Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection
Abstract
:1. Introduction
2. Epidemiology
3. Vertical Transmission
4. Pathogenesis of CMV-Induced Auditory and Vestibular Disorders
5. Evaluation and Follow-Up
6. Management
7. Prevention
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef] [PubMed]
- Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 2013, 26, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.W.; Davison, A.J.; Tomasec, P.; Fielding, C.A.; Aicheler, R.; Murrell, I.; Seirafian, S.; Wang, E.C.; Weekes, M.; Lehner, P.J.; et al. Human cytomegalovirus: Taking the strain. Med. Microbiol. Immunol. 2015, 204, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Martí-Carreras, J.; Maes, P. Human cytomegalovirus genomics and transcriptomics through the lens of next-generation sequencing: Revision and future challenges. Virus Genes 2019, 55, 138–164. [Google Scholar] [CrossRef]
- Morton, C.C.; Nance, W.E. Newborn hearing screening—A silent revolution. N. Engl. J. Med. 2006, 354, 2151–2164. [Google Scholar] [CrossRef]
- Dahle, A.J.; Fowler, K.B.; Wright, J.D.; Boppana, S.B.; Britt, W.J.; Pass, R.F. Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus. J. Am. Acad. Audiol. 2000, 11, 283–290. [Google Scholar] [CrossRef]
- Goderis, J.; De Leenheer, E.; Smets, K.; Van Hoecke, H.; Keymeulen, A.; Dhooge, I. Hearing loss and congenital CMV infection: A systematic review. Pediatrics 2014, 134, 972–982. [Google Scholar] [CrossRef]
- Dollard, S.C.; Grosse, S.D.; Ross, D.S. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol. 2007, 17, 355–363. [Google Scholar] [CrossRef]
- Grosse, S.D.; Ross, D.S.; Dollard, S.C. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: A quantitative assessment. J. Clin. Virol. 2008, 41, 57–62. [Google Scholar] [CrossRef]
- Medearis, D.N., Jr. Observations concerning human cytomegalovirus infection and disease. Bull. Johns Hopkins Hosp. 1964, 114, 181–211. [Google Scholar]
- Gaytant, M.A.; Steegers, E.A.P.; Semmekrot, B.A.; Merkus, H.M.M.W.; Galama, J.M.D. Congenital cytomegalovirus Infection: Review of the epidemiology and outcome. Obstet. Gynecol. Surv. 2002, 57, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; August, A.M.; Dworsky, M.; Reynolds, D.W. Cytomegalovirus infection in a day-care center. N. Engl. J. Med. 1982, 307, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.P. Cytomegalovirus transmission among children in day care, their mothers and caretakers. Pediatr. Infect. Dis. J. 1988, 7, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Liesnard, C.; Donner, C.; Brancart, F.; Gosselin, F.; Delforge, M.L.; Rodesch, F. Prenatal diagnosis of congenital cytomegalovirus infection: Prospective study of 237 pregnancies at risk. Obstet. Gynecol. 2000, 95 Pt 1, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Fourgeaud, J.; Magny, J.F.; Couderc, S.; Garcia, P.; Maillotte, A.M.; Benard, M.; Pinquier, D.; Minodier, P.; Astruc, D.; Patural, H.; et al. Predictors of the Outcome at 2 Years in Neonates With Congenital Cytomegalovirus Infection. Pediatrics 2024, 153, e2023063531. [Google Scholar] [CrossRef]
- Pass, R.F.; Fowler, K.B.; Boppana, S.B.; Britt, W.J.; Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J. Clin. Virol. 2006, 35, 216–220. [Google Scholar] [CrossRef]
- Braswell, J.; Rine, R.M. Evidence that vestibular hypofunction affects reading acuity in children. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1957–1965. [Google Scholar] [CrossRef]
- Cushing, S.L.; Chia, R.; James, A.L.; Papsin, B.C.; Gordon, K.A. A test of static and dynamic balance function in children with cochlear implants: The vestibular olympics. Arch. Otolaryngol. Head Neck Surg. 2008, 134, 34–38. [Google Scholar] [CrossRef]
- Wiener-Vacher, S.R. Vestibular disorders in children. Int. J. Audiol. 2008, 47, 578–583. [Google Scholar] [CrossRef]
- Foulon, I.; Naessens, A.; Foulon, W.; Casteels, A.; Gordts, F. A 10-year prospective study of sensorineural hearing loss in children with congenital cytomegalovirus infection. J. Pediatr. 2008, 153, 84–88. [Google Scholar] [CrossRef]
