Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies
Abstract
:1. Introduction to Viral Haemorrhagic Fevers and Their Diverse Aetiology
1.1. Strategic Public Health Responses to Viral Haemorrhagic Fever Diversity
1.2. The Role of Animal and Arthropod Vectors in VHF Transmission
Virus Family | Virus Name | Primary Reservoirs | Arthropod Vector | Predominant Transmission Route | Geographic Distribution | Disease Features | Vaccine Availability |
---|---|---|---|---|---|---|---|
Filoviridae | Zaire ebolavirus | Fruit bats, primates | - | Direct contact with body fluids | Sub-Saharan Africa | Severe haemorrhagic fever, high fatality rate | Licensed vaccines available |
Filoviridae | Sudan ebolavirus | Fruit bats, primates | - | Direct contact with body fluids | Sub-Saharan Africa | Severe haemorrhagic fever, high fatality rate | No specific licensed vaccine available |
Filoviridae | Taï Forestebolavirus | Fruit bats, primates | - | Direct contact with body fluids | Sub-Saharan Africa (Côte d’lvoire) | Fever, but not well understood (1 non-fatal case) | No specific licensed vaccine available |
Filoviridae | Bundibugyo ebolavirus | Fruit bats, primates | - | Direct contact with body fluids | Sub-Saharan Africa (Uganda) | Moderate haemorrhagic fever | No specific licensed vaccine available |
Filoviridae | Reston ebolavirus | Non-human primates, pigs | - | Direct contact with body fluids | Philippines | Non-pathogenic in humans | No specific licensed vaccine available |
Filoviridae | Bombali ebolavirus | Fruit bats, primates | - | Direct contact with body fluids | Sub-Saharan Africa (Sierra Leone) | No evidence of human disease | No specific licensed vaccine available |
Filoviridae | Marburg marburgvirus | Primates, fruit bats/Rousettus aegyptiacus | - | Direct contact with body fluids | Sub-Saharan Africa | Similar to Ebola, very high fatality rate | No licensed vaccine |
Arenaviridae | Lassa mammarenavirus | Mastomys natalensis | - | Contact with infected rodent excreta | West Africa | Haemorrhagic fever with renal syndrome, deafness in survivors | Vaccines in development |
Arenaviridae | Lujo mammarenavirus | Unknown | Contact with infected rodent excreta | Zambia, South Africa | Haemorrhagic fever | No vaccine | |
Arenaviridae | Junin mammarenavirus | Rodents/Calomys musculinus, and C laucha | - | Aerosol particles, direct contact | Argentina | Argentine haemorrhagic fever, neurological and haemorrhagic symptoms | Licensed vaccine in Argentina |
Arenaviridae | Guanarito mammarenavirus | Rodents/Zygodontomys brevicauda | - | Contact with infected rodent excreta | Venezuela | Venezuelan haemorrhagic fever, severe symptoms | No licensed vaccine |
Arenaviridae | Chapare mammarenavirus | Cricetidae rodents, possibly Oligoryzomys microtis | - | Contact with bodily fluids | Bolivia | Chapare haemorrhagic fever, similar to Ebola | No licensed vaccine |
Arenaviridae | Machupo mammarenavirus | Rodents/Calomys callosus | - | Contact with infected rodent excreta | Bolivia | Bolivian haemorrhagic fever, severe haemorrhagic signs | No licensed vaccine |
Arenaviridae | Sabia mammarenavirus | As yet unidentified Cricetidae rodents | - | Contact with infected rodent excreta | Brazil | Brazilian haemorrhagic fever, severe symptoms | No licensed vaccine |
Peribunyaviridae | Ngari othobunyavirus | Livestock (cattle, sheep, and goats) | Aedes, Anopheles and Culex species | Mosquito bites | Sub-Saharan Africa (Kenya) | Moderate haemorrhagic fever | No licensed vaccine |
Hantaviridae | Andes orthohantavirus | Oligoryzomys longicaudatus | - | Contact with infected rodent excreta | South America | HCPS * | No licensed vaccine |
Hantaviridae | Bayou orthohantavirus | Oryzomys palustris | - | Contact with infected rodent excreta | Southern USA | HCPS * | No licensed vaccine |
Hantaviridae | Black Creek Canal orthohantavirus | Sigmodon hispidus | - | Contact with infected rodent excreta | Southern USA (Florida) | HCPS * | No licensed vaccine |
Hantaviridae | Chocló orthohantavirus | Oligoryzomys longicaudatus | - | Contact with infected rodent excreta | Central America (Columbia) | HCPS * | No licensed vaccine |
Hantaviridae | Dobrava orthohantavirus | Apodemus flavicollis | - | Contact with infected rodent excreta | Central Europe | Haemorrhagic fever with renal syndrome (HFRS) * | No licensed vaccine |
Hantaviridae | Hantaan orthohantavirus | Apodemus agrarius | - | Contact with infected rodent excreta | Asia | HFRS * | Hantavax licenced vaccine in South Korea |
