Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus—A Neglected Public Health Issue in Europe?
Abstract
:1. Introduction
1.1. Aims
1.2. Background
1.3. Zoonotic Babesia Species in Europe
1.4. Animal Reservoirs of Zoonotic Babesia Species in Europe
1.5. Ixodid Vectors of Zoonotic Babesiae in Europe
1.6. Coinfections with Two or More Tick-Borne Pathogens
1.7. Babesia+Borrelia Coinfections in Humans
2. Analysis of Coinfection Data from Sweden
2.1. Borrelia spp. and Babesia spp. in Ixodes ricinus
2.1.1. Prevalence of Borrelia Species in I. ricinus Removed from Humans
2.1.2. Prevalence of Babesia Species in I. ricinus Removed from Humans
2.1.3. Prevalence of Borrelia Species in I. ricinus Removed from Birds
2.1.4. Prevalence of Babesia Species in I. ricinus Removed from Birds
2.2. Coinfection Analysis
2.2.1. Coinfection of Babesia and Borrelia in I. ricinus Removed from Humans
Bo. afzelii | Bo. garinii | Bo. valaisiana | Bo. burgdorferi | Bo. miyamotoi | Borrelia-Negative | Not Performed | |
---|---|---|---|---|---|---|---|
Ba. microti positive adult ticks (n = 13) | 6 | 0 | 0 | 0 | 0 | 5 | 2 |
Ba. venatorum positive adult ticks (n = 7) | 1 | 0 | 0 | 0 | 1 | 5 | 0 |
Ba. capreoli positive adult ticks (n = 1) | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Ba. microti positive nymphs (n = 20) | 11 | 1 | 1 | 0 | 0 | 7 | 0 |
Ba. venatorum positive nymphs (n = 20) | 4 | 1 | 0 | 0 | 0 | 14 | 1 |
Ba. capreoli positive nymphs (n = 3) | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
Ba. capreoli positive larva (n = 1) | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
2.2.2. Coinfection of Babesia and Borrelia in I. ricinus Removed from Birds
3. Discussion
3.1. Coinfection of Babesia and Borrelia in Ticks Removed from Humans
3.2. Coinfection of Babesia and Borrelia in Ticks Removed from Birds
3.3. Babesia and Borrelia Coinfection in Humans
3.4. Are There Undetected Coinfections?
3.5. Effects of Coinfection on the Epidemiology of Human Babesiosis
3.6. Persistent LB-like Symptoms due to Chronic Babesiosis?
3.7. Babesia-Infected Transfusion Blood
4. Conclusions
- Future research needs
- Whether subclinical, mild babesiosis and transfusion-transmitted TBPs are significant medical problems in Northern Europe should be investigated.
- Research on the identification, characterization and phylogenetics of Ba. microti, Ba. divergens-like parasites and other Babesia species with putative zoonotic potential should be strengthened to understand their medical importance.
- Investigations are required concerning the vector competence of different Ixodes spp., particularly I. persulcatus and I. trianguliceps, to transmit different genotypes/strains of Ba. microti, and the vector biology of I. ricinus related to the Munich strain of Ba. microti.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Telfer, S.; Lambin, X.; Birtles, R.; Beldomenico, P.; Burthe, S.; Paterson, S.; Begon, M. Species interactions in a parasite community drive infection risk in a wildlife population. Science 2010, 330, 243–246. [Google Scholar] [CrossRef]
- Krause, P.J.; Telford, S.R.; Spielman, A.; Sikand, V.; Ryan, R.; Christianson, D. Concurrent Lyme disease and babesiosis: Evidence for increased severity and duration of illness. JAMA 1996, 275, 1657–1660. [Google Scholar] [CrossRef]
- Dunn, J.M.; Krause, P.J.; Davis, S.; Vannier, E.G.; Fitzpatrick, M.C.; Rollend, L.; Belperron, A.A.; States, S.L.; Stacey, A.; Bockenstedt, L.K.; et al. Borrelia burgdorferi promotes the establishment of Babesia microti in the North-Eastern United States. PLoS ONE 2014, 9, e115494. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Coinfection by Ixodes tick-borne pathogens: Ecological, epidemiological, and clinical consequences. Trends Parasitol. 2016, 32, 30–42. [Google Scholar] [CrossRef] [PubMed]
- CDC—Centers for Disease Control. CDC-Babesiosis—Disease. 2019. Available online: https://www.cdc.gov/parasites/babesiosis/disease.html (accessed on 25 December 2020).
- Ingram, D.; Crook, T. Rise in babesiosis cases, Pennsylvania, USA, 2005–2018. Emerg. Infect. Dis. 2020, 26, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- CDC. Centers for Disease Control and Prevention. Lyme Disease Data and Surveillance. 2019. Available online: https://www.cdc.gov/lyme/datasurveillance/index.html (accessed on 9 January 2021).
- CDC. Centers for Disease Control and Prevention. How Many People Get Lyme Disease? 2018. Available online: https://www.cdc.gov/lyme/stats/humancases.html (accessed on 9 January 2021).