- Pappas, D.G. Hearing impairments and vestibular abnormalities among children with subclinical cytomegalovirus. Ann. Otol. Rhinol. Laryngol. 1983, 92 Pt 1, 552–557. [Google Scholar] [CrossRef]
- Huygen, P.L.; Admiraal, R.J. Audiovestibular sequelae of congenital cytomegalovirus infection in 3 children presumably representing 3 symptomatically different types of delayed endolymphatic hydrops. Int. J. Pediatr. Otorhinolaryngol. 1996, 35, 143–154. [Google Scholar] [CrossRef]
- Zagólski, O. Vestibular-evoked myogenic potentials and caloric stimulation in infants with congenital cytomegalovirus infection. J. Laryngol. Otol. 2008, 122, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Iwasaki, S.; Ushio, M.; Chihara, Y.; Fujimoto, C.; Egami, N.; Yamasoba, T. Effect of vestibular dysfunction on the development of gross motor function in children with profound hearing loss. Audiol. Neurootol. 2013, 18, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Karltorp, E.; Löfkvist, U.; Lewensohn-Fuchs, I.; Lindström, K.; Eriksson Westblad, M.; Teär Fahnehjelm, K.; Verrecchia, L.; Engman, M.L. Impaired balance and neurodevelopmental disabilities among children with congenital cytomegalovirus infection. Acta Paediatr. 2014, 103, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Wiener-Vacher, S.; Van Den Abbeele, T.; Teissier, N. Vestibular Disorders in Children With Congenital Cytomegalovirus Infection. Pediatrics 2015, 136, e887–e895. [Google Scholar] [CrossRef]
- Pinninti, S.; Christy, J.; Almutairi, A.; Cochrane, G.; Fowler, K.B.; Boppana, S. Vestibular, Gaze, and Balance Disorders in Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2021, 147, e20193945. [Google Scholar] [CrossRef]
- Chebib, E.; Maudoux, A.; Benoit, C.; Bernard, S.; Van Den Abbeele, T.; Teissier, N.; Wiener Vacher, S.R. Audiovestibular Consequences of Congenital Cytomegalovirus Infection: Greater Vulnerability of the Vestibular Part of the Inner Ear. Ear Hear. 2022, 43, 1730–1739. [Google Scholar] [CrossRef]
- Kokkola, E.; Niemensivu, R.; Lappalainen, M.; Palomäki, M.; Nieminen, T.; Boppana, S.; Saxèn, H.; Puhakka, L. Long-term outcome of vestibular function and hearing in children with congenital cytomegalovirus infection: A prospective cohort study. Eur. Arch. Otorhinolaryngol. 2023, 280, 3141–3147. [Google Scholar] [CrossRef]
- Dhondt, C.; Maes, L.; Van Acker, E.; Martens, S.; Vanaudenaerde, S.; Rombaut, L.; De Cuyper, E.; Van Hoecke, H.; De Leenheer, E.; Dhooge, I. Vestibular Follow-up Program for Congenital Cytomegalovirus Based on 6 Years of Longitudinal Data Collection. Ear Hear. 2023, 44, 1354–1366. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Bialek, S.; Cannon, M.J. Attribution of congenital cytomegalovirus infection to primary versus non-primary maternal infection. Clin. Infect. Dis. 2011, 52, e11–e13. [Google Scholar] [CrossRef] [PubMed]
- Mussi-Pinhata, M.M.; Yamamoto, A.Y.; Moura Brito, R.M.; de Lima Isaac, M.; de Carvalho e Oliveira, P.F.; Boppana, S.; Britt, W.J. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population. Clin. Infect. Dis. 2009, 49, 522–528. [Google Scholar] [CrossRef]
- Manicklal, S.; van Niekerk, A.M.; Kroon, S.M.; Hutto, C.; Novak, Z.; Pati, S.K.; Chowdhury, N.; Hsiao, N.Y.; Boppana, S.B. Birth prevalence of congenital cytomegalovirus among infants of HIV-infected women on prenatal antiretroviral prophylaxis in South Africa. Clin. Infect. Dis. 2014, 58, 1467–1472. [Google Scholar] [CrossRef]
- Dar, L.; Namdeo, D.; Kumar, P.; Thakar, A.; Kant, S.; Rai, S.; Singh, P.K.; Kabra, M.; Fowler, K.B.; Boppana, S.B. Congenital Cytomegalovirus Infection and Permanent Hearing Loss in Rural North Indian Children. Pediatr. Infect. Dis. J. 2017, 36, 670–673. [Google Scholar] [CrossRef]
- Olusanya, B.O.; Slusher, T.M.; Boppana, S.B. Prevalence of congenital cytomegalovirus infection in Nigeria: A pilot study. Pediatr. Infect. Dis. J. 2015, 34, 322–324. [Google Scholar] [CrossRef]
