−26 | *** | 1.62 × 10−20 | *** | 1.00 × 100 | |
Beauveria sp. | TD5 | 2.16 × 10−22 | *** | 3.56 × 10−16 | *** | 4.42 × 10−1 | |
Cephalotrichum sp. | TD6 | 3.74 × 10−30 | *** | 4.35 × 10−23 | *** | 1.16 × 10−1 | |
Penicillium sp., section Chrysogena | TD8 | 1.17 × 10−15 | *** | 4.74 × 10−16 | *** | 9.64 × 10−4 | *** |
Aspergillus sp., series Versicolores | TD9 | 3.83 × 10−22 | *** | 8.71 × 10−14 | *** | 1.32 × 10−2 | * |
Penicillium expansum | SZMC2725 | - | - | - | - | 1.52 × 10−5 | *** |
Elements | Concentration | Wavelength of Detection (nm) | Limit of Detection (mg/kg) | ||
---|---|---|---|---|---|
Al | Aluminium | g kg−1 | 31.8 | 394.401 | 0.5 |
Ca | Calcium | g kg−1 | 54.1 | 317.933 | 2.5 |
Fe | Iron | g kg−1 | 129 | 259.939 | 0.5 |
Mg | Magnesium | g kg−1 | 7.9 | 279.077 | 5 |
K | Potassium | g kg−1 | 0.79 | 766.49 | 10 |
Na | Sodium | g kg−1 | 13.7 | 330.237 | 5 |
As | Arsenic | mg kg−1 | 53.3 | 188.979 | 1.25 |
Ba | Barium | mg kg−1 | 48.5 | 233.527 | 0.5 |
Cd | Cadmium | mg kg−1 | 1.23 | 228.802 | 0.05 |
Co | Cobalt | mg kg−1 | 45.8 | 228.616 | 0.05 |
Cr | Chromium | mg kg−1 | 273 | 267.716 | 0.05 |
Cu | Copper | mg kg−1 | 35.0 | 327.393 | 0.05 |
Hg | Mercury | mg kg−1 | <0.5 | 194.168 | 0.5 |
Mn | Manganese | mg kg−1 | 2376 | 257.61 | 0.1 |
Mo | Molybdenum | mg kg−1 | < 0.5 | 202.031 | 0.5 |
Ni | Nickel | mg kg−1 | 114 | 231.604 | 0.2 |
P | Phosphorus | mg kg−1 | 772 | 214.914 | 5 |
Pb | Lead | mg kg−1 | 68.4 | 220.353 | 0.2 |
S | Sulfur | mg kg−1 | 1605 | 181.975 | 10 |
Se | Selenium | mg kg−1 | <5.0 | 196.026 | 5 |
Sr | Strontium | mg kg−1 | 183 | 407.771 | 0.05 |
Zn | Zinc | mg kg−1 | 79.2 | 213.857 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magyar, D.; Tischner, Z.; Szabó, B.; Freiler-Nagy, Á.; Papp, T.; Allaga, H.; Kredics, L. Characterization of Indoor Molds after Ajka Red Mud Spill, Hungary. Pathogens 2024, 13, 22. https://doi.org/10.3390/pathogens13010022
Magyar D, Tischner Z, Szabó B, Freiler-Nagy Á, Papp T, Allaga H, Kredics L. Characterization of Indoor Molds after Ajka Red Mud Spill, Hungary. Pathogens. 2024; 13(1):22. https://doi.org/10.3390/pathogens13010022
Chicago/Turabian StyleMagyar, Donát, Zsófia Tischner, Bence Szabó, Ágnes Freiler-Nagy, Tamás Papp, Henrietta Allaga, and László Kredics. 2024. "Characterization of Indoor Molds after Ajka Red Mud Spill, Hungary" Pathogens 13, no. 1: 22. https://doi.org/10.3390/pathogens13010022
APA StyleMagyar, D., Tischner, Z., Szabó, B., Freiler-Nagy, Á., Papp, T., Allaga, H., & Kredics, L. (2024). Characterization of Indoor Molds after Ajka Red Mud Spill, Hungary. Pathogens, 13(1), 22. https://doi.org/10.3390/pathogens13010022