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme disease in the United States and Europe. Emerg. Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef]
- Sprong, H.; Azagi, T.; Hoornstra, D.; Nijhof, A.M.; Knorr, S.; Baarsma, M.E.; Hovius, J.W. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors 2018, 11, 145. [Google Scholar] [CrossRef]
- Jahfari, S.; Fonville, M.; Hengeveld, P.; Reusken, C.; Scholte, E.J.; Takken, W.; Heyman, P.; Medlock, J.M.; Heylen, D.; Kleve, J.; et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-West Europe. Parasites Vectors 2012, 5, 74. [Google Scholar] [CrossRef]
- Sprong, H.; Hofhuis, A.; Gassner, F.; Takken, W.; Jacobs, F.; van Vliet, A.J.; van Ballegooijen, M.; Takumi, K. Circumstantial evidence for an increase in the total number and activity of Borrelia-infected Ixodes ricinus in the Netherlands. Parasites Vectors 2012, 5, 294. [Google Scholar] [CrossRef]
- Hofhuis, A.; Harms, M.; van den Wijngaard, C.; Sprong, H.; van Pelt, W. Continuing increase of tick bites and Lyme disease between 1994 and 2009. Ticks Tick Borne Dis. 2015, 6, 69–74. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Bormane, A.; Derdakova, M.; Estrada-Peña, A.; George, J.C.; Golovljova, I.; Jaenson, T.G.T.; Jensen, J.-K.; Jensen, P.M.; et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 2013, 6, 1. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Petersson, E.H.; Jaenson, D.G.E.; Kindberg, J.; Pettersson, J.H.; Hjertqvist, M.; Medlock, J.M.; Bengtsson, H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasites Vectors 2018, 11, 477. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Hjertqvist, M.; Bergstrom, T.; Lundkvist, A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites Vectors 2012, 5, 184. [Google Scholar] [CrossRef]
- Jaenson, T.G.; Jaenson, D.G.; Eisen, L.; Petersson, E.; Lindgren, E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites Vectors 2012, 5, 8. [Google Scholar] [CrossRef]
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R.; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Telford, S.R., III; Gorenflot, A.; Brasseur, P.; Spielman, A. Babesial infections in humans and wildlife. In Parasitic Protozoa; Kreier, J.P., Ed.; Academic Press: San Diego, CA, USA, 1993; Volume 5, pp. 1–47. [Google Scholar]
- Telford, S.R., III; Goethert, H.K. Emerging tick-borne infections: Rediscovered and better characterized, or truly ‘new’? Parasitology 2004, 129, S301–S327. [Google Scholar] [CrossRef] [PubMed]
- Peirce, M.A. A taxonomic review of avian piroplasms of the genus Babesia Starcovici, 1893 (Apicomplexa: Piroplasmorida: Babesiidae). J. Nat. Hist. 2000, 34, 317–332. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Vanstreels, R.E.T.; Shock, B.C.; Purdee, M.; Horne, E.C.; Peirce, M.A.; Parsons, N.J. Molecular characterization of Babesia peircei and Babesia ugwidiensis provides insight into the evolution and host specificity of avian piroplasmids. Int. J. Parasitol. Parasites Wildl. 2017, 6, 257–264. [Google Scholar] [CrossRef]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Zintl, A.; Montero, E.; Hunfeld, K.P.; Gray, J. Human babesiosis in Europe. Pathogens 2021, 10, 1165. [Google Scholar] [CrossRef]
- Bajer, A.; Beck, A.; Beck, R.; Behnke, J.M.; Dwużnik-Szarek, D.; Eichenberger, R.M.; Farkas, R.; Fuehrer, H.-P.; Heddergott, M.; Jokelainen, P.; et al. Babesiosis in Southeastern, Central and Northeastern Europe: An emerging and re-emerging tick-borne disease of humans and animals. Microorganisms 2022, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.S.; Estrada-Peña, A.; Zintl, A. Vectors of babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef]
- Bonnet, S.; Jouglin, M.; Malandrin, L.; Becker, C.; Agoulon, A.; L’hostis, M.; Chauvin, A. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology 2007, 134 Pt 2, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Goethert, H.K. What Babesia microti is now. Pathogens 2021, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Siński, E.; Bajer, A.; Welc, R.; Pawełczyk, A.; Ogrzewalska, M.; Behnke, J.M. Babesia microti: Prevalence in wild rodents and Ixodes ricinus ticks from the Mazury Lakes District of North-Eastern Poland. Int. J. Med. Microbiol. 2006, 296 (Suppl. S40), 137–143. [Google Scholar] [CrossRef]
- Moniuszko-Malinowska, A.; Swiecicka, I.; Dunaj, J.; Zajkowska, J.; Czupryna, P.; Zambrowski, G.; Chmielewska-Badora, J.; Żukiewicz-Sobczak, W.; Swierzbinska, R.; Rutkowski, K.; et al. Infection with Babesia microti in humans with non-specific symptoms in North East Poland. Infect. Dis. Lond. Engl. 2016, 48, 537–543. [Google Scholar] [CrossRef]
- Arsuaga, M.; Gonzalez, L.M.; Lobo, C.A.; de la Calle, F.; Bautista, J.M.; Azcárate, I.G.; Puente, S.; Montero, E. First report of Babesia microti-caused babesiosis in Spain. Vector Borne Zoonotic Dis. 2016, 16, 677–679. [Google Scholar] [CrossRef]
- Bonnet, S.; Jouglin, M.; L’Hostis, M.; Chauvin, A. Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus. Emerg. Infect. Dis. 2007, 13, 1208–1210. [Google Scholar] [CrossRef]
- Michel, A.O.; Mathis, A.; Ryser-Degiorgis, M.P. Babesia spp. in European wild ruminant species: Parasite diversity and risk factors for infection. Vet. Res. 2014, 45, 65. [Google Scholar] [CrossRef]
- Malmsten, J.; Dalin, A.M.; Moutailler, S.; Devillers, E.; Gondard, M.; Felton, A. Vector-borne zoonotic pathogens in Eurasian Moose (Alces alces alces). Vector Borne Zoonotic Dis. 2019, 19, 207–211. [Google Scholar] [CrossRef]
- Fanelli, A. A historical review of Babesia spp. associated with deer in Europe: Babesia divergens/Babesia divergens-like, Babesia capreoli, Babesia venatorum, Babesia cf. odocoilei. Vet. Parasitol. 2021, 294, 109433. [Google Scholar] [CrossRef]
- Andersson, M.O.; Bergvall, U.A.; Chirico, J.; Christensson, M.; Lindgren, P.E.; Nordström, J.; Kjellander, P. Molecular detection of Babesia capreoli and Babesia venatorum in wild Swedish roe deer, Capreolus capreolus. Parasites Vectors 2016, 9, 221. [Google Scholar] [CrossRef]