- Ahlfors, K.; Ivarsson, S.A.; Harris, S. Report on a long-term study of maternal and congenital cytomegalovirus infection in sweden. review of prospective studies available in the literature. Scand. J. Infect. Dis. 1999, 31, 443–457. [Google Scholar]
- Boppana, S.B.; Rivera, L.B.; Fowler, K.B.; Mach, M.; Britt, W.J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 2001, 344, 1366–1371. [Google Scholar] [CrossRef]
- Townsend, C.L.; Forsgren, M.; Ahlfors, K.; Ivarsson, S.A.; Tookey, P.A.; Peckham, C.S. Long-term outcomes of congenital cytomegalovirus infection in Sweden and the United Kingdom. Clin. Infect. Dis. 2013, 56, 1232–1239. [Google Scholar] [CrossRef]
- Maltezou, P.G.; Kourlaba, G.; Kourkouni, Ε.; Luck, S.; Blázquez-Gamero, D.; Ville, Y.; Lilleri, D.; Dimopoulou, D.; Karalexi, M.; Papaevangelou, V. Maternal type of CMV infection and sequelae in infants with congenital CMV: Systematic review and meta-analysis. J. Clin. Virol. 2020, 129, 104518. [Google Scholar] [CrossRef]
- Ross, S.A.; Fowler, K.B.; Ashrith, G.; Stagno, S.; Britt, W.J.; Pass, R.F.; Boppana, S.B. Hearing loss in children with congenital cytomegalovirus infection born to mothers with preexisting immunity. J. Pediatr. 2006, 148, 332–336. [Google Scholar] [CrossRef]
- Hughes, B.L.; Gyamfi-Bannerman, C. Diagnosis and antenatal management of congenital cytomegalovirus infection. Am. J. Obstet. Gynecol. 2016, 214, B5–B11. [Google Scholar] [CrossRef] [PubMed]
- Enders, M.; Daiminger, A.; Exler, S.; Enders, G. Amniocentesis for prenatal diagnosis of cytomegalovirus infection: Challenging the 21 weeks’ threshold. Prenat. Diagn. 2017, 37, 940–942. [Google Scholar] [CrossRef] [PubMed]
- Enders, M.; Daiminger, A.; Exler, S.; Ertan, K.; Enders, G.; Bald, R. Prenatal diagnosis of congenital cytomegalovirus infection in 115 cases: A 5 years’ single center experience. Prenat. Diagn. 2017, 37, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.E.; Walton, P.D.; Veren, D.A.; Page, F.; Alford, C.A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef]
- Enders, G.; Daiminger, A.; Bäder, U.; Exler, S.; Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 2011, 52, 244–246. [Google Scholar] [CrossRef]
- Faure-Bardon, V.; Magny, J.F.; Parodi, M.; Couderc, S.; Garcia, P.; Maillotte, A.M.; Benard, M.; Pinquier, D.; Astruc, D.; Patural, H.; et al. Sequelae of Congenital Cytomegalovirus Following Maternal Primary Infections Are Limited to Those Acquired in the First Trimester of Pregnancy. Clin. Infect. Dis. 2019, 69, 1526–1532. [Google Scholar] [CrossRef]
- Teissier, N.; Delezoide, A.L.; Mas, A.E.; Khung-Savatovsky, S.; Bessières, B.; Nardelli, J.; Vauloup-Fellous, C.; Picone, O.; Houhou, N.; Oury, J.F.; et al. Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol. 2011, 122, 763–774. [Google Scholar] [CrossRef]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Guerra, B.; Landini, M.P.; Capretti, M.G.; Lanari, M.; Lazzarotto, T. Human fetal inner ear involvement in congenital cytomegalovirus infection. Acta Neuropathol. Commun. 2013, 1, 63. [Google Scholar] [CrossRef]
- Tsuprun, V.; Schleiss, M.R.; Cureoglu, S. Diversity of the cochlear and vestibular pathologies in human temporal bones of newborns infected with cytomegalovirus. Ann. Clin. Pathol. 2022, 9, 1158. [Google Scholar]
- Boppana, S.B.; Britt, W.J. Cytomegalovirus. In Infection and Hearing Impairment; Newton, V.E., Vallely, P.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 67–92. [Google Scholar]
- Lim, R.; Brichta, A.M. Anatomical and physiological development of the human inner ear. Hear. Res. 2016, 338, 9–21. [Google Scholar] [CrossRef]
- Njue, A.; Coyne, C.; Margulis, A.V.; Wang, D.; Marks, M.A.; Russell, K.; Das, R.; Sinha, A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Locher, H.; de Groot, J.C.; van Iperen, L.; Huisman, M.A.; Frijns, J.H.; Chuva de Sousa Lopes, S.M. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev. Neurobiol. 2015, 75, 1219–1240. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G.E.; Munro, K.J.; Couper, K.N.; Pathmanaban, O.N.; Brough, D. The NLRP3 inflammasome as a target for sensorineural hearing loss. Clin. Immunol. 2023, 249, 109287. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.; Okano, T. Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Front. Neurol. 2022, 13, 861992. [Google Scholar] [CrossRef]