Hantaviridae | LagunaNegra orthohantavirus | Calomys callosus | - | Contact with infected rodent excreta | South America (Paraguay, Bolivia, Argentina) | HCPS * | No licensed vaccine |
Hantaviridae | Sin Nombre orthohantavirus | Peromyscus maniculatus | - | Contact with infected rodent excreta | North America | HCPS * | No licensed vaccine |
Hantaviridae | Seoul orthohantavirus | Rattus norvegicus | - | Contact with infected rodent excreta | World-wide | HFRS * | No licensed vaccine |
Nairoviridae | Crimean–Congo haemorrhagic fever (CCHF) orthonairovirus | Ticks, ruminants, and livestock | Hyalomma ticks | Tick bites, contact with infected animals | Africa, Asia, Eastern Europe | Acute fever, haemorrhage, high fatality rate | No licensed vaccine |
Flaviviridae | Yellow fever virus | Primates, mosquitoes | Aedes aegypti, Ae albopictus, Haemagogus janthionomys, Haemogogus leucocelaenus | Mosquito bites | Africa, South America | Acute viral haemorrhagic disease, jaundice | Effective vaccine available |
Flaviviridae | Dengue viruses ** | Primates, mosquitoes | Aedes aegypti | Mosquito bites | Worldwide | Asymptomatic to mild fever. Occasionally haemorrhagic fever ** | Licenced vaccine available |
Flaviviridae | Kyasanur forest disease virus | Small mammals | Haemaphysalis spinagera | Tick bites | India, especially Karnataka | Fever, haemorrhage encephalitis gastrointis | No licensed vaccine |
Flaviviridae | Omsk haemorrhagic fever virus | Rodents, ticks | Dermacentor reticulatus | Tick bites | Siberia, Russia | Fever, haemorrhagic symptoms, neck stiffness | No licensed vaccine |
Flaviviridae | Alkhurma hemorrhagic fever virus | Ticks, livestock | Ornithodoros savignyi | Tick bites | Middle East, especially Saudi Arabia | Fever, haemorrhagic symptoms, encephalitis | No licensed vaccine |
Phenuiviridae | Rift Valley fever virus | Livestock (cattle, sheep, and goats) | Aedes and Culex genera | Mosquito bites, contact with infected blood | Sub-Saharan Africa, Middle East | Acute fever, liver abnormalities haemorrhagic fever | Vaccine available for livestock, none for humans |
Phenuiviridae | Severe fever with thrombocytopenia syndrome virus | Ticks, deer livestock | Haemaphysalis longicornis | Tick bites | China Japan S Korea | Haemorrhagic, leukopenia | No licensed vaccine |
Paramyxoviridae | Nipah virus *** | Pteropus lylei P. vampyrus and P. hypomelanus P. medius | - | Direct contact with infected urine, respiratory secretions | SE Asia | Fever, respiratory symptoms, and encephalitis (not a VHF) *** | No licensed vaccine |
Paramyxoviridae | Hendra virus *** | Pteropus alecto and P. conspicillatus | - | Direct contact with infected urine, respiratory secretions | Australasia | Fever, respiratory symptoms, and encephalitis (not a VHF) *** | No licensed vaccine |
1.3. Rodent Reservoirs
1.4. Bat Reservoirs
1.5. Other Vertebrate Reservoirs and Hosts
1.6. Role of Arthropod Vectors
2. Geographical Distribution of VHF Viruses
2.1. Factors Influencing the Spread of VHF Viruses
2.2. Regional Overviews
2.2.1. Africa
2.2.2. The Most Notable VHFs in Europe Include CCHF and HFRS
2.2.3. South America
2.2.4. Asia
2.2.5. North America
2.3. The Role of Geographic Distribution and Ecology in VHF Diagnostics and Emergence
3. Control and Prevention Strategies for VHFs
3.1. Overview of Vaccination Efforts
3.2. Overview of Antiviral Treatments
3.3. Importance of Surveillance and Early Detection
4. Challenges in Studying VHF Viruses and Animal Vectors
4.1. Obstacles in Research and Surveillance
4.2. Interdisciplinary Approaches in VHF Management
5. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Paessler, S.; Walker, D.H. Pathogenesis of the viral hemorrhagic fevers. Annu. Rev. Pathol. 2013, 8, 411–440. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Pigott, D.M.; Golding, N.; Mylne, A.; Huang, Z.; Henry, A.J.; Weiss, D.J.; Brady, O.J.; Kraemer, M.U.; Smith, D.L.; Moyes, C.L.; et al. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife 2014, 3, e04395. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Gaunt, E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 2007, 33, 231–242. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Johnson, C.K.; Hitchens, P.L.; Pandit, P.S.; Rushmore, J.; Evans, T.S.; Young, C.C.W.; Doyle, M.M. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. Biol. Sci. 2020, 287, 20192736. [Google Scholar] [CrossRef]
- Gibbs, E.P. The evolution of One Health: A decade of progress and challenges for the future. Vet. Rec. 2014, 174, 85–91. [Google Scholar] [CrossRef]