- Razanske, I.; Rosef, O.; Radzijevskaja, J.; Bratchikov, M.; Griciuviene, L.; Paulauskas, A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol. Parasites Wildl. 2019, 8, 127–134. [Google Scholar] [CrossRef]
- Gray, J.; Zintl, A.; Hildebrandt, A.; Hunfeld, K.P.; Weiss, L. Zoonotic babesiosis: Overview of the disease and novel aspects of pathogen identity. Ticks Tick-Borne Dis. 2010, 1, 3–10. [Google Scholar] [CrossRef]
- Franke, J.; Fritzsch, J.; Tomaso, H.; Straube, E.; Dorn, W.; Hildebrandt, A. coexistence of pathogens in host-seeking and feeding ticks within a single natural habitat in central Germany. Appl. Environ. Microbiol. 2010, 76, 6829–6836. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Franke, J.; Meier, F.; Sachse, S.; Dorn, W.; Straube, E. The potential role of migratory birds in transmission cycles of Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. Ticks Tick-Borne Dis. 2010, 1, 105–107. [Google Scholar] [CrossRef]
- Hersh, M.H.; Tibbetts, M.; Strauss, M.; Ostfeld, R.S.; Keesing, F. Reservoir competence of wildlife host species for Babesia microti. Emerg. Infect. Dis. 2012, 18, 1951–1957. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Pawełczyk, O.; Jaenson, T.G.T.; Waldenström, J.; Olsen, B.; Forsberg, P.; Lindgren, P.E. Three Babesia species in Ixodes ricinus ticks from migratory birds in Sweden. Parasites Vectors 2021, 14, 183. [Google Scholar] [CrossRef]
- Gray, J.; von Stedingk, L.V.; Gürtelschmid, M.; Granström, M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J. Clin. Microbiol. 2002, 40, 1259–1263. [Google Scholar] [CrossRef]
- Capligina, V.; Berzina, I.; Bormane, A.; Salmane, I.; Vilks, K.; Kazarina, A.; Bandere, D.; Baumanis, V.; Ranka, R. Prevalence and phylogenetic analysis of Babesia spp. in Ixodes ricinus and Ixodes persulcatus ticks in Latvia. Exp. Appl. Acarol. 2016, 68, 325–336. [Google Scholar] [CrossRef]
- Rar, V.A.; Epikhina, T.I.; Livanova, N.N.; Panov, V.V. Genetic diversity of Babesia in Ixodes persulcatus and small mammals from North Ural and West Siberia, Russia. Parasitology 2011, 138, 175–182. [Google Scholar] [CrossRef]
- Korenberg, E.I.; Nefedova, V.V.; Kovalevsky, Y.V.; Sorokina, Y.V.; Gorelova, N.B. Parasitological factors impeding the transmission of the agent of babesiosis (Babesia microti) to man from the tick Ixodes persulcatus. Parazitologiia 2015, 49, 27–41. [Google Scholar]
- Zamoto-Niikura, A.; Tsuji, M.; Qiang, W.; Nakao, M.; Hirata, H.; Ishihara, C. Detection of two zoonotic Babesia microti lineages, the Hobetsu and U.S. lineages, in two sympatric tick species, Ixodes ovatus and Ixodes persulcatus, respectively, in Japan. Appl. Environ. Microbiol. 2012, 78, 3424–3430. [Google Scholar] [CrossRef]
- Zamoto-Niikura, A.; Morikawa, S.; Hanaki, K.I.; Holman, P.J.; Ishihara, C. Ixodes persulcatus ticks as vectors for the Babesia microti U.S. lineage in Japan. Appl. Environ. Microbiol. 2016, 82, 6624–6632. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, G.; Yang, L.; Xu, R.; Cao, W. Babesia microti-like rodent parasites isolated from Ixodes persulcatus (Acari: Ixodidae) in Heilongjiang Province, China. Vet. Parasitol. 2008, 156, 333–339. [Google Scholar] [CrossRef]
- Randolph, S.E. Quantifying parameters in the transmission of Babesia microti by the tick Ixodes trianguliceps amongst voles (Clethrionomys glareolus). Parasitology 1995, 110, 287–295. [Google Scholar] [CrossRef]
- Randolph, S.E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 1991, 102 Pt 1, 9–16. [Google Scholar] [CrossRef]
- Krampitz, H.E. Babesia microti: Morphology, Distribution and Host Relationship in Germany. 1979. Available online: https://www.cabi.org/ISC/abstract/19800866362 (accessed on 23 April 2022).
- Bown, K.J.; Lambin, X.; Telford, G.R.; Ogden, N.H.; Telfer, S.; Woldehiwet, Z.; Birtles, R.J. Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol. 2008, 74, 7118–7125. [Google Scholar] [CrossRef]
- Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence of Anaplasma phagocytophilum and Babesia divergens in Ixodes ricinus ticks from Lithuania and Norway. Int. J. Med. Microbiol. 2008, 298, 218–221. [Google Scholar] [CrossRef]
- Oines, O.; Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasites Vectors 2012, 5, 156. [Google Scholar] [CrossRef]
- Karlsson, M.E.; Andersson, M.O. Babesia species in questing Ixodes ricinus, Sweden. Ticks Tick-Borne Dis. 2016, 7, 10–12. [Google Scholar] [CrossRef]
- Radzijevskaja, J.; Mardosaitė-Busaitienė, D.; Aleksandravičienė, A.; Paulauskas, A. Investigation of Babesia spp. in sympatric populations of Dermacentor reticulatus and Ixodes ricinus ticks in Lithuania and Latvia. Ticks Tick-Borne Dis. 2018, 9, 270–274. [Google Scholar] [CrossRef]
- Laaksonen, M.; Klemola, T.; Feuth, E.; Sormunen, J.J.; Puisto, A.; Mäkelä, S.; Penttinen, R.; Ruohomäki, K.; Hänninen, J.; Sääksjärvi, I.E.; et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasites Vectors 2018, 11, 556. [Google Scholar] [CrossRef]
- Sormunen, J.J.; Andersson, T.; Aspi, J.; Bäck, J.; Cederberg, T.; Haavisto, N.; Halonen, H.; Hänninen, J.; Inkinen, J.; Kulha, N.; et al. Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks Tick-Borne Dis. 2020, 11, 101449. [Google Scholar] [CrossRef]
- Silaghi, C.; Woll, D.; Hamel, D.; Pfister, K.; Mahling, M.; Pfeffer, M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents—Analyzing the host-pathogen-vector interface in a metropolitan area. Parasites Vectors 2012, 5, 191. [Google Scholar] [CrossRef]
- Katargina, O.; Geller, J.; Vasilenko, V.; Kuznetsova, T.; Järvekülg, L.; Vene, S.; Lundkvist, Å.; Golovljova, I.; Hamšíková, Z.; Kazimírová, M.; et al. Detection and characterization of Babesia species in Ixodes ticks in Estonia. Vector Borne Zoonotic Dis. 2011, 11, 923–928. [Google Scholar] [CrossRef]
- Klitgaard, K.; Kjær, L.J.; Isbrand, A.; Hansen, M.F.; Bødker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick-Borne Dis. 2019, 10, 1060–1065. [Google Scholar] [CrossRef]
- Skotarczak, B.; Rymaszewska, A.; Wodecka, B.; Sawczuk, M. Molecular evidence of coinfection of Borrelia burgdorferi sensu lato, human granulocytic ehrlichiosis agent, and Babesia microti in ticks from North-Western Poland. J. Parasitol. 2003, 89, 194–196. [Google Scholar] [CrossRef]