- Wilson, T.; Omelchenko, I.; Foster, S.; Zhang, Y.; Shi, X.; Nuttall, A.L. JAK2/STAT3 inhibition attenuates noise-induced hearing loss. PLoS ONE 2014, 9, e108276. [Google Scholar] [CrossRef]
- Tan, W.J.; Thorne, P.R.; Vlajkovic, S.M. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem. Cell Biol. 2016, 146, 219–230. [Google Scholar] [CrossRef]
- Schiel, V.; Eftekharian, K.; Xia, A.; Bekale, L.A.; Bhattacharya, R.; Santa Maria, P.L. A Selection Protocol to Identify Therapeutics to Target NLRP3-Associated Sensory Hearing Loss. Otol. Neurotol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Sellier, Y.; Marliot, F.; Bessières, B.; Stirnemann, J.; Encha-Razavi, F.; Guilleminot, T.; Haicheur, N.; Pages, F.; Ville, Y.; Leruez-Ville, M. Adaptive and Innate Immune Cells in Fetal Human Cytomegalovirus-Infected Brains. Microorganisms 2020, 8, 176. [Google Scholar] [CrossRef]
- Choi, Y.C.; Hsiung, G.D. Cytomegalovirus infection in guinea pigs. II. Transplacental and horizontal transmission. J. Infect. Dis. 1978, 138, 197–202. [Google Scholar] [CrossRef]
- Griffith, B.P.; Lucia, H.L.; Hsiung, G.D. Brain and visceral involvement during congenital cytomegalovirus infection of guinea pigs. Pediatr. Res. 1982, 16, 455–459. [Google Scholar] [CrossRef]
- Kumar, M.L.; Nankervis, G.A. Experimental congenital infection with cytomegalovirus: A guinea pig model. J. Infect. Dis. 1978, 138, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Woolf, N.K.; Koehrn, F.J.; Harris, J.P.; Richman, D.D. Congenital cytomegalovirus labyrinthitis and sensorineural hearing loss in guinea pigs. J. Infect. Dis. 1989, 160, 929–937. [Google Scholar] [CrossRef]
- Woolf, N.K. Guinea pig model of congenital CMV-induced hearing loss: A review. Transplant. Proc. 1991, 23 (Suppl. S3), 32–34; discussion 34. [Google Scholar]
- Park, A.H.; Gifford, T.; Schleiss, M.R.; Dahlstrom, L.; Chase, S.; McGill, L.; Li, W.; Alder, S.C. Development of cytomegalovirus-mediated sensorineural hearing loss in a Guinea pig model. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shi, K.; Nielson, C.; Graham, E.M.; Price, M.S.; Haller, T.J.; Carraro, M.; Firpo, M.A.; Park, A.H.; Harrison, R.V. Hearing loss caused by CMV infection is correlated with reduced endocochlear potentials caused by strial damage in murine models. Hear. Res. 2022, 417, 108454. [Google Scholar] [CrossRef] [PubMed]
- Salt, A.N.; Hirose, K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear. Res. 2018, 362, 25–37. [Google Scholar] [CrossRef]
- Bradford, R.D.; Yoo, Y.G.; Golemac, M.; Pugel, E.P.; Jonjic, S.; Britt, W.J. Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons. PLoS Pathog. 2015, 11, e1004774. [Google Scholar] [CrossRef]
- Sung, C.Y.W.; Seleme, M.C.; Payne, S.; Jonjic, S.; Hirose, K.; Britt, W. Virus-induced cochlear inflammation in newborn mice alters auditory function. JCI Insight 2019, 4, e128878. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Mei, M.J.; Wang, X.Z.; Huang, S.N.; Chen, L.; Zhang, M.; Li, X.Y.; Qin, H.B.; Dong, X.; Cheng, S.; et al. A congenital CMV infection model for follow-up studies of neurodevelopmental disorders, neuroimaging abnormalities, and treatment. JCI Insight 2022, 7, e152551. [Google Scholar] [CrossRef]
- Juanjuan, C.; Yan, F.; Li, C.; Haizhi, L.; Ling, W.; Xinrong, W.; Juan, X.; Tao, L.; Zongzhi, Y.; Suhua, C. Murine model for congenital CMV infection and hearing impairment. Virol. J. 2011, 8, 70. [Google Scholar] [CrossRef]
- Sakao-Suzuki, M.; Kawasaki, H.; Akamatsu, T.; Meguro, S.; Miyajima, H.; Iwashita, T.; Tsutsui, Y.; Inoue, N.; Kosugi, I. Aberrant fetal macrophage/microglial reactions to cytomegalovirus infection. Ann. Clin. Transl. Neurol. 2014, 1, 570–588. [Google Scholar] [CrossRef] [PubMed]