- Morse, S.S.; Mazet, J.A.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, W.I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet 2012, 380, 1956–1965. [Google Scholar] [CrossRef]
- McCormick, J.B.; Fisher-Hoch, S.P. Lassa fever. Curr. Top. Microbiol. Immunol. 2002, 262, 75–109. [Google Scholar] [CrossRef]
- Pourrut, X.; Souris, M.; Towner, J.S.; Rollin, P.E.; Nichol, S.T.; Gonzalez, J.P.; Leroy, E. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 2009, 9, 159. [Google Scholar] [CrossRef]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef]
- Papa, A.; Vaheri, A.; LeDuc, J.W.; Krüger, D.H.; Avšič-Županc, T.; Arikawa, J.; Song, J.W.; Markotić, A.; Clement, J.; Liang, M.; et al. Meeting report: Tenth International Conference on Hantaviruses. Antivir. Res. 2016, 133, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.A.; Depelsenaire, A.C.; Young, P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017, 215, S89–S95. [Google Scholar] [CrossRef] [PubMed]
- Smither, A.R.; Bell-Kareem, A.R. Ecology of Lassa Virus. Curr. Top. Microbiol. Immunol. 2023, 440, 67–86. [Google Scholar] [CrossRef]
- Mills, J.N.; Ellis, B.A.; McKee, K.T., Jr.; Ksiazek, T.G.; Oro, J.G.; Maiztegui, J.I.; Calderon, G.E.; Peters, C.J.; Childs, J.E. Junin virus activity in rodents from endemic and nonendemic loci in central Argentina. Am. J. Trop. Med. Hyg. 1991, 44, 589–597. [Google Scholar] [CrossRef]
- Chastel, C. Present status of zoonotic hemorrhagic fevers of South America. Bull. Soc. Pathol. Exot. 1993, 86, 455–459. [Google Scholar]
- Salazar-Bravo, J.; Dragoo, J.W.; Bowen, M.D.; Peters, C.J.; Ksiazek, T.G.; Yates, T.L. Natural nidality in Bolivian hemorrhagic fever and the systematics of the reservoir species. Infect. Genet. Evol. 2002, 1, 191–199. [Google Scholar] [CrossRef]
- Loayza Mafayle, R.; Morales-Betoulle, M.E.; Romero, C.; Cossaboom, C.M.; Whitmer, S.; Alvarez Aguilera, C.E.; Avila Ardaya, C.; Cruz Zambrana, M.; Dávalos Anajia, A.; Mendoza Loayza, N.; et al. Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019. N. Engl. J. Med. 2022, 386, 2283–2294. [Google Scholar] [CrossRef]
- de Oliveira, A.L.R.; Cunha, M.S.; Bisordi, I.; de Souza, R.P.; Timenetsky, M. Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002–2006. Braz. J. Microbiol. 2023, 54, 279–284. [Google Scholar] [CrossRef]
- Mapaco, L.; Crespin, L.; Rodrigues, D.; de Bellocq, J.G.; Bryja, J.; Bourgarel, M.; Missé, D.; Caron, A.; Fafetine, J.; Cappelle, J.; et al. Detection and genetic diversity of Mopeia virus in Mastomys natalensis from different habitats in the Limpopo National Park, Mozambique. Infect. Genet. Evol. 2022, 98, 105204. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Baek, L.J.; Johnson, K.M. Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J. Infect. Dis. 1982, 146, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Avsic-Zupanc, T.; Nemirov, K.; Petrovec, M.; Trilar, T.; Poljak, M.; Vaheri, A.; Plyusnin, A. Genetic analysis of wild-type Dobrava hantavirus in Slovenia: Co-existence of two distinct genetic lineages within the same natural focus. J. Gen. Virol. 2000, 81, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Avšič-Županc, T.; Saksida, A.; Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 2019, 21, e6–e16. [Google Scholar] [CrossRef]
- Jacob, A.T.; Ziegler, B.M.; Farha, S.M.; Vivian, L.R.; Zilinski, C.A.; Armstrong, A.R.; Burdette, A.J.; Beachboard, D.C.; Stobart, C.C. Sin Nombre Virus and the Emergence of Other Hantaviruses: A Review of the Biology, Ecology, and Disease of a Zoonotic Pathogen. Biology 2023, 12, 1413. [Google Scholar] [CrossRef]
- Macneil, A.; Nichol, S.T.; Spiropoulou, C.F. Hantavirus pulmonary syndrome. Virus Res. 2011, 162, 138–147. [Google Scholar] [CrossRef]
- Vaheri, A.; Strandin, T.; Hepojoki, J.; Sironen, T.; Henttonen, H.; Mäkelä, S.; Mustonen, J. Uncovering the mysteries of hantavirus infections. Nat. Rev. Microbiol. 2013, 11, 539–550. [Google Scholar] [CrossRef]
- Peters, C.J. Emerging infections: Lessons from the viral hemorrhagic fevers. Trans. Am. Clin. Climatol. Assoc. 2006, 117, 189–196, discussion 196–187. [Google Scholar]
- Jonsson, C.B.; Figueiredo, L.T.; Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 2010, 23, 412–441. [Google Scholar] [CrossRef]
- Paweska, J.T.; Sewlall, N.H.; Ksiazek, T.G.; Blumberg, L.H.; Hale, M.J.; Lipkin, W.I.; Weyer, J.; Nichol, S.T.; Rollin, P.E.; McMullan, L.K.; et al. Nosocomial outbreak of novel arenavirus infection, southern Africa. Emerg. Infect. Dis. 2009, 15, 1598–1602. [Google Scholar] [CrossRef]