- Welc-Faleciak, R.; Bajer, A.; Paziewska-Harris, A.; Baumann-Popczyk, A.; Sinski, E. Diversity of Babesia in Ixodes ricinus ticks in Poland. Adv. Med. Sci. 2012, 57, 364–369. [Google Scholar] [CrossRef]
- Pawełczyk, A.; Bednarska, M.; Hamera, A.; Religa, E.; Poryszewska, M.; Mierzejewska, E.J.; Welc-Falęciak, R. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016–2019. Parasit Vectors 2021, 14, 348. [Google Scholar] [CrossRef]
- Pieniazek, N.; Sawczuk, M.; Skotarczak, B. Molecular identification of Babesia parasites isolated from Ixodes ricinus ticks collected in northwestern Poland. J. Parasitol. 2006, 92, 32–35. [Google Scholar] [CrossRef]
- Azagi, T.; Jaarsma, R.I.; Docters van Leeuwen, A.; Fonville, M.; Maas, M.; Franssen, F.F.J.; Kik, M.; Rijks, J.M.; Montizaan, M.G.; Groenevelt, M.; et al. Circulation of Babesia species and their exposure to humans through Ixodes ricinus. Pathogens 2021, 10, 386. [Google Scholar] [CrossRef]
- Moutailler, S.; Valiente Moro, C.; Vaumourin, E.; Michelet, L.; Tran, F.H.; Devillers, E.; Cosson, J.F.; Gasqui, P.; Van, V.T.; Mavingui, P.; et al. Co-infection of ticks: The rule rather than the exception. PLoS Neglected Trop. Dis. 2016, 10, e0004539. [Google Scholar] [CrossRef]
- Raileanu, C.; Moutailler, S.; Pavel, I.; Porea, D.; Mihalca, A.D.; Savuta, G.; Vayssier-Taussat, M. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Front. Cell. Infect. Microbiol. 2017, 7, 36. [Google Scholar] [CrossRef]
- Michelet, L.; Delannoy, S.; Devillers, E.; Umhang, G.; Aspan, A.; Juremalm, M.; Chirico, J.; van der Wal, F.J.; Sprong, H.; Pihl, T.P.B.; et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 2014, 4, 103. [Google Scholar] [CrossRef]
- Bonnet, S.; Michelet, L.; Moutailler, S.; Cheval, J.; Hébert, C.; Vayssier-Taussat, M.; Eloit, M. Identification of parasitic communities within European ticks using next-generation sequencing. PLoS Neglected Trop. Dis. 2014, 8, e2753. [Google Scholar] [CrossRef]
- Nordberg, M.; Forsberg, P.; Berglund, J.; Bjöersdorff, A.; Ernerudh, J.; Garpmo, U.; Haglund, M.; Nilsson, K.; Eliasson, I. Aetiology of tick-borne infections in an adult Swedish population—Are co-infections with multiple agents common? Open J. Clin. Diagn. 2014, 4, 31–40. [Google Scholar] [CrossRef]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J.; et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasit Vectors 2020, 13, 351. [Google Scholar] [CrossRef]
- Cutler, S.J.; Vayssier-Taussat, M.; Estrada-Peña, A.; Potkonjak, A.; Mihalca, A.D.; Zeller, H. Tick-borne diseases and co-infection: Current considerations. Ticks Tick-Borne Dis. 2021, 12, 101607. [Google Scholar] [CrossRef]
- Kernif, T.; Leulmi, H.; Raoult, D.; Parola, P. Emerging tick-borne bacterial pathogens. Microbiol. Spectr. 2016, 4, 295–310. [Google Scholar] [CrossRef]
- Borşan, S.D.; Ionică, A.M.; Galon, C.; Toma-Naic, A.; Peştean, C.; Sándor, A.D.; Moutailler, S.; Mihalca, A.D. High diversity, prevalence, and co-infection rates of tick-borne pathogens in ticks and wildlife hosts in an urban area in Romania. Front. Microbiol. 2021, 12, 351. [Google Scholar] [CrossRef]
- Subramanian, G.; Sekeyova, Z.; Raoult, D.; Mediannikov, O. Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick-Borne Dis. 2012, 3, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Kahl, O.; Zintl, A. What do we still need to know about Ixodes ricinus? Ticks Tick-Borne Dis. 2021, 12, 101682. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.L.; Jordan, R.A.; Healy, S.P.; Roegner, V.E. Detection of Babesia microti and Borrelia burgdorferi in host-seeking Ixodes scapularis (Acari: Ixodidae) in Monmouth County, New Jersey. J. Med. Entomol. 2013, 50, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Asman, M.; Witecka, J.; Korbecki, J.; Solarz, K. The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland). Sci. Rep. 2021, 11, 4860. [Google Scholar] [CrossRef] [PubMed]
- Jahfari, S.; Hofhuis, A.; Fonville, M.; van der Giessen, J.; van Pelt, W.; Sprong, H. Molecular detection of tick-borne pathogens in humans with tick bites and erythema migrans, in the Netherlands. PLoS Neglected Trop. Dis. 2016, 10, e0005042. [Google Scholar] [CrossRef] [PubMed]
- Henningsson, A.J.; Wilhelmsson, P.; Gyllemark, P.; Kozak, M.; Matussek, A.; Nyman, D.; Ekerfelt, C.; Lindgren, P.-E.; Forsberg, P. Low risk of seroconversion or clinical disease in humans after a bite by an Anaplasma phagocytophilum-infected tick. Ticks Tick-Borne Dis. 2015, 6, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Schlee, D.B.; Allgöwer, R.; Matuschka, F.R. Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl. Environ. Microbiol. 2004, 70, 6414–6419. [Google Scholar] [CrossRef]
- Stanek, G.; Strle, F. Lyme borreliosis—From tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 2018, 42, 233–258. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Lövmar, M.; Krogfelt, K.A.; Nielsen, H.V.; Forsberg, P.; Lindgren, P.E. Clinical/serological outcome in humans bitten by Babesia species positive Ixodes ricinus ticks in Sweden and on the Åland Islands. Ticks Tick-Borne Dis. 2020, 11, 101455. [Google Scholar] [CrossRef]
- Lommano, E.; Bertaiola, L.; Dupasquier, C.; Gern, L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl. Environ. Microbiol. 2012, 78, 4606–4612. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.N.; Semenov, A.V.; Dubinina, H.V. Evidence of Babesia microti infection in multi-infected Ixodes persulcatus ticks in Russia. Exp. Appl. Acarol. 2003, 29, 345–353. [Google Scholar] [CrossRef]
- Stewart, P.E.; Bloom, M.E. Sharing the ride: Ixodes scapularis symbionts and their interactions. Front. Cell. Infect. Microbiol. 2020, 10, 142. [Google Scholar] [CrossRef]