- Clancy, B.; Darlington, R.B.; Finlay, B.L. Translating developmental time across mammalian species. Neuroscience 2001, 105, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Moulden, J.; Sung, C.Y.W.; Brizic, I.; Jonjic, S.; Britt, W. Murine Models of Central Nervous System Disease following Congenital Human Cytomegalovirus Infections. Pathogens 2021, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Liberman, M.C. Noise-induced and age-related hearing loss: New perspectives and potential therapies. F1000Reserach 2017, 6, 927. [Google Scholar] [CrossRef]
- Aedo, C.; Aguilar, E. Cochlear synaptopathy: New findings in animal and human research. Rev. Neurosci. 2020, 31, 605–615. [Google Scholar] [CrossRef]
- Martens, S.; Maes, L.; Dhondt, C.; Vanaudenaerde, S.; Sucaet, M.; De Leenheer, E.; Van Hoecke, H.; Van Hecke, R.; Rombaut, L.; Dhooge, I. Vestibular Infant Screening-Flanders: What is the Most Appropriate Vestibular Screening Tool in Hearing-Impaired Children? Ear Hear. 2023, 44, 385–398. [Google Scholar] [CrossRef]
- Williamson, W.D.; Demmler, G.J.; Percy, A.K.; Catlin, F.I. Progressive hearing loss in infants with asymptomatic congenital cytomegalovirus infection. Pediatrics 1992, 90, 862–866. [Google Scholar] [CrossRef]
- Puhakka, L.; Lappalainen, M.; Lönnqvist, T.; Nieminen, T.; Boppana, S.; Saxen, H.; Niemensivu, R. Hearing outcome in congenitally CMV infected children in Finland—Results from follow-up after three years age. Int. J. Pediatr. Otorhinolaryngol. 2022, 156, 111099. [Google Scholar] [CrossRef]
- van Wieringen, A.; Boudewyns, A.; Sangen, A.; Wouters, J.; Desloovere, C. Unilateral congenital hearing loss in children: Challenges and potentials. Hear. Res. 2019, 372, 29–41. [Google Scholar] [CrossRef]
- Fitzpatrick, E.M.; Gaboury, I.; Durieux-Smith, A.; Coyle, D.; Whittingham, J.; Nassrallah, F. Auditory and language outcomes in children with unilateral hearing loss. Hear. Res. 2019, 372, 42–51. [Google Scholar] [CrossRef]
- Yoshinaga-Itano, C.; Sedey, A.L.; Coulter, D.K.; Mehl, A.L. Language of early- and later-identified children with hearing loss. Pediatrics 1998, 102, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Bamford, J.; McCracken, W.; Peers, I.; Grayson, P. Trial of a two-channel hearing aid (low-frequency compression-high-frequency linear amplification) with school age children. Ear Hear. 1999, 20, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lanzieri, T.M.; Chung, W.; Flores, M.; Blum, P.; Caviness, A.C.; Bialek, S.R.; Grosse, S.D.; Miller, J.A.; Demmler-Harrison, G. Hearing Loss in Children With Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2017, 139, e20162610. [Google Scholar] [CrossRef] [PubMed]
- Cushing, S.L.; Papsin, B.C.; Rutka, J.A.; James, A.L.; Gordon, K.A. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope 2008, 118, 1814–1823. [Google Scholar] [CrossRef]
- Black, F.O.; Shupert, C.L.; Horak, F.B.; Nashner, L.M. Abnormal postural control associated with peripheral vestibular disorders. Prog. Brain Res. 1988, 76, 263–275. [Google Scholar]
- Hartman, E.; Houwen, S.; Visscher, C. Motor skill performance and sports participation in deaf elementary school children. Adapt. Phys. Activ. Q. 2011, 28, 132–145. [Google Scholar] [CrossRef]
- De Kegel, A.; Maes, L.; Baetens, T.; Dhooge, I.; Van Waelvelde, H. The influence of a vestibular dysfunction on the motor development of hearing-impaired children. Laryngoscope 2012, 122, 2837–2843. [Google Scholar] [CrossRef]
- Rine, R.M.; Cornwall, G.; Gan, K.; LoCascio, C.; O’Hare, T.; Robinson, E.; Rice, M. Evidence of progressive delay of motor development in children with sensorineural hearing loss and concurrent vestibular dysfunction. Percept. Mot. Ski. 2000, 90 Pt 2, 1101–1112. [Google Scholar] [CrossRef]
- Shall, M.S. The importance of saccular function to motor development in children with hearing impairments. Int. J. Otolaryngol. 2009, 2009, 972565. [Google Scholar] [CrossRef]