- Cadmus, S.; Taiwo, O.J.; Akinseye, V.; Cadmus, E.; Famokun, G.; Fagbemi, S.; Ansumana, R.; Omoluabi, A.; Ayinmode, A.; Oluwayelu, D.; et al. Ecological correlates and predictors of Lassa fever incidence in Ondo State, Nigeria 2017–2021: An emerging urban trend. Sci. Rep. 2023, 13, 20855. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.; Guterres, A.; de Oliveira, R.C.; Chamberlain, J.; Lewandowski, K.; Teixeira, B.R.; Coelho, T.A.; Crisóstomo, C.F.; Bonvicino, C.R.; D’Andrea, P.S.; et al. Xapuri virus, a novel mammarenavirus: Natural reassortment and increased diversity between New World viruses. Emerg. Microbes Infect. 2018, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Bird, B.H.; Bakarr, I.A.; Bangura, J.; Schuh, A.J.; Johnny, J.; Sealy, T.K.; Conteh, I.; Koroma, A.H.; Foday, I.; et al. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat. Commun. 2020, 11, 510. [Google Scholar] [CrossRef]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Caron, A.; Bourgarel, M.; Cappelle, J.; Liégeois, F.; De Nys, H.M.; Roger, F. Ebola Virus Maintenance: If Not (Only) Bats, What Else? Viruses 2018, 10, 549. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Wang, H.; Yao, X. Severe zoonotic viruses carried by different species of bats and their regional distribution. Clin. Microbiol. Infect. 2024, 30, 206–210. [Google Scholar] [CrossRef]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef]
- Lumley, S.; Horton, D.L.; Hernandez-Triana, L.L.M.; Johnson, N.; Fooks, A.R.; Hewson, R. Rift Valley fever virus: Strategies for maintenance, survival and vertical transmission in mosquitoes. J. Gen. Virol. 2017, 98, 875–887. [Google Scholar] [CrossRef]
- Gómez-Dantés, H.; Willoquet, J.R. Dengue in the Americas: Challenges for prevention and control. Cad Saude Publica 2009, 25 (Suppl. 1), S19–S31. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Kramer, L.D.; Campbell, S.R.; Alleyne, E.O.; Dobson, A.P.; Daszak, P. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect. Dis. 2005, 11, 425–429. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Jizhou, L.; Phipps, L.P.; Johnson, N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front. Cell Infect. Microbiol. 2017, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Spengler, J.R.; Estrada-Peña, A.; Garrison, A.R.; Schmaljohn, C.; Spiropoulou, C.F.; Bergeron, É.; Bente, D.A. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antivir. Res. 2016, 135, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Wilson, W.; Neumayr, A.; Saravu, K. Kyasanur forest disease: A state-of-the-art review. QJM Int. J. Med. 2022, 115, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.N.; Li, T.Q.; Liu, Q.M.; Wu, Y.Y.; Luo, M.Y.; Gong, Z.Y. Vectors, Hosts, and the Possible Risk Factors Associated with Severe Fever with Thrombocytopenia Syndrome. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 8518189. [Google Scholar] [CrossRef]
- Madani, T.A.; Abuelzein, E.M.E. Alkhumra hemorrhagic fever virus infection. Arch. Virol. 2021, 166, 2357–2367. [Google Scholar] [CrossRef]
- Růžek, D.; Yakimenko, V.V.; Karan, L.S.; Tkachev, S.E. Omsk haemorrhagic fever. Lancet 2010, 376, 2104–2113. [Google Scholar] [CrossRef]
- Randolph, S.E. Tick ecology: Processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 2004, 129, S37–S65. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140051. [Google Scholar] [CrossRef]
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef]
- WHO. The Global Arbovirus Initiative. Available online: https://www.who.int/initiatives/global-arbovirus-initiative (accessed on 13 October 2024).
- WHO. Global Arbovirus Initiative: Preparing for the Next Pandemic by Tackling Mosquito-Borne Viruses with Epidemic and Pandemic Potential; WHO: Geneva, Switzerland, 2024; ISBN 9789240088948. (electronic version); 9789240088955 (print version). [Google Scholar]
- Bangoura, S.T.; Hounmenou, C.G.; Sidibé, S.; Camara, S.C.; Mbaye, A.; Olive, M.M.; Camara, A.; Delamou, A.; Keita, A.K.; Delaporte, E.; et al. Exploratory analysis of the knowledge, attitudes and perceptions of healthcare workers about arboviruses in the context of surveillance in the Republic of Guinea. PLoS Negl. Trop. Dis. 2023, 17, e0011814. [Google Scholar] [CrossRef]