- Parveen, N.; Bhanot, P. Babesia microti-Borrelia burgdorferi coinfection. Pathog. Basel Switz. 2019, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.J.; Neitzel, D.; Reed, K.D.; Belongia, E.A. Coinfections acquired from Ixodes ticks. Clin. Microbiol. Rev. 2006, 19, 708–727. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, E.K.; Kolbert, C.P.; Abdulkarim, A.S.; Magera, J.M.; Hopkins, M.K.; Uhl, J.R.; Ambyaye, A.; Telford, S.R., III; Cockerill, F.R., III; Persing, D.H. Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus. J. Infect. Dis. 1998, 177, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.F.; Johnson, R.C.; Magnarelli, L.A.; Hyde, F.W.; Myers, J.E. Peromyscus leucopus and Microtus pennsylvanicus simultaneously infected with Borrelia burgdorferi and Babesia microti. J. Clin. Microbiol. 1986, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Benach, J.L.; Coleman, J.L.; Habicht, G.S.; MacDonald, A.; Grunwaldt, E.; Giron, J.A. Serological evidence for simultaneous occurrences of Lyme disease and babesiosis. J. Infect. Dis. 1985, 152, 473–477. [Google Scholar] [CrossRef]
- Grunwaldt, E.; Barbour, A.G.; Benach, J.L. Simultaneous occurrence of babesiosis and Lyme disease. N. Engl. J. Med. 1983, 308, 1166. [Google Scholar]
- Krause, P.J.; Auwaerter, P.G.; Bannuru, R.R.; Branda, J.A.; Falck-Ytter, Y.T.; Lantos, P.M.; Lavergne, V.; Meissner, H.C.; Osani, M.C.; Rips, J.G.; et al. Clinical practice guidelines by the Infectious Diseases Society of America (IDSA): 2020 Guideline on Diagnosis and Management of Babesiosis. Clin. Infect. Dis. 2020, 72, e49–e64. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Ghassemi, M.; Agger, W.A.; Persing, D.H. Coinfection with Babesia microti and Borrelia burgdorferi in a western Wisconsin resident. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 1998; Volume 73, pp. 338–341. [Google Scholar]
- Djokic, V.; Akoolo, L.; Primus, S.; Schlachter, S.; Kelly, K.; Bhanot, P.; Parveen, N. Protozoan parasite Babesia microti subverts adaptive immunity and enhances Lyme disease severity. Front. Microbiol. 2019, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Bhanot, P.; Parveen, N. Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int. J. Parasitol. 2019, 49, 145–151. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201900096307 (accessed on 17 July 2021). [CrossRef] [PubMed]
- Hermanowska-Szpakowicz, T.; Skotarczak, B.; Kondrusik, M.; Rymaszewska, A.; Sawczuk, M.; Maciejewska, A.; Adamska, M.; Pancewicz, S.; Zajkowska, J. Detecting DNA s of Anaplasma phagocytophilum and Babesia in the blood of patients suspected of Lyme disease. Ann. Agric. Environ. Med. AAEM 2004, 11, 351–354. [Google Scholar] [PubMed]
- Arnez, M.; Luznik-Bufon, T.; Avsic-Zupanc, T.; Ruzic-Sabljic, E.; Petrovec, M.; Lotric-Furlan, S.; Strle, F. Causes of febrile illnesses after a tick bite in Slovenian children. Pediatr. Infect. Dis. J. 2003, 22, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, K.; Suomalainen, P.; Sukura, A.; Siikamäki, H.; Jokiranta, T.S. Fatal babesiosis in man, Finland, 2004. Emerg. Infect. Dis. 2010, 16, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.; Hunfeld, K.P.; Persson, K.E. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick-Borne Dis. 2019, 10, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, P.; Jaenson, T.G.T.; Olsen, B.; Waldenström, J.; Lindgren, P.E. Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: A seasonal study at Ottenby Bird Observatory in South-Eastern Sweden. Parasites Vectors 2020, 13, 607. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Lindblom, P.; Fryland, L.; Ernerudh, J.; Forsberg, P.; Lindgren, P.E. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 2013, 8, e81433. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Fryland, L.; Börjesson, S.; Nordgren, J.; Bergström, S.; Ernerudh, J.; Forsberg, P.; Lindgren, P.-E. Prevalence and diversity of Borrelia species in ticks that have bitten humans in Sweden. J. Clin. Microbiol. 2010, 48, 4169–4176. [Google Scholar] [CrossRef]
- Pichon, B.; Egan, D.; Rogers, M.; Gray, J. Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. (Acari: Ixodidae). J. Med. Entomol. 2003, 40, 723–731. [Google Scholar] [CrossRef]
- Rollend, L.; Fish, D.; Childs, J.E. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: A summary of the literature and recent observations. Ticks Tick-Borne Dis. 2013, 4, 46–51. [Google Scholar] [CrossRef]
- Breuner, N.E.; Hojgaard, A.; Replogle, A.J.; Boegler, K.A.; Eisen, L. Transmission of the relapsing fever spirochete, Borrelia miyamotoi, by single transovarially-infected larval Ixodes scapularis ticks. Ticks Tick-Borne Dis. 2018, 9, 1464–1467. [Google Scholar] [CrossRef]
- Krause, P.J.; Fish, D.; Narasimhan, S.; Barbour, A.G. Borrelia miyamotoi infection in nature and in humans. Clin. Microbiol. Infect. 2015, 21, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Hamer, S.A.; Hickling, G.J.; Keith, R.; Sidge, J.L.; Walker, E.D.; Tsao, J.I. Associations of passerine birds, rabbits, and ticks with Borrelia miyamotoi and Borrelia andersonii in Michigan, U.S.A. Parasites Vectors 2012, 5, 231. [Google Scholar] [CrossRef]
- Piesman, J.; Hicks, T.C.; Sinsky, R.J.; Obiri, G. Simultaneous transmission of Borrelia burgdorferi and Babesia microti by individual nymphal Ixodes dammini ticks. J. Clin. Microbiol. 1987, 25, 2012–2013. [Google Scholar] [CrossRef]
- Hofhuis, A.; van de Kassteele, J.; Sprong, H.; van den Wijngaard, C.C.; Harms, M.G.; Fonville, M.; van Leeuwen, A.D.; Simões, M.; van Pelt, W. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model. PLoS ONE 2017, 12, e0181807. [Google Scholar] [CrossRef]
- Wilhelmsson, P.; Fryland, L.; Lindblom, P.; Sjöwall, J.; Ahlm, C.; Berglund, J.; Haglund, M.; Henningsson, A.J.; Nolskog, P.; Nordberg, M.; et al. A prospective study on the incidence of Borrelia burgdorferi sensu lato infection after a tick bite in Sweden and on the Åland Islands, Finland (2008–2009). Ticks Tick-Borne Dis. 2016, 7, 71–79. [Google Scholar] [CrossRef]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The Clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- Babesiosis and Tick-Borne Pathogens Subcommittee Report to the Tick-Borne Disease Working Group. HHS.gov. 2020. Available online: https://www.hhs.gov/ash/advisory-committees/tickbornedisease/reports/babesiosis-subcomm-2020/index.html (accessed on 14 February 2021).