- Maes, L.; De Kegel, A.; Van Waelvelde, H.; Dhooge, I. Association between vestibular function and motor performance in hearing-impaired children. Otol. Neurotol. 2014, 35, e343–e347. [Google Scholar] [CrossRef]
- Singh, A.; Raynor, E.M.; Lee, J.W.; Smith, S.L.; Heet, H.; Garrison, D.; Wrigley, J.; Kaylie, D.M.; Riska, K.M. Vestibular Dysfunction and Gross Motor Milestone Acquisition in Children with Hearing Loss: A Systematic Review. Otolaryngol. Head Neck Surg. 2021, 165, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Acosta, E.; Bowlin, T.; Brooks, J.; Chiang, L.; Hussein, I.; Kimberlin, D.; Kauvar, L.M.; Leavitt, R.; Prichard, M.; Whitley, R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J. Infect. Dis. 2020, 221 (Suppl. S1), S32–S44. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, D.W.; Lin, C.Y.; Sánchez, P.J.; Demmler, G.J.; Dankner, W.; Shelton, M.; Jacobs, R.F.; Vaudry, W.; Pass, R.F.; Kiell, J.M.; et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: A randomized, controlled trial. J. Pediatr. 2003, 143, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, D.W.; Jester, P.M.; Sánchez, P.J.; Ahmed, A.; Arav-Boger, R.; Michaels, M.G.; Ashouri, N.; Englund, J.A.; Estrada, B.; Jacobs, R.F.; et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med. 2015, 372, 933–943. [Google Scholar] [CrossRef]
- McCrary, H.; Sheng, X.; Greene, T.; Park, A. Long-term hearing outcomes of children with symptomatic congenital CMV treated with valganciclovir. Int. J. Pediatr. Otorhinolaryngol. 2019, 118, 124–127. [Google Scholar] [CrossRef]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutré, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef]
- Kuk, F.K.; Kollofski, C.; Brown, S.; Melum, A.; Rosenthal, A. Use of a digital hearing aid with directional microphones in school-aged children. J. Am. Acad. Audiol. 1999, 10, 535–548. [Google Scholar] [CrossRef]
- Federspil, P.A.; Tretbar, S.H.; Böhlen, F.H.; Rohde, S.; Glaser, S.; Plinkert, P.K. Measurement of skull bone thickness for bone-anchored hearing aids: An experimental study comparing both a novel ultrasound system (SonoPointer) and computed tomographic scanning to mechanical measurements. Otol. Neurotol. 2010, 31, 440–446. [Google Scholar] [CrossRef]
- Thomas, J.P.; Neumann, K.; Dazert, S.; Voelter, C. Cochlear Implantation in Children With Congenital Single-Sided Deafness. Otol. Neurotol. 2017, 38, 496–503. [Google Scholar] [CrossRef]
- Balkany, T.; Hodges, A.; Telischi, F.; Hoffman, R.; Madell, J.; Parisier, S.; Gantz, B.; Tyler, R.; Peters, R.; Litovsky, R. William House Cochlear Implant Study Group: Position statement on bilateral cochlear implantation. Otol. Neurotol. 2008, 29, 107–108. [Google Scholar] [CrossRef]
- Papsin, B.C.; Gordon, K.A. Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. Curr. Opin. Otolaryngol. Head Neck Surg. 2008, 16, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Colletti, L.; Mandalà, M.; Colletti, V. Cochlear implants in children younger than 6 months. Otolaryngol. Head Neck Surg. 2012, 147, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Rine, R.M. Vestibular Rehabilitation for Children. Semin. Hear. 2018, 39, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Reynard, P.; Ortega-Solís, J.; Tronche, S.; Darrouzet, V.; Thai-Van, H. Guidelines of the French Society of Otorhinolaryngology and Head and Neck Surgery (SFORL) for vestibular rehabilitation in children with vestibular dysfunction. A systematic review. Arch. Pediatr. 2024, 31, 217–223. [Google Scholar] [CrossRef]
- Rine, R.M.; Braswell, J.; Fisher, D.; Joyce, K.; Kalar, K.; Shaffer, M. Improvement of motor development and postural control following intervention in children with sensorineural hearing loss and vestibular impairment. Int. J. Pediatr. Otorhinolaryngol. 2004, 68, 1141–1148. [Google Scholar] [CrossRef]
- Ebrahimi, A.A.; Jamshidi, A.A.; Movallali, G.; Rahgozar, M.; Haghgoo, H.A. The Effect of Vestibular Rehabilitation Therapy Program on Sensory Organization of Deaf Children With Bilateral Vestibular Dysfunction. Acta Med. Iran. 2017, 55, 683–689. [Google Scholar]