- Isaäcson, M. Viral hemorrhagic fever hazards for travelers in Africa. Clin. Infect. Dis. 2001, 33, 1707–1712. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.; Lavalah, S.; Gbelia, T.; Zondo, M.; Kromah, M.; Tantum, L.; Nallo, G.; Boakai, J.; Sheriff, K.; Skrip, L.; et al. Contextualizing mobility during the Ebola epidemic in Liberia. PLoS Negl. Trop. Dis. 2022, 16, e0010370. [Google Scholar] [CrossRef] [PubMed]
- Diallo, B.; Sissoko, D.; Loman, N.J.; Bah, H.A.; Bah, H.; Worrell, M.C.; Conde, L.S.; Sacko, R.; Mesfin, S.; Loua, A.; et al. Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days. Clin. Infect. Dis. 2016, 63, 1353–1356. [Google Scholar] [CrossRef]
- Gibb, R.; Moses, L.M.; Redding, D.W.; Jones, K.E. Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glob. Health 2017, 111, 276–288. [Google Scholar] [CrossRef]
- Bell-Kareem, A.R.; Smither, A.R. Epidemiology of Lassa Fever. Curr. Top. Microbiol. Immunol. 2023, 440, 87–109. [Google Scholar] [CrossRef]
- Kafetzopoulou, L.E.; Pullan, S.T.; Lemey, P.; Suchard, M.A.; Ehichioya, D.U.; Pahlmann, M.; Thielebein, A.; Hinzmann, J.; Oestereich, L.; Wozniak, D.M.; et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 2019, 363, 74–77. [Google Scholar] [CrossRef]
- Bagcchi, S. Haemorrhagic fevers in Africa. Lancet Microbe 2021, 2, e496. [Google Scholar] [CrossRef] [PubMed]
- Bannister, B. Viral haemorrhagic fevers imported into non-endemic countries: Risk assessment and management. Br. Med. Bull. 2010, 95, 193–225. [Google Scholar] [CrossRef]
- Mancuso, E.; Toma, L.; Pascucci, I.; d’Alessio, S.G.; Marini, V.; Quaglia, M.; Riello, S.; Ferri, A.; Spina, F.; Serra, L.; et al. Direct and Indirect Role of Migratory Birds in Spreading CCHFV and WNV: A Multidisciplinary Study on Three Stop-Over Islands in Italy. Pathogens 2022, 11, 1056. [Google Scholar] [CrossRef]
- Dreshaj, S.; Ahmeti, S.; Ramadani, N.; Dreshaj, G.; Humolli, I.; Dedushaj, I. Current situation of Crimean-Congo hemorrhagic fever in Southeastern Europe and neighboring countries: A public health risk for the European Union? Travel. Med. Infect. Dis. 2016, 14, 81–91. [Google Scholar] [CrossRef]
- Freitas, N.; Legros, V.; Cosset, F.L. Crimean-Congo hemorrhagic fever: A growing threat to Europe. C R Biol. 2022, 345, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Leblebicioglu, H.; Eroglu, C.; Erciyas-Yavuz, K.; Hokelek, M.; Acici, M.; Yilmaz, H. Role of migratory birds in spreading Crimean-Congo hemorrhagic fever, Turkey. Emerg. Infect. Dis. 2014, 20, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Bernard, C.; Joly Kukla, C.; Rakotoarivony, I.; Duhayon, M.; Stachurski, F.; Huber, K.; Giupponi, C.; Zortman, I.; Holzmuller, P.; Pollet, T.; et al. Detection of Crimean-Congo haemorrhagic fever virus in Hyalomma marginatum ticks, southern France, May 2022 and April 2023. Eurosurveillance 2024, 29, 2400023. [Google Scholar] [CrossRef] [PubMed]
- Moraga-Fernández, A.; Ruiz-Fons, F.; Habela, M.A.; Royo-Hernández, L.; Calero-Bernal, R.; Gortazar, C.; de la Fuente, J.; Fernández de Mera, I.G. Detection of new Crimean-Congo haemorrhagic fever virus genotypes in ticks feeding on deer and wild boar, Spain. Transbound. Emerg. Dis. 2021, 68, 993–1000. [Google Scholar] [CrossRef]
- Celina, S.S.; Černý, J.; Samy, A.M. Mapping the potential distribution of the principal vector of Crimean-Congo haemorrhagic fever virus Hyalomma marginatum in the Old World. PLoS Negl. Trop. Dis. 2023, 17, e0010855. [Google Scholar] [CrossRef]
- Gallo, G.L.; López, N.; Loureiro, M.E. The Virus-Host Interplay in Junín Mammarenavirus Infection. Viruses 2022, 14, 1134. [Google Scholar] [CrossRef]
- Delgado, S.; Erickson, B.R.; Agudo, R.; Blair, P.J.; Vallejo, E.; Albariño, C.G.; Vargas, J.; Comer, J.A.; Rollin, P.E.; Ksiazek, T.G.; et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 2008, 4, e1000047. [Google Scholar] [CrossRef]
- Salazar-Bravo, J.; Ruedas, L.A.; Yates, T.L. Mammalian reservoirs of arenaviruses. Curr. Top. Microbiol. Immunol. 2002, 262, 25–63. [Google Scholar] [CrossRef]
- Nelson, R.; Cañate, R.; Pascale, J.M.; Dragoo, J.W.; Armien, B.; Armien, A.G.; Koster, F. Confirmation of Choclo virus as the cause of hantavirus cardiopulmonary syndrome and high serum antibody prevalence in Panama. J. Med. Virol. 2010, 82, 1586–1593. [Google Scholar] [CrossRef]
- Hamlet, A.; Gaythorpe, K.A.M.; Garske, T.; Ferguson, N.M. Seasonal and inter-annual drivers of yellow fever transmission in South America. PLoS Negl. Trop. Dis. 2021, 15, e0008974. [Google Scholar] [CrossRef]