- Dixon, D.M.; Walker, D.H.; Walls, M.; Branda, J.A.; Clark, S.; Dumler, J.S.; Horowitz, H.W.; Pritt, B.S.; Sexton, D.J.; Storch, G.A. Ehrlichiosis and Anaplasmosis Subcommittee Report to the Tick-Borne Disease Working Group. HHS.gov. 2020. Available online: https://www.hhs.gov/ash/advisory-committees/tickbornedisease/reports/ehrlichiosis-and-anaplasmosis-subcommittee-report-2020/index.html (accessed on 21 September 2022).
- Tonnetti, L.; Dodd, R.Y.; Foster, G.; Stramer, S.L. Babesia blood testing: The first-year experience. Transfusion 2022, 62, 135–142. [Google Scholar] [CrossRef]
- Bloch, E.M.; Krause, P.J. Blood screening for Babesia in the blood supply. Ann. Blood 2020, 5, 26. [Google Scholar] [CrossRef]
- Stanley, J.; Stramer, S.L.; Erickson, Y.; Cruz, J.; Gorlin, J.; Janzen, M.; Rossmann, S.N.; Straus, T.; Albrecht, P.; Pate, L.L.; et al. Detection of Babesia RNA and DNA in whole blood samples from US blood donations. Transfusion 2021, 61, 2969–2980. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.M.; Krause, P.J.; Tonnetti, L. Preventing transfusion-transmitted babesiosis. Pathogens 2021, 10, 1176. [Google Scholar] [CrossRef]
- Krawczyk, A.I.; Röttjers, L.; Fonville, M.; Takumi, K.; Takken, W.; Faust, K.; Sprong, H. Quantitative microbial population study reveals geographical differences in bacterial symbionts of Ixodes ricinus. Microbiome 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Holmes, E.C. Predicting virus emergence amid evolutionary noise. Open Biol. 2017, 7, 170–189. [Google Scholar] [CrossRef]
- Gyllemark, P.; Wilhelmsson, P.; Elm, C.; Hoornstra, D.; Hovius, J.W.; Johansson, M.; Tjernberg, I.; Lindgren, P.-E.; Henningsson, A.J.; Sjöwall, J. Are other tick-borne infections overlooked in patients investigated for Lyme neuroborreliosis? A large retrospective study from South-Eastern Sweden. Ticks Tick-Borne Dis. 2021, 12, 101759. [Google Scholar] [CrossRef]
- Eisen, L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick-Borne Dis. 2018, 9, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Hersh, M.H.; Ostfeld, R.S.; McHenry, D.J.; Tibbetts, M.; Brunner, J.L.; Killilea, M.E.; LoGiudice, K.; Schmidt, K.A.; Keesing, F. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PLoS ONE 2014, 9, e99348. [Google Scholar] [CrossRef]
- Kurtenbach, K.; De Michelis, S.; Sewell, H.S.; Etti, S.; Schäfer, S.M.; Hails, R.; Collares-Pereira, M.; Santos-Reis, M.; Haninçová, K.; Labuda, M.; et al. Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Appl. Environ. Microbiol. 2001, 67, 4926–4929. [Google Scholar] [CrossRef]
- Ginsberg, H.S. Potential effects of mixed infections in ticks on transmission dynamics of pathogens: Comparative analysis of published records. Exp. Appl. Acarol. 2008, 46, 29–41. [Google Scholar] [CrossRef]
- Herrmann, C.; Gern, L.; Voordouw, M.J. Species co-occurrence patterns among Lyme borreliosis pathogens in the tick vector Ixodes ricinus. Appl. Environ. Microbiol. 2013, 79, 7273–7280. [Google Scholar] [CrossRef]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Higgins, Y.; Melia, M.T.; Auwaerter, P.G. Mistaken identity: Many diagnoses are frequently misattributed to Lyme disease. Am. J. Med. 2021, 135, 503–511.e5. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.B.; Herwaldt, B.L. Babesiosis Surveillance—United States, 2011–2015. MMWR Surveill. Summ. 2019, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dammin, G.J.; Spielman, A.; Benach, J.L.; Piesman, J. The rising incidence of clinical Babesia microti infection. Hum. Pathol. 1981, 12, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Bregnard, C.; Rais, O.; Voordouw, M.J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasites Vectors 2020, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Scharlemann, J.; Johnson, P.; Smith, A.; Macdonald, D.; Randolph, S. Trends in Ixodid tick abundance and distribution in Great Britain. Med. Vet. Entomol. 2008, 22, 238–247. [Google Scholar] [CrossRef]
- Vandekerckhove, O.; De Buck, E.; Van Wijngaerden, E. Lyme disease in Western Europe: An emerging problem? A systematic review. Acta Clin. Belg. 2021, 76, 244–252. [Google Scholar] [CrossRef]
- Public Health Agency of Sweden. Årssammanfattning Smittsamma Sjukdomar 2021 [Annual Summary—Infectious Diseases 2021]. Available online: https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/tolkad-rapportering/arsrapporter-anmalningspliktiga-sjukdomar/arsrapporter-2021/arssammanfattning-2021/ (accessed on 28 September 2022).
- Public Health Agency of Sweden. Tick Borne Encephalitis (TBE)—Sjukdomsstatistik. [Tick-borne Encephalitis (TBE)—Disease Statistics]. Available online: https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/statistik-a-o/sjukdomsstatistik/tick-borne-encephalitis-tbe/ (accessed on 27 November 2021).
- Finnish Institute for Health and Welfare. Registret för Smittsamma Sjukdomar, Statistisk Databas—THL Användargränssnitt för Data Kuber Och Sammanfattningar. [The Registry for Infectious Diseases, Statistical Database—THL User Interface for Data Cubes and Summaries]. Available online: https://sampo.thl.fi/pivot/prod/sv/ttr/shp/fact_shp?row=area-12260&column=time-12059&filter=reportgroup-12465 (accessed on 10 January 2021).