- Braswell, J.; Rine, R.M. Preliminary evidence of improved gaze stability following exercise in two children with vestibular hypofunction. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1967–1973. [Google Scholar] [CrossRef]
- Medeiros, I.R.; Bittar, R.S.; Pedalini, M.E.; Lorenzi, M.C.; Formigoni, L.G.; Bento, R.F. Vestibular rehabilitation therapy in children. Otol. Neurotol. 2005, 26, 699–703. [Google Scholar] [CrossRef]
- Storey, E.P.; Wiebe, D.J.; D’Alonzo, B.A.; Nixon-Cave, K.; Jackson-Coty, J.; Goodman, A.M.; Grady, M.F.; Master, C.L. Vestibular Rehabilitation Is Associated With Visuovestibular Improvement in Pediatric Concussion. J. Neurol. Phys. Ther. 2018, 42, 134–141. [Google Scholar] [CrossRef]
- Mohamed, S.T.; Hazzaa, N.; Abdel Rahman, T.; Ezz Eldin, D.M.; Elhusseiny, A.M. Efficacy of vestibular rehabilitation program in children with balance disorders and sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2024, 179, 111931. [Google Scholar] [CrossRef]
- Zargari, M.; Williams, K.; Jo, J.; Anesi, T.J.; Prosak, O.L.; Amedy, A.; Bishay, A.E.; Zuckerman, S.L.; Terry, D.P. Does earlier vestibular therapy after sport-related concussion lead to faster recovery? J. Neurosurg. Pediatr. 2023, 32, 657–664. [Google Scholar] [CrossRef]
- Schneider, K.J.; Critchley, M.L.; Anderson, V.; Davis, G.A.; Debert, C.T.; Feddermann-Demont, N.; Gagnon, I.; Guskiewicz, K.M.; Hayden, K.A.; Herring, S.; et al. Targeted interventions and their effect on recovery in children, adolescents and adults who have sustained a sport-related concussion: A systematic review. Br. J. Sports Med. 2023, 57, 771–779. [Google Scholar] [CrossRef]
- Tramontano, M.; Medici, A.; Iosa, M.; Chiariotti, A.; Fusillo, G.; Manzari, L.; Morelli, D. The Effect of Vestibular Stimulation on Motor Functions of Children With Cerebral Palsy. Motor Control 2017, 21, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Revello, M.G.; Tibaldi, C.; Masuelli, G.; Frisina, V.; Sacchi, A.; Furione, M.; Arossa, A.; Spinillo, A.; Klersy, C.; Ceccarelli, M.; et al. Prevention of Primary Cytomegalovirus Infection in Pregnancy. EBioMedicine 2015, 2, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Nigro, G.; Adler, S.P.; La Torre, R.; Best, A.M. Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med. 2005, 353, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.L.; Clifton, R.G.; Rouse, D.J.; Saade, G.R.; Dinsmoor, M.J.; Reddy, U.M.; Pass, R.; Allard, D.; Mallett, G.; Fette, L.M.; et al. A Trial of Hyperimmune Globulin to Prevent Congenital Cytomegalovirus Infection. N. Engl. J. Med. 2021, 385, 436–444. [Google Scholar] [CrossRef]
- Chatzakis, C.; Shahar-Nissan, K.; Faure-Bardon, V.; Picone, O.; Hadar, E.; Amir, J.; Egloff, C.; Vivanti, A.; Sotiriadis, A.; Leruez-Ville, M.; et al. The effect of valacyclovir on secondary prevention of congenital cytomegalovirus infection, following primary maternal infection acquired periconceptionally or in the first trimester of pregnancy. An individual patient data meta-analysis. Am. J. Obstet. Gynecol. 2024, 230, 109–117.e102. [Google Scholar] [CrossRef]
- D’Antonio, F.; Marinceu, D.; Prasad, S.; Khalil, A. Effectiveness and safety of prenatal valacyclovir for congenital cytomegalovirus infection: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2023, 61, 436–444. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Chatzakis, C.; Lilleri, D.; Blazquez-Gamero, D.; Alarcon, A.; Bourgon, N.; Foulon, I.; Fourgeaud, J.; Gonce, A.; Jones, C.E.; et al. Consensus recommendation for prenatal, neonatal and postnatal management of congenital cytomegalovirus infection from the European congenital infection initiative (ECCI). Lancet Reg. Health Eur. 2024, 40, 100892. [Google Scholar] [CrossRef]
- Boppana, S.B.; van Boven, M.; Britt, W.J.; Gantt, S.; Griffiths, P.D.; Grosse, S.D.; Hyde, T.B.; Lanzieri, T.M.; Mussi-Pinhata, M.M.; Pallas, S.E.; et al. Vaccine value profile for cytomegalovirus. Vaccine 2023, 41 (Suppl. S2), S53–S75. [Google Scholar] [CrossRef]