- Alzahrani, A.G.; Al Shaiban, H.M.; Al Mazroa, M.A.; Al-Hayani, O.; Macneil, A.; Rollin, P.E.; Memish, Z.A. Alkhurma hemorrhagic fever in humans, Najran, Saudi Arabia. Emerg. Infect. Dis. 2010, 16, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Zhou, H.; Quan, C.; Kang, H. Outbreak of Natural Severe Fever with Thrombocytopenia Syndrome Virus Infection in Farmed Minks, China. Emerg. Infect. Dis. 2024, 30, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S.; Yang, L.; Cao, P.; Lu, J. Severe fever with thrombocytopenia syndrome virus: A highly lethal bunyavirus. Crit. Rev. Microbiol. 2021, 47, 112–125. [Google Scholar] [CrossRef]
- Sharma, D.; Kamthania, M. A new emerging pandemic of severe fever with thrombocytopenia syndrome (SFTS). Virusdisease 2021, 32, 220–227. [Google Scholar] [CrossRef]
- Pérez, L.J.; Baele, G.; Hong, S.L.; Cloherty, G.A.; Berg, M.G. Ecological Changes Exacerbating the Spread of Invasive Ticks has Driven the Dispersal of Severe Fever with Thrombocytopenia Syndrome Virus Throughout Southeast Asia. Mol. Biol. Evol. 2024, 41, msae173. [Google Scholar] [CrossRef]
- Ergönül, O. Crimean-Congo haemorrhagic fever. Lancet Infect. Dis. 2006, 6, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Nichol, S.T.; Spiropoulou, C.F.; Morzunov, S.; Rollin, P.E.; Ksiazek, T.G.; Feldmann, H.; Sanchez, A.; Childs, J.; Zaki, S.; Peters, C.J. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993, 262, 914–917. [Google Scholar] [CrossRef]
- Mackelprang, R.; Dearing, M.D.; St Jeor, S. High prevalence of Sin Nombre virus in rodent populations, central Utah: A consequence of human disturbance? Emerg. Infect. Dis. 2001, 7, 480–482. [Google Scholar] [CrossRef]
- Banther-McConnell, J.K.; Suriyamongkol, T.; Goodfellow, S.M.; Nofchissey, R.A.; Bradfute, S.B.; Mali, I. Distribution and prevalence of Sin Nombre hantavirus in rodent species in eastern New Mexico. PLoS ONE 2024, 19, e0296718. [Google Scholar] [CrossRef]
- Torrez-Martinez, N.; Bharadwaj, M.; Goade, D.; Delury, J.; Moran, P.; Hicks, B.; Nix, B.; Davis, J.L.; Hjelle, B. Bayou virus-associated hantavirus pulmonary syndrome in Eastern Texas: Identification of the rice rat, Oryzomys palustris, as reservoir host. Emerg. Infect. Dis. 1998, 4, 105–111. [Google Scholar] [CrossRef]
- Rollin, P.E.; Ksiazek, T.G.; Elliott, L.H.; Ravkov, E.V.; Martin, M.L.; Morzunov, S.; Livingstone, W.; Monroe, M.; Glass, G.; Ruo, S.; et al. Isolation of black creek canal virus, a new hantavirus from Sigmodon hispidus in Florida. J. Med. Virol. 1995, 46, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Theiler, M.; Smith, H.H. The Effect of Prolonged Cultivation In Vitro upon the Pathogenicity of Yellow Fever Virus. J. Exp. Med. 1937, 65, 767–786. [Google Scholar] [CrossRef] [PubMed]
- McElroy, K.L.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3′non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am. J. Trop. Med. Hyg. 2006, 75, 1158–1164. [Google Scholar] [CrossRef]
- Staples, J.E.; Barrett, A.D.T.; Wilder-Smith, A.; Hombach, J. Review of data and knowledge gaps regarding yellow fever vaccine-induced immunity and duration of protection. NPJ Vaccines 2020, 5, 54. [Google Scholar] [CrossRef]
- Eliminate Yellow fever Epidemics (EYE): A global strategy, 2017–2026. Wkly. Epidemiol. Rec. 2017, 92, 193–204.
- Barrera Oro, J.G.; McKee, K.T., Jr. Toward a vaccine against Argentine hemorrhagic fever. Bull. Pan. Am. Health Organ 1991, 25, 118–126. [Google Scholar] [PubMed]
- Maiztegui, J.I.; McKee, K.T., Jr.; Barrera Oro, J.G.; Harrison, L.H.; Gibbs, P.H.; Feuillade, M.R.; Enria, D.A.; Briggiler, A.M.; Levis, S.C.; Ambrosio, A.M.; et al. Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group. J. Infect. Dis. 1998, 177, 277–283. [Google Scholar] [CrossRef]
- Enria, D.A.; Barrera Oro, J.G. Junin virus vaccines. Curr. Top. Microbiol. Immunol. 2002, 263, 239–261. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.M.; Feldmann, H.; Ströher, U.; Geisbert, J.B.; Fernando, L.; Grolla, A.; Klenk, H.D.; Sullivan, N.J.; Volchkov, V.E.; Fritz, E.A.; et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 2005, 11, 786–790. [Google Scholar] [CrossRef]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef]
- Wells, C.R.; Pandey, A.; Parpia, A.S.; Fitzpatrick, M.C.; Meyers, L.A.; Singer, B.H.; Galvani, A.P. Ebola vaccination in the Democratic Republic of the Congo. Proc. Natl. Acad. Sci. USA 2019, 116, 10178–10183. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. ‘Make Ebola a thing of the past’: First vaccine against deadly virus approved. Nature 2019, 575, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Woo, H.J.; Cheong, H.J.; Noh, J.Y.; Baek, L.J.; Kim, W.J. Long-term immunogenicity and safety of inactivated Hantaan virus vaccine (Hantavax™) in healthy adults. Vaccine 2016, 34, 1289–1295. [Google Scholar] [CrossRef]