- Lantos, P.M.; Wormser, G.P. Chronic coinfections in patients diagnosed with chronic Lyme disease: A systematic review. Am. J. Med. 2014, 127, 1105–1110. [Google Scholar] [CrossRef]
- Hunfeld, K.P.; Lambert, A.; Kampen, H.; Albert, S.; Epe, C.; Brade, V.; Tenter, A.M. Seroprevalence of Babesia infections in humans exposed to ticks in midwestern Germany. J. Clin. Microbiol. 2002, 40, 2431–2436. [Google Scholar] [CrossRef]
- Rigaud, E.; Jaulhac, B.; Garcia-Bonnet, N.; Hunfeld, K.P.; Féménia, F.; Huet, D.; Goulvestre, C.; Vaillant, V.; Deffontaines, G.; Abadia-Benoist, G. Seroprevalence of seven pathogens transmitted by the Ixodes ricinus tick in forestry workers in France. Clin. Microbiol. Infect. 2016, 22, e1–e9. [Google Scholar] [CrossRef]
- Montero, E.; Folgueras, M.; Rodriguez-Pérez, M.; Pérez-Ls, L.; Díaz-Arias, J.; Meana, M.; Revuelta, B.; Haapasalo, K.; Collazos, J.; Asensi, V.; et al. Retrospective study of the epidemiological risk and serological diagnosis of human babesiosis in Asturias, Northwestern Spain. Parasites Vectors 2023, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, K.; Skoog, E.; Jones, V.; Labbé Sandelin, L.; Björling, C.; Fridenström, E.; Edvinsson, M.; Mårtensson, A.; Olsen, B. A comprehensive clinical and laboratory evaluation of 224 patients with persistent symptoms attributed to presumed tick-bite exposure. PLoS ONE 2021, 16, e0247384. [Google Scholar] [CrossRef] [PubMed]
- Uhnoo, I.; Cars, O.; Christensson, D.; Nyström-Rosander, C. First documented case of human babesiosis in Sweden. Scand. J. Infect. Dis. 1992, 24, 541–547. [Google Scholar] [CrossRef]
- Bläckberg, J.; Lazarevic, V.L.; Hunfeld, K.P.; Persson, K.E.M. Low-virulent Babesia venatorum infection masquerading as hemophagocytic syndrome. Ann. Hematol. 2018, 97, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Mørch, K.; Holmaas, G.; Frolander, P.S.; Kristoffersen, E.K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 2015, 33, 37–38. [Google Scholar] [CrossRef]
- Thortveit, E.T.; Aase, A.; Petersen, L.B.; Lorentzen, Å.R.; Mygland, Å.; Ljøstad, U. Human seroprevalence of antibodies to tick-borne microbes in southern Norway. Ticks Tick-Borne Dis. 2020, 11, 101410. [Google Scholar] [CrossRef]
- Kallio, E.R.; Begon, M.; Birtles, R.J.; Bown, K.J.; Koskela, E.; Mappes, T.; Watts, P.C. First report of Anaplasma phagocytophilum and Babesia microti in rodents in Finland. Vector Borne Zoonotic Dis. 2014, 14, 389–393. [Google Scholar] [CrossRef]
- Hasle, G.; Leinaas, H.P.; Roed, K.H.; Oines, O. Transport of Babesia venatorum-infected Ixodes ricinus to Norway by northward migrating passerine birds. Acta Vet. Scand. 2011, 53, 41. [Google Scholar] [CrossRef]
- Young, K.M.; Corrin, T.; Wilhelm, B.; Uhland, C.; Greig, J.; Mascarenhas, M.; Waddell, L.A. Zoonotic Babesia: A scoping review of the global evidence. PLoS ONE 2019, 14, e0226781. [Google Scholar] [CrossRef]
- Ursinus, J.; Vrijmoeth, H.D.; Harms, M.G.; Tulen, A.D.; Knoop, H.; Gauw, S.A.; Zomer, T.P.; Wong, A.; Friesema, I.H.; Vermeeren, Y.M.; et al. Prevalence of persistent symptoms after treatment for Lyme borreliosis: A prospective observational cohort study. Lancet Reg. Health-Eur. 2021, 6, 100142. [Google Scholar] [CrossRef]
- Sloupenska, K.; Dolezilkova, J.; Koubkova, B.; Hutyrova, B.; Racansky, M.; Horak, P.; Golovchenko, M.; Raska, M.; Rudenko, N.; Krupka, M. Seroprevalence of antibodies against tick-borne pathogens in Czech patients with suspected post-treatment Lyme disease syndrome. Microorganisms 2021, 9, 2217. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.J.; Spielman, A.; Telford, S.R., 3rd; Sikand, V.K.; McKay, K.; Christianson, D.; Pollack, R.J.; Brassard, P.; Magera, J.; Ryan, R.; et al. Persistent parasitemia after acute babesiosis. N. Engl. J. Med. 1998, 339, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.M.; Kumar, S.; Krause, P.J. Persistence of Babesia microti infection in humans. Pathogens 2019, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Lantos, P.M.; Rumbaugh, J.; Bockenstedt, L.K.; Falck-Ytter, Y.T.; Aguero-Rosenfeld, M.E.; Auwaerter, P.G.; Baldwin, K.; Bannuru, R.R.; Belani, K.K.; Bowie, W.R.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis, and Treatment of Lyme Disease. Arthritis Care Res. 2021, 73, 1–9. [Google Scholar] [CrossRef]
- Martínez-Balzano, C.; Hess, M.; Malhotra, A.; Lenox, R. Severe babesiosis and Borrelia burgdorferi co-infection. QJM Int. J. Med. 2015, 108, 141–143. [Google Scholar] [CrossRef]
- Bobe, J.R.; Jutras, B.L.; Horn, E.J.; Embers, M.E.; Bailey, A.; Moritz, R.L.; Zhang, Y.; Soloski, M.J.; Ostfeld, R.S.; Marconi, R.T.; et al. Recent Progress in Lyme disease and remaining challenges. Front. Med. 2021, 8, 1276. [Google Scholar] [CrossRef]
- Mowla, S.J.; Drexler, N.A.; Cherry, C.C.; Annambholta, P.D.; Kracalik, I.T.; Basavaraju, S.V. Ehrlichiosis and Anaplasmosis among transfusion and transplant recipients in the United States. Emerg. Infect. Dis. 2021, 27, 2768–2775. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Anaplasma phagocytophilum transmitted through blood transfusion--Minnesota, 2007. MMWR Morb. Mortal. Wkly. Rep. 2008, 57, 1145–1148.