- Pass, R.F.; Zhang, C.; Evans, A.; Simpson, T.; Andrews, W.; Huang, M.L.; Corey, L.; Hill, J.; Davis, E.; Flanigan, C.; et al. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 2009, 360, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Munoz, F.M.; Callahan, S.T.; Rupp, R.; Wootton, S.H.; Edwards, K.M.; Turley, C.B.; Stanberry, L.R.; Patel, S.M.; McNeal, M.M.; et al. Safety and efficacy of a cytomegalovirus glycoprotein B (gB) vaccine in adolescent girls: A randomized clinical trial. Vaccine 2016, 34, 313–319. [Google Scholar] [CrossRef]
- Hu, X.; Karthigeyan, K.P.; Herbek, S.; Valencia, S.M.; Jenks, J.A.; Webster, H.; Miller, I.G.; Connors, M.; Pollara, J.; Andy, C.; et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. J. Infect. Dis. 2024, 230, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.B.; McCollister, F.P.; Sabo, D.L.; Shoup, A.G.; Owen, K.E.; Woodruff, J.L.; Cox, E.; Mohamed, L.S.; Choo, D.I.; Boppana, S.B.; et al. A Targeted Approach for Congenital Cytomegalovirus Screening Within Newborn Hearing Screening. Pediatrics 2017, 139, e20162128. [Google Scholar] [CrossRef] [PubMed]
Number of Inner Ears a | Cochlear Findings b | ||||
---|---|---|---|---|---|
Teissier et al., 2011 [51] | |||||
6 (14–35) | Neurosensory Epithelium | Stria Vascularis | Scala Media/Reissner’s Membrane | Spiral Ligament | Cochlear Nerve |
Virus detected c | 2/6 | 5/6 | 3/6 | 3/6 | |
Inflammatory cells d | 3/6 | 5/6 | 0/6 | 4/6 | |
Gabrielli et al., 2013 [52] | |||||
18 (21) | Neurosensory Epithelium | Stria Vascularis | Scala Media/Reissner’s Membrane | Spiral Ligament | Cochlear Nerve |
Virus detected e | 1/17 | 15/17 | 7/17 | 1/17 | 0/17 |
Inflammatory cells f | 9/17 | 17/17 | 11/17 | 13/17 | |
Tsuprun et al., 2022 [53] | |||||
4 | Neurosensory Epithelium | Stria Vascularis | Scala Media/Reissner’s Membrane | Spiral Ligament | Cochlear Nerve |
Virus detected g | 0/4 | 0/4 | 1/4 | N/A | N/A |
Inflammatory cells g | N/A | N/A | N/A | N/A | N/A |
Number of Inner Ears a | Vestibular Findings b | ||||
---|---|---|---|---|---|
6 (14–35) | Crista Ampullaris | Semicircular Canals | Saccule | Utricle | Vestibular Ganglion |
Teissier et al., 2011 [51] | |||||
Virus detected c | N/A | 3/6 | 4/6 | 4/6 | N/A |
Inflammatory cells d | N/A | 4/6 | 5/6 | 5/6 | N/A |
Gabrielli et al., 2013 [52] | |||||
18 (21) | Crista Ampullaris | Semicircular Canals | Saccule | Utricle | Vestibular Ganglion |
Virus detected e | 3/17 | 1/17 | 2/17 | 5/17 | 2/17 |
Inflammatory cells f | 11/17 | 6/17 | 9/17 | 11/17 | 13/17 |
Tsuprun et al., 2022 [53] | |||||
4 (12–43) | Crista Ampullaris | Semicircular Canals | Saccule | Utricle | Vestibular Ganglion |
Virus detected g | N/A | 2/4 | N/A | N/A | N/A |
Inflammatory cells g | N/A | N/A | N/A | N/A | N/A |
Clinical tests of vestibular function (office-based) |
|
Assessments of otolith function | Utricle
|
Assessment of semicircular canal (SCC) function | Horizontal SCC
|
Functional assessment of gaze stability | Dynamic visual acuity (DVA) Computerized DVA (cDVA) |
Balance and gait assessment (static and dynamic) | Sensory Motor
|
Assessment of posture control |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinninti, S.G.; Britt, W.J.; Boppana, S.B. Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens 2024, 13, 1019. https://doi.org/10.3390/pathogens13111019
Pinninti SG, Britt WJ, Boppana SB. Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens. 2024; 13(11):1019. https://doi.org/10.3390/pathogens13111019
Chicago/Turabian StylePinninti, Swetha G., William J. Britt, and Suresh B. Boppana. 2024. "Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection" Pathogens 13, no. 11: 1019. https://doi.org/10.3390/pathogens13111019
APA StylePinninti, S. G., Britt, W. J., & Boppana, S. B. (2024). Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens, 13(11), 1019. https://doi.org/10.3390/pathogens13111019