- Custer, D.M.; Thompson, E.; Schmaljohn, C.S.; Ksiazek, T.G.; Hooper, J.W. Active and passive vaccination against hantavirus pulmonary syndrome with Andes virus M genome segment-based DNA vaccine. J. Virol. 2003, 77, 9894–9905. [Google Scholar] [CrossRef] [PubMed]
- Lukashevich, I.S.; Patterson, J.; Carrion, R.; Moshkoff, D.; Ticer, A.; Zapata, J.; Brasky, K.; Geiger, R.; Hubbard, G.B.; Bryant, J.; et al. A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. J. Virol. 2005, 79, 13934–13942. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Dowall, S.D.; Salguero, F.J.; Yeates, P.; Aram, M.; Hewson, R. A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model. Vaccine 2019, 37, 5404–5413. [Google Scholar] [CrossRef]
- Sulis, G.; Peebles, A.; Basta, N.E. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop. Med. Int. Health 2023, 28, 420–431. [Google Scholar] [CrossRef]
- Andersen, K.G.; Shapiro, B.J.; Matranga, C.B.; Sealfon, R.; Lin, A.E.; Moses, L.M.; Folarin, O.A.; Goba, A.; Odia, I.; Ehiane, P.E.; et al. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 2015, 162, 738–750. [Google Scholar] [CrossRef]
- Tschismarov, R.; Van Damme, P.; Germain, C.; De Coster, I.; Mateo, M.; Reynard, S.; Journeaux, A.; Tomberger, Y.; Withanage, K.; Haslwanter, D.; et al. Immunogenicity, safety, and tolerability of a recombinant measles-vectored Lassa fever vaccine: A randomised, placebo-controlled, first-in-human trial. Lancet 2023, 401, 1267–1276. [Google Scholar] [CrossRef]
- Dowall, S.D.; Carroll, M.W.; Hewson, R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine 2017, 35, 6015–6023. [Google Scholar] [CrossRef]
- Leventhal, S.S.; Meade-White, K.; Shaia, C.; Tipih, T.; Lewis, M.; Mihalakakos, E.A.; Hinkley, T.; Khandhar, A.P.; Erasmus, J.H.; Feldmann, H.; et al. Single dose, dual antigen RNA vaccines protect against lethal Crimean-Congo haemorrhagic fever virus infection in mice. EBioMedicine 2024, 101, 105017. [Google Scholar] [CrossRef]
- Buttigieg, K.R.; Dowall, S.D.; Findlay-Wilson, S.; Miloszewska, A.; Rayner, E.; Hewson, R.; Carroll, M.W. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLoS ONE 2014, 9, e91516. [Google Scholar] [CrossRef]
- Ahata, B.; Akçapınar, G.B. CCHFV vaccine development, current challenges, limitations, and future directions. Front. Immunol. 2023, 14, 1238882. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Papa, A. Crimean-Congo hemorrhagic fever: Epidemiological trends and controversies in treatment. BMC Med. 2011, 9, 131. [Google Scholar] [CrossRef]
- Sabchareon, A.; Wallace, D.; Sirivichayakul, C.; Limkittikul, K.; Chanthavanich, P.; Suvannadabba, S.; Jiwariyavej, V.; Dulyachai, W.; Pengsaa, K.; Wartel, T.A.; et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet 2012, 380, 1559–1567. [Google Scholar] [CrossRef]
- Laydon, D.J.; Dorigatti, I.; Hinsley, W.R.; Nedjati-Gilani, G.; Coudeville, L.; Ferguson, N.M. Efficacy profile of the CYD-TDV dengue vaccine revealed by Bayesian survival analysis of individual-level phase III data. eLife 2021, 10, e65131. [Google Scholar] [CrossRef]
- McCormick, J.B.; King, I.J.; Webb, P.A.; Scribner, C.L.; Craven, R.B.; Johnson, K.M.; Elliott, L.H.; Belmont-Williams, R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 1986, 314, 20–26. [Google Scholar] [CrossRef]
- Salam, A.P.; Duvignaud, A.; Jaspard, M.; Malvy, D.; Carroll, M.; Tarning, J.; Olliaro, P.L.; Horby, P.W. Ribavirin for treating Lassa fever: A systematic review of pre-clinical studies and implications for human dosing. PLoS Negl. Trop. Dis. 2022, 16, e0010289. [Google Scholar] [CrossRef]
- Paragas, J.; Whitehouse, C.A.; Endy, T.P.; Bray, M. A simple assay for determining antiviral activity against Crimean-Congo hemorrhagic fever virus. Antivir. Res. 2004, 62, 21–25. [Google Scholar] [CrossRef]
- Johnson, S.; Henschke, N.; Maayan, N.; Mills, I.; Buckley, B.S.; Kakourou, A.; Marshall, R. Ribavirin for treating Crimean Congo haemorrhagic fever. Cochrane Database Syst. Rev. 2018, 6, Cd012713. [Google Scholar] [CrossRef]
- Sharifi-Mood, B.; Metanat, M.; Ghorbani-Vaghei, A.; Fayyaz-Jahani, F.; Akrami, E. The outcome of patients with Crimean-Congo hemorrhagic fever in Zahedan, southeast of Iran: A comparative study. Arch. Iran Med. 2009, 12, 151–153. [Google Scholar]