- Herwaldt, B.L.; Linden, J.V.; Bosserman, E.; Young, C.; Olkowska, D.; Wilson, M. Transfusion-associated babesiosis in the United States: A description of cases. Ann. Intern. Med. 2011, 155, 509–519. [Google Scholar] [CrossRef]
- Krause, P.J.; Hendrickson, J.E.; Steeves, T.K.; Fish, D. Blood transfusion transmission of the tick-borne relapsing fever spirochete Borrelia miyamotoi in mice. Transfusion 2015, 55, 593–597. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Gray, J.S.; Hunfeld, K.P. Human babesiosis in Europe: What clinicians need to know. Infection 2013, 41, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.J.; Gewurz, B.E.; Hill, D.; Marty, F.M.; Vannier, E.; Foppa, I.M.; Furman, R.R.; Neuhaus, E.; Skowron, G.; Gupta, S.; et al. Persistent and relapsing babesiosis in immunocompromised patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 46, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Westblade, L.F.; Kessler, D.A.; Sfeir, M.; Slavinski, S.; Backenson, B.; Gebhardt, L.; Kane, K.; Laurence, J.; Scherr, D.; et al. Death from transfusion-transmitted anaplasmosis, New York, USA, 2017. Emerg. Infect. Dis. 2018, 24, 1548–1550. [Google Scholar] [CrossRef]
- Levin, A.E.; Krause, P.J. Transfusion-transmitted babesiosis: Is it time to screen the blood supply? Curr. Opin. Hematol. 2016, 23, 573–580. [Google Scholar] [CrossRef]
- Fong, I.W. Blood transfusion-associated infections in the twenty-first century: New challenges. In Current Trends and Concerns in Infectious Diseases; Springer: Cham, Switzerland, 2020; pp. 191–215. [Google Scholar] [CrossRef]
- Fiecek, B.; Matławska, M.; Gołąb, E.; Chmielewski, T. Risk of transmission of tick-borne diseases by blood transfusion. Postępy Mikrobiol-Adv. Microbiol. 2020, 59, 129–137. [Google Scholar] [CrossRef]
- Goodell, A.J.; Bloch, E.M.; Krause, P.J.; Custer, B. Costs, consequences, and cost-effectiveness of strategies for Babesia microti donor screening of the US blood supply. Transfusion 2014, 54, 2245–2257. [Google Scholar] [CrossRef]
Ba. microti Clade 1 | Ba. divergens Clade X | Ba. venatorum Clade X | Ba. capreoli Clade X | Babesia sp. * | Tot. No. Ticks | Country | Sampling Method | Reference |
---|---|---|---|---|---|---|---|---|
0.9 | 224 | Norway | Cloth drag | [54] | ||||
0.1 | 0.6 | 0.1 | 0.1 | 1908 | Norway | Cloth drag | [55] | |
3.2 | 0.2 | 1 | 519 | Sweden | Cloth drag | [56] | ||
2.1 | 140 | Lithuania | Cloth drag | [54] | ||||
2.4 | 1.6 | 5.4 | 370 | Lithuania | Cloth drag | [57] | ||
0.7 | 0.7 | 432 | Latvia | Cloth drag | [44] | |||
0.1 | 0.3 | 2014 | Finland | Citizens were asked to provide ticks | [58] | |||
1.2 | 515 | Finland | Cloth drag | [59] | ||||
3.3 | 0.6 | 0.2 | 539 | C. Germany | Cloth drag | [60] | ||
0.8 | 2.1 | 1276–1665 | Estonia | Cloth drag | [61] | |||
0.9 | 540 | Denmark | Cloth drag | [62] | ||||
13.0 | 514 | Poland | Cloth drag | [63] | ||||
0.7 | 0.2 | 0.7 | 3165 | Poland | Cloth drag | [64] | ||
0.8 | 0.4 | 0.08 | 1115 | Poland | Removed from humans | [65] | ||
0.1 | 2.0 | 1328 | Poland | Cloth drag | [66] | |||
0.01 | 0.8 (1.9, all Clade X) | 0.04 | 25,849 | Netherlands | Cloth drag | [67] | ||
2.6 | 18,626 | Netherlands | Cloth drag | [67] |
Tick Developmental Stage | Babesia Species a | Borrelia Species b | Bird Species c | Collection Period d |
---|---|---|---|---|
Larva | Ba. venatorum | Bo. miyamotoi | Troglodytes troglodytes | Spring |
Larva | Ba. venatorum | Bo. garinii | Turdus merula | Autumn |
Larva | Ba. venatorum | Bo. valaisiana | Troglodytes troglodytes | Autumn |
Nymph | Ba. venatorum | Bo. valaisiana | Turdus merula | Spring |
Nymph | Ba. venatorum | Bo. valaisiana | Erithacus rubecula | Spring |
Nymph | Ba. venatorum | Bo. garinii | Turdus merula | Autumn |
Nymph | Ba. microti | Bo. afzelii | Turdus merula | Autumn |
Nymph | Ba. microti | Bo. afzelii | Anthus trivialis | Spring |
Nymph | Ba. microti | Bo. afzelii | Phoenicurus phoenicurus | Spring |
Nymph | Ba. microti | untypeable | Turdus merula | Spring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaenson, T.G.T.; Gray, J.S.; Lindgren, P.-E.; Wilhelmsson, P. Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus—A Neglected Public Health Issue in Europe? Pathogens 2024, 13, 81. https://doi.org/10.3390/pathogens13010081
Jaenson TGT, Gray JS, Lindgren P-E, Wilhelmsson P. Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus—A Neglected Public Health Issue in Europe? Pathogens. 2024; 13(1):81. https://doi.org/10.3390/pathogens13010081
Chicago/Turabian StyleJaenson, Thomas G. T., Jeremy S. Gray, Per-Eric Lindgren, and Peter Wilhelmsson. 2024. "Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus—A Neglected Public Health Issue in Europe?" Pathogens 13, no. 1: 81. https://doi.org/10.3390/pathogens13010081
APA StyleJaenson, T. G. T., Gray, J. S., Lindgren, P. -E., & Wilhelmsson, P. (2024). Coinfection of Babesia and Borrelia in the Tick Ixodes ricinus—A Neglected Public Health Issue in Europe? Pathogens, 13(1), 81. https://doi.org/10.3390/pathogens13010081