- D’Addiego, J.; Elaldi, N.; Wand, N.; Osman, K.; Bagci, B.K.; Kennedy, E.; Pektas, A.N.; Hart, E.; Slack, G.; Hewson, R. Investigating the effect of ribavirin treatment on genetic mutations in Crimean-Congo haemorrhagic fever virus (CCHFV) through next-generation sequencing. J. Med. Virol. 2023, 95, e28548. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antivir. Res. 2009, 82, 95–102. [Google Scholar] [CrossRef]
- Rijal, P.; Donnellan, F.R. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr. Opin. Virol. 2023, 61, 101339. [Google Scholar] [CrossRef]
- Markham, A. REGN-EB3: First Approval. Drugs 2021, 81, 175–178. [Google Scholar] [CrossRef]
- Cross, R.W.; Heinrich, M.L.; Fenton, K.A.; Borisevich, V.; Agans, K.N.; Prasad, A.N.; Woolsey, C.; Deer, D.J.; Dobias, N.S.; Rowland, M.M.; et al. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc. Natl. Acad. Sci. USA 2023, 120, e2304876120. [Google Scholar] [CrossRef]
- Fels, J.M.; Maurer, D.P.; Herbert, A.S.; Wirchnianski, A.S.; Vergnolle, O.; Cross, R.W.; Abelson, D.M.; Moyer, C.L.; Mishra, A.K.; Aguilan, J.T.; et al. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell 2021, 184, 3486–3501.21. [Google Scholar] [CrossRef]
- Natali, E.N.; Horst, A.; Meier, P.; Greiff, V.; Nuvolone, M.; Babrak, L.M.; Fink, K.; Miho, E. The dengue-specific immune response and antibody identification with machine learning. NPJ Vaccines 2024, 9, 16. [Google Scholar] [CrossRef]
- Lee, A.M.; Pasquato, A.; Kunz, S. Novel approaches in anti-arenaviral drug development. Virology 2011, 411, 163–169. [Google Scholar] [CrossRef]
- Aman, M.J.; Kinch, M.S.; Warfield, K.; Warren, T.; Yunus, A.; Enterlein, S.; Stavale, E.; Wang, P.; Chang, S.; Tang, Q.; et al. Development of a broad-spectrum antiviral with activity against Ebola virus. Antivir. Res. 2009, 83, 245–251. [Google Scholar] [CrossRef]
- Smith, D.R.; Ogg, M.; Garrison, A.; Yunus, A.; Honko, A.; Johnson, J.; Olinger, G.; Hensley, L.E.; Kinch, M.S. Development of FGI-106 as a broad-spectrum therapeutic with activity against members of the family Bunyaviridae. Virus Adapt. Treat. 2010, 1, 9–20. [Google Scholar] [CrossRef]
- Heymann, D.L.; Chen, L.; Takemi, K.; Fidler, D.P.; Tappero, J.W.; Thomas, M.J.; Kenyon, T.A.; Frieden, T.R.; Yach, D.; Nishtar, S.; et al. Global health security: The wider lessons from the west African Ebola virus disease epidemic. Lancet 2015, 385, 1884–1901. [Google Scholar] [CrossRef]
- Feldmann, H.; Geisbert, T.W. Ebola haemorrhagic fever. Lancet 2011, 377, 849–862. [Google Scholar] [CrossRef]
- Briand, S.; Bertherat, E.; Cox, P.; Formenty, P.; Kieny, M.P.; Myhre, J.K.; Roth, C.; Shindo, N.; Dye, C. The international Ebola emergency. N. Engl. J. Med. 2014, 371, 1180–1183. [Google Scholar] [CrossRef]
- Pai, N.P.; Vadnais, C.; Denkinger, C.; Engel, N.; Pai, M. Point-of-care testing for infectious diseases: Diversity, complexity, and barriers in low- and middle-income countries. PLoS Med. 2012, 9, e1001306. [Google Scholar] [CrossRef]
- Aanensen, D.M.; Huntley, D.M.; Feil, E.J.; al-Own, F.; Spratt, B.G. EpiCollect: Linking smartphones to web applications for epidemiology, ecology and community data collection. PLoS ONE 2009, 4, e6968. [Google Scholar] [CrossRef]
- Kamadjeu, R. Tracking the polio virus down the Congo River: A case study on the use of Google Earth in public health planning and mapping. Int. J. Health Geogr. 2009, 8, 4. [Google Scholar] [CrossRef]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef]
- Hewson, R. Lessons learnt from imported cases and onward transmission of Lassa fever in Europe support broader management of viral haemorrhagic fevers. Eurosurveillance 2017, 22, 17-00661. [Google Scholar] [CrossRef]
- Gostin, L.O.; Friedman, E.A. A retrospective and prospective analysis of the west African Ebola virus disease epidemic: Robust national health systems at the foundation and an empowered WHO at the apex. Lancet 2015, 385, 1902–1909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hewson, R. Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies. Pathogens 2024, 13, 909. https://doi.org/10.3390/pathogens13100909
Hewson R. Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies. Pathogens. 2024; 13(10):909. https://doi.org/10.3390/pathogens13100909
Chicago/Turabian StyleHewson, Roger. 2024. "Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies" Pathogens 13, no. 10: 909. https://doi.org/10.3390/pathogens13100909
APA StyleHewson, R. (2024). Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies. Pathogens, 13(10), 909. https://doi.org/10.3390/pathogens